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Abstract

We propose a novel deep learning approach for effective
dense crowd counting by characterizing scattered occlu-
sions, named CSONet. CSONet recognizes the implications
of event-induced, scene-embedded, and multitudinous ob-
stacles such as umbrellas and picket signs to achieve an ac-
curate crowd analysis result. CSONet is the first deep learn-
ing model for characterizing scattered occlusions of effec-
tive dense-mode crowd counting to the best of our knowl-
edge. We have collected and annotated two new scattered
occlusion object datasets, which contain crowd images oc-
cluded with umbrellas (cso-umbrellas dataset) and picket
signs (cso-pickets dataset). We have designed and imple-
mented a new crowd overfit reduction network by adding
both spatial pyramid pooling and dilated convolution lay-
ers over modified VGG16 for capturing high-level features
of extended receptive fields. CSONet was trained on the two
new scattered occlusion datasets and the ShanghaiTech A
and B datasets. We also have built an algorithm that merges
scattered object maps and density heatmaps of visible hu-
mans to generate a more accurate crowd density heatmap
output. Through extensive evaluations, we demonstrate that
the accuracy of CSONet with scattered occlusion images
outperforms over the state-of-art existing crowd counting
approaches by 30% to 100% in both mean absolute error
and mean square error.

1. Introduction
Crowd counting is becoming an increasingly important

issue of computer vision, as it has many applications in the
context of smart cities especially pertaining to public safety.
The lack of proper crowd safety control and management
often leads to human casualties and infectious disease (i.e.,
COVID-19) spreading at densely crowded political, enter-
taining, and religious events. Hence, automated crowd in-
terpretation using AI techniques [5, 20, 42] is becoming an
increasingly critical task for many practical crowd safety

applications [13, 25, 30, 34]. Although many CNN-based
methods have been proposed to improve the performance
on complex crowd images to deal with variations in scale,
perspective, and image resolution [21, 1, 22, 29, 32, 37, 38],
they still have significant limitations in the face of occlu-
sions that partially impede sight of individuals in a crowd
scene. Crowd images are often scattered with occlusions
that make it difficult to identify all human heads in the
scene. As illustrated in Figure 1, the types of fixed envi-
ronmental obstacles such as buildings, big trees, and walls
are constrained to specific parts of a image, thus can be
easily excluded from the crowd counting area. However,
the interpretations of event-induced, scene-embedded, and
multitudinous obstacles, namely Scattered Occlusions (SO),
such as umbrellas and picket signs are challenging, as they
can obscure the sight of one or more individuals entirely
or partially depending on crowd size and density as well
as occlusion types [33]. Despite its commonness in many
mass gathering scenes such as sport events, political rallies
or protests, existing approaches fail to do accurate human
counting in the presence of SO in crowd images.

In this paper, we propose a novel deep learning approach
for effective dense-mode crowd counting by characterizing
scattered occlusions (CSONet). CSONet effectively rec-
ognizes event-induced, scattered, and multitudinous occlu-
sions and applies the effect to improve crowd counting ac-
curacy and crowd density mapping quality. Specifically,
CSONet tackles the dense-mode crowd scenarios such as
people under umbrellas and behind pickets, which can hide
people according to the event and recurring patterns in var-
ious ways. CSONet is an efficiently trained model using a
simple convolutional structure comprised of three compo-
nents. First, the Scattered Occlusion Datasets (SOD) com-
ponent generates two new crowd counting datasets that con-
tain diffused umbrella (cso-umbrellas dataset) and picket
(cso-pickets dataset) occlusion objects in the crowd images.
SOD also trains the model and outputs umbrella and picket
heatmaps. Second, a network for Crowd Overfit Reduction
(COR) is added on the well-trained VGG16-based CSRNet
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Figure 1: Crowd Map with Occlusion Objects (Overpass,
Buildings, Walls, Fences, Trees, Umbrellas, and Pickets).

architecture [19] to reduce the Mean Absolute Error (MAE)
and Mean Squared Error (MSE). We use the first ten layers
of VGG16 to extract features from the crowd images. The
extracted VGG16 features are grouped in a Spatial Pyramid
Pooling (SPP) layer using average pooling in two different
receptive fields (6 × 6 and 12 × 12) to soften overfitting.
The Dilated Convolution Layers (DCL) outputs a predicted
count and density map, which improves the crowd density
prediction. Finally, a Scattered Occlusion Mapper (SOM)
is implemented to combine the SO object heatmap with the
human crowd heatmap to generate an accurate crowd den-
sity map and the crowd count. Using multiple datasets (cso-
umbrellas dataset, cso-pickets dataset, and ShanghaiTech
datasets A (dense-mode) and B (sparse-mode)), we demon-
strate that CSONet’s accuracy outperforms existing tech-
niques such as SPN [7], ASNet [15] and CSRNet [19].
Our main objective is to achieve higher accuracy with the
SO. CSONet reaches 100% better MAE and MSE for cso-
umbrellas(MAE-U and MSE-U) and 30% better MAE and
MSE for cso-pickets (MAE-P and MSE-P) than CSRNet.
CSONet also achieves 64% better MAE and 80% better
MSE than SPN for umbrella dataset and 46% better MAE
and MSE than ASNet for picket dataset. To the best of
our knowledge, this is the first work that adaptively esti-
mates the number of people occluded by objects scattered
throughout a crowd scene to accurately quantify the total
counts of people in a crowd image. The main contributions
of this work include:

• We have designed and developed a CSONet architecture,
which is the first deep learning model for characteriz-
ing scattered occlusions of effective dense-mode crowd
counting to the best of our knowledge.

• We have investigated the impact and challenges of SO in
CNN crowd counting methods by collecting and annotat-

ing two new SO datasets, containing crowd images oc-
cluded with umbrellas (cso-umbrellas dataset) and picket
signs (cso-pickets dataset).

• We have implemented COR by adding SPPL and DCL
over modified VGG16 layers, which deploys a deeper
CNN for capturing high-level features of extended recep-
tive fields. COR was trained on the two new SO object
datasets and the ShanghaiTech A and B datasets.

• We have built an algorithm that merges scattered object
heatmaps and visible human heatmaps to generate a more
accurate crowd density output.

The rest of the paper is organized as follows. Section 2
introduces related work for crowd counting in both tradi-
tional and CNN based approaches. Section 3 presents the
proposed CSONet architecture, including the training de-
tails. In Section 4, we demonstrate the experiments by eval-
uation metrics and discuss the results. Finally, Section 5
concludes the paper.

2. Related Works
There have been significant studies and remarkable im-

provements made in crowd counting and density estima-
tion. Traditional non-machine learning methods can be
broadly classified into three categories, namely, detection-
based, regression-based, and density estimation-based ap-
proaches [24]. Despite various advancements, those ap-
proaches have shortcomings of complexities and limited ac-
curacy. In recent years, researchers mostly have adopted
machine learning techniques to overcome those weak-
nesses. In this section, we briefly highlight noticeable prior
studies.

2.1. Traditional Methods

A number of early methods have attempted to tackle
the challenges of crowd counting and density estimation
via implementing detection-based approaches. Generally,
these methods use a detector or classifier to recognize a
human’s whole or body part to estimate the crowd count.
Dollar et al. [9] applied a sliding window detector to ex-
tract the features from the input image and determine the
human count. Most of the methods focused on extracting
features, such as histograms of oriented gradients HOG [8],
and Haar wavelets [35] from the crowd images to learn the
density and the count. However, the counting results of the
whole body methods perform poorly in highly crowded im-
ages. Although a part-based detector is proposed to detect
the density of people in a crowd [10, 18], these methods
still face difficulties in locating people, especially when the
crowd in a scene is highly occluded or densely populated,
as it happens often in various events. Regression-based ap-
proaches have been proposed to tackle the limitations of the
detection-based method, concentrating on the difficulty of
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Figure 2: CSONet Architecture.

detecting the count in a highly dense crowd scene. Regres-
sion methods aim to learn the mapping between extracted
features from the image and the count number of objects
[6, 4]. Regression methods typically have two main com-
ponents: low-level feature extraction and regression mod-
eling [28]. Density estimation-based methods are another
approach for crowd counting and density estimation. Re-
searchers have successfully addressed the issues of occlu-
sion and clutter by using regression-based methods. Never-
theless, some of the existing techniques overlooked spatial
information, which affected the result of counting. In con-
trast, Lempitsky et al. [17] proposed a supervised learning
framework to estimate the count of objects in images. They
used a linear mapping technique that focuses on the density
through learning the relationship between the local image
features and object density maps. However, Pham et al. [27]
observed the limitation of the linear mapping and proposed
a random forest framework to learn a non-linear mapping
between local image features and density maps.

2.2. CNN-based Approaches

Several studies have proposed Convolutional Neural
Networks (CNN) based approaches for crowd counting and
density estimation. Those methods have obtained a signif-
icant improvement in crowd counting and density estima-
tion addressing various kinds of challenges, such as per-
spective, image resolutions, occlusions, and non-uniform
environment. Here, we briefly summarize various of the
recent methods for crowd counting and density estimation
in terms of their CNN architectures. A multi-column CNN
architecture called MCNN was proposed in [40] to esti-
mate the crowd count and density map in an arbitrary crowd
image. The CrowdNet method proposed in [2] is consid-

ered one of the early CNN based architectures inspired by
VGG16 [31]. The CrowdNet combined convolutional net-
works and a shallow network to learn robust scale features
and to generate the density maps. Cao et al. [3] present
an encoder-decoder network called a scale aggregation net-
work (SANet). The encoder layer extracts the multi-scale
features, and the decoder will generate high-resolution den-
sity maps. Also, training loss is introduced by combin-
ing euclidean loss and local pattern consistency loss, which
contributed to improving the final count. Li et al. [19] in-
troduce the congested scene recognition network (CSRNet),
which is one of the state-of-the-art in terms of performance
among the ones inspired by VGG16. It consists of two es-
sential components: CNN as the front-end layers and di-
lated convolution layers as the back-end. Zhang et al. [39]
proposed a method that generates a probability map and
presents the high expectations indicated in locations where
heads are possible to be present. CANet [23] proposed a
deep network architecture that performs multi-level feature
comparison between the support and the query images and
iterative refinements of the results. Chen et al. [7] pro-
posed a scale pyramid network (SPN), which consists of a
single column structure to extract multiple-scale features by
dilated convolutions with various rates. ASNet [15] is also
considered as a state-of-the-art method. It contains a density
attention network that generates attention masks, and then
provides it to attention scaling network in order to generate
scaling factors outputting attention-based density.

Despite improvements achieved by such recent ap-
proaches, the accuracy of crowd counting can significantly
diminished in the presence of SOs in a crowd scene. Our
method address the very issue of SOs and achieves a high
accuracy of crowd counting in the presence of such SOs.
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3. Proposed Architecture
The proposed design aims to characterize scattered oc-

clusions to improve the accuracy of crowd counting as well
as the quality of crowd density mapping. In this section,
we introduce the CSONet architecture that consists of a
network for Scattered Occlusion Datasets (SOD), Crowd
Overfit Reduction (COR), and Scattered Occlusion Mapper
(SOM), as depicted in Figure 2. SOD creates two new scat-
tered occlusion object datasets and trains on them. COR de-
ploys a deeper CNN for capturing high-level features with
larger receptive fields. SOM generates high-quality crowd
density maps.

3.1. Scattered Occlusion Datasets (SOD)

In the Scattered Occlusion Datasets (SOD) component,
we build two new datasets and perform CSONet train-
ing with these new datasets and two well-known public
datasets.

3.1.1 Datasets and Experimental Settings

Our goal is to investigate the impact and challenges of Scat-
tered Occlusion (SO) objects in the CNN crowd count-
ing methods. However, there has been no crowd image
dataset available focusing on SO objects such as umbrel-
las and pickets. Hence, we have created new SO object
datasets and trained our network CSONet on them. The
generated dataset consists of the cso-umbrellas dataset and
the cso-pickets dataset. They were collected from two re-
sources. First, both umbrella and picket crowd images were
mainly downloaded from Google images by running web
search scripts with various keywords, including ”umbrel-
las” (”crowd with umbrellas” and ”crowd in the rain”) and
”pickets” (”demonstration” and ”protest”). Second, the cso-
umbrellas dataset images are partially converted from the
Hajj event videos, an annual Islamic pilgrimage to Mecca,
Saudi Arabia, during the summer, where the crowd holds
umbrellas.

The cso-umbrellas dataset contains 250 crowd images
and a total of 27,697 umbrella annotations. Among them,
170 images were used for training, and 80 images were used
for testing. The cso-pickets dataset consists of 200 images
and 9,681 picket annotations. 130 images were used for
training, and 70 images were used for testing. To conduct
comparisons with the existing state-of-the-art crowd count-
ing method, we also train and test on the ShanghaiTech
A and B datasets. The ShanghaiTech dataset is a large-
scale crowd counting dataset containing 1198 images with
330,165 head annotations. It consists of two parts: Shang-
haiTech A and ShanghaiTech B. Part A includes 482 dense-
crowd images that have been collected randomly from the
Internet. 300 images were used for training, and the re-
maining 182 images were used for testing. Part B has 716

Datasets Images Annot- Avg. Max. Avg.
ations Count Count Resolution

Shanghai A 482 241,677 501 3,139 589 x 868
Shanghai B 716 88,488 123 578 768 x 1024

cso-umbrellas 250 27,697 111 862 561 x 783
cso-pickets 200 9,681 48 386 728 x 969

Table 1: Summary of statistics of the datasets.

sparse-crowd images, which were taken on busy streets in
Shanghai. 400 images were used for training, and 316 were
used for testing. Table 1 demonstrates a summary of the
statistics of the datasets.

3.1.2 Ground-Truth Generation

We have annotated all the images to generate the den-
sity map “ground-truth”. We have applied the geometry-
adaptive Gaussian kernels [40] as defined below to generate
the density map for each crowd image. The labeled objects’
locations in the original image are converted to the ground-
truth density map F (x) as follows:

F (x) =

N∑
t=1

δ(x− xi) ∗Gσi(x), with σi = βdi (1)

where N is the number of object annotations in the image,
xi is referring to each object in a given image, and di in-
dicates the average distance of k-nearest neighbors. Also,
the delta function δ(x − xi) is convolved with a Gaussian
kernel with the standard deviation parameter σi to generate
density heatmaps.

3.1.3 Training details

We have trained the CSONet structure in an end-to-end
manner. Adam optimizer [16] is used as an optimization
method to train CSONet with a learning rate of 1e-5 and a
momentum of 0.9. Performing multiple experiments start-
ing from 1e-4 to 1e-9, we found that 1e-5 is the ideal learn-
ing rate. In addition, we used other recommended training
hyper-parameters, including a batch of size 32 and an epoch
number of 100.

3.2. Crowd Overfit Reduction (COR) Layer

In this subsection, we explain the network structure of
the Crowd Overfit Reduction (COR) layer that consists
of three components, including VGG16 Layers (VGGL)
[31], Spatial Pyramid Pooling Layers (SPPL) [14], and Di-
lated Convolution Layers (DCL). We start with the VGG16
network, which was initially designed for large-scale nat-
ural image classification. VGG16 has thirteen convolu-
tional layers and three fully connected layers. However,
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we have modified the VGG16 network, which learns ten
convolutional layers with max-pooling, does two SPPs with
average-pooling and applies three dense models in DCL.

3.2.1 Modified VGG16 Network Layer

We apply the first ten convolutional layers and three max-
pooling layers of VGG16 to extract the crowd features. The
VGG16 is employed to ensure excellent learning perfor-
mance in object classification and detection, which has been
used by various practices such as CSRNet [19] and DAD-
Net [12]. The input images commence with a fixed size
by 224 × 224 pixel RGB image at the first convolutional
layer. As illustrated in Figure 2, the images sequentially
pass through a stack of 3 × 3 kernel convolutional layers
with different filter depths (64, 128, 256, and 512, respec-
tively) and three max-pooling layers of 2×2 pixel windows
in-between to create VGG16 features.

Figure 3: Various receptive fields performance.

3.2.2 Spatial Pyramid Pooling Layers (SPPL)

We have implemented Spatial Pyramid Pooling Layers
(SPPL) to process the features extracted from the first ten
VGG16 layers, which improves the semantic segmentation
results [41] in the density map. We apply average pooling
instead of max-pooling to reduce the overfitting and level
the prediction results. In particular, the average pooling
layer assigns the extracted VGG16 features into two dif-
ferent receptive fields (6 × 6 and 12 × 12), followed by a
1× 1 convolutional layer. As presented in Figure 3, among
the various sets of receptive field experimental results, the
receptive fields of (6 × 6 and 12 × 12) achieve the lowest
Mean Absolute Error (MAE) value.

3.2.3 Dilated Convolution Layers (DCL)

The Dilated Convolution Layers (DCL) is the last function
of the COR structure. Generally, DCL is widely used in
various computer vision processes to promote crowd den-
sity predictions and improve semantic segmentation results.
Moreover, DCL maintains the exponential expansion of the
receptive field without reducing the resolution [36]. We im-
plement DCL with three convolution layers using the same

depth filter of 256 and a kernel size of 3 × 3. We set the
dilation rate to two to gain better performance. However,
we transfer the feature maps to these smooth layers to pro-
duce the CSONet outputs, predicted crowd count, and den-
sity heatmap. The motivation for utilizing the DCL in COR
was to promote the dense prediction in congested images.

3.3. Scattered Occlusion Mapper (SOM)

Scattered Occlusion Mapper (SOM) is the last compo-
nent of CSONet architecture. It generates a high-quality
crowd density heatmap and an accurate crowd count by
merging Scattered Occlusion (SO) object data with human
crowd data. Most of the existing crowd counting methods
require a visible head to detect and count the number of
people, which cannot delimit individuals under umbrellas or
behind pickets. A simple one-to-one mapping won’t work
as the SO object’s impact on visual saliency for an image
depends on the size, density, mobility type, flow direction,
and velocity. As illustrated in Figure 4, an umbrella’s ef-
fect is different in the sparse and dense crowd scenarios.
An earlier study proposed an illustration for crowd count-
ing per unit [33]. We propose a procedure for estimating
the number of people under umbrellas or behind pickets in
a particular crowd event. Our analysis shows that each um-
brella covers zero to three people, and each picket occludes
zero to two people corresponding to the Occlusion Object to
Human Ratio (OHR). Also, we assume that the number of
SO objects cannot be more than the original human count.
However, those effects converge into similar values in the
high-density images. As shown in Figure 5, the average
number of people under an SO object mainly depends on
the OHR. Therefore, a formula is proposed to count the to-
tal number of people in an SO image:

Thuman = Dhuman + (Dso ∗ α) (2)

where Thuman is the total predicted crowd count in an im-
age, Dhuman is the detected human count. Dso indicates
the number of predicted objects in an image (umbrellas Du

or pickets Dp). An α can be measured by using the ground
truth values named MSOI (Measured SO Impact). Also, it
is estimated as an SO Impact (SOI) value. According to
Figure 5, an α value is chosen from the SOI value accord-
ing to the OHR. For example, if OHR is 40 % (i.e., human
count : SO object count = 100 : 40), α is 2.

4. Experiments
We test the proposed CSONet using multiple differ-

ent datasets, including two new SO object datasets (cso-
umbrellas and cso-pickets), along with two public crowd
datasets, ShanghaiTech A [40] and ShanghaiTech B [40].
In this section, the evaluation metrics are introduced and
then SO evaluations are conducted to analyze the efficacy
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Figure 4: Crowd image annotations with different mode,
type, and object.

Figure 5: Scattered Occlusion (SO) impact values.

of the proposed model. We evaluate and compare the per-
formance of CSONet to various crowd counting methods in-
cluding SPN, ASNet, and CSRNet. The CSONet prototype
was implemented using the Pytorch framework [26]. All
of the experiments were conducted on an NVIDIA GeForce
GTX 1080 Ti.

4.1. Evaluation Metrics

Both Mean Absolute Error (MAE) and Mean Squared
Error (MSE) are adopted in our performance testing. These
metrics are broadly used in crowd counting to evaluate the
accuracy of the measurement performance.

MAE =
1

N

N∑
t=1

|Yi − Y G
i | (3)

MSE =

√√√√ 1

N

N∑
t=1

(Yi − Y G
i )2 (4)

where N is the number of test images, Yi is the predicted
number, and the Y G is the ground-truth counts of the test
image i.

We also compute the Structural Similarity Index (SSIM)
[43], which is a metric used to measure the similarity be-
tween two images. The SSIM value ranges from 0 to 1,
equaling 1 if the two images are identical.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

Following the preprocessing method given by [43], Eq. (5)
measures the similarity between two images. Where x is
the estimated density-map, and y is the ground-truth. C1

and C2 are small constants, used to avoid division by zero.
In addition, µx and σ2

x are the local mean and variance esti-
mations of x, and σxy is the local covariance estimation. µy

and σ2
y are computed similarly.

For SO evaluation, we use ERT (error against real ground
truth) in Eq. (6).

ERT = |Vi −OHG
i | (6)

where Vi refers to the detected human count, the OHG
i

presents the real ground-truth (RGT) of the test image i.

4.2. Scattered Occlusion Evaluations

The experiment is designed to evaluate SO object de-
tection’s performance and the accuracy of the estimated
number of people occluded by the SO. We investigate how
significantly umbrellas and pickets impact the accuracy of
crowd counting and density estimation. For this purpose,
we use an original crowd image with 114 people and contin-
uously increase SO object annotations over the image from
0 to 87.7 % (Occlusion Object vs. Human Ratio (OHR)),
as shown in Table 2 and Figure 6. CSRNet [19] is selected
as a baseline to compare and evaluate the prediction accu-
racy of the proposed work. Table 2 shows the statistics of
the experimental results with various scenarios and meth-
ods. The Real Ground Truth (RGT) value is the original
number of people in the crowd image (i.e., 114 people) and
the known number of SO objects (umbrellas (U) or Pickets
(P)) placed on the image (i.e., from 0 to 100 umbrellas or
pickets). We also use a Detected Ground Truth (DGT) of the
number of SO objects (U/P) and the number of remaining
visible humans heads (H), based on manual Matlab-based
annotation analysis. DGT-U is the DGT after umbrella an-
notation, and DGT-P is the DGT after picket annotation. As
the number of SO object annotation increases, the number
of visible heads decreases due to occlusion. Also, the SO
object count accuracy reduces due to many overlaps (i.e.,
only 72 umbrellas are detected after applying 100 umbrel-
las). We run both CSRNet and CSONet to find the number
of humans and SO objects in a crowd image. As presented
in Figure 6, after applying 75 SO object annotations (65.8%
of OHR), there are almost no visible human heads. How-
ever, as CSONet applies the SO object impacts (SOI) for
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its final crowd counting according to Eq. (2), its prediction
results are as good as RGT.

OHR(%) RGT DGT-U DGT-P CSRNet CSONet
U/P U/P H U H P U P U P

0 0 114 0 114 0 119 119 113 113
0.9 1 112 1 111 2 107 107 113 115
2.6 3 108 4 106 3 105 105 115 112
6.1 7 97 7 100 7 85 85 102 106
8.8 10 94 11 94 9 88 88 102 105

17.5 20 57 17 68 19 68 86 95 97
43.9 50 15 49 30 46 18 55 110 106
65.8 75 6 64 9 70 14 13 105 110
87.7 100 0 72 0 73 7 4 110 110

Table 2: Experimental results with SO objects.

Figure 6: Crowd images with SO object annotations.

Figure 7: Error against RGT umbrella annotations.

Figure 8: Error against RGT picket annotations.

Figures 7 and 8 compare the crowd counting perfor-
mance of CSRNet and CSONet in the aspect of ERT in Eq.

(6) for umbrella and picket annotations, respectively. The
ERT of CSONet is much lower than the ERT of CSRNet.
The ERTs of CSRNet significantly increase when OHR in-
creases. However, the ERT of CSONet does not increase
for all OHR. Therefore, CSONet’s crowd counting perfor-
mance is much more stable and accurate than CSRNet, in-
dicating that merging the human and SO density heatmaps
is critical for better crowd count accuracy.

4.3. Performance Comparison

The performance in MAE and MSE metrics with Shang-
haiTech datasets (i.e., MAE-A means MAE with Shang-
haiTech A) of the existing state-of-the-art crowd counting
solutions, including CP-CNN [32], CSRNet [19], PCC Net
[11], SPN [7], and ASNet [15] are compared in Table 3. It
shows that the most recent ASNet achieves the least MAE-
A and MSE-A. SPN is as good as ASNet, which is 27%
better than other earlier approaches such as CSRNet. AS-
Net did not evaluate ShanghaiTech B dataset (sparse-mode),
as they are interested in counting densely populated crowd
with ShanghaiTech A (dense-mode) dataset.

Method MAE-A MSE-A MAE-B MSE-B
CP-CNN [32] 73.6 106.4 20.1 30.1
CSRNet [19] 68.2 115.0 10.6 16.0
PCC Net [11] 73.5 124.0 11.0 19.0

SPN [7] 61.7 99.5 9.4 14.4
ASNet [15] 57.78 90.13 - -

Table 3: Performance comparisons of different methods on
ShanghaiTech A (dense-mode) and B (sparse-mode).

Table 4 presents the crowd counting accuracy results
with the new SO object datasets. We choose 80 umbrella
and 70 picket images from cso-umbrellas and cso-pickets
datasets, respectively, and tested them with SPN, ASNet,
CSRNet, and CSONet to obtain the MAE, MSE, and SSIM
values (i.e., MAE-U means MAE for the umbrella images).
According to the density of cso-umbrellas and cso-pickets
datasets in Table 1, the MAE and MSE with the Shang-
haiTech dataset in Table 3 align with the results in Ta-
ble 4. For example, MAE-P and MSE-P maintain lower
values due to the cso-picket images are sparse. Also, MAE-
U and MSE-U of CSRNet are slightly higher than SPN
and ASNet. CSONet’s performance in terms of accuracy
is significantly better than the other methods. For exam-
ple, CSONet achieves 100% better MAE and MSE for cso-
umbrellas(MAE-U and MSE-U) and 30% better MAE and
MSE for cso-pickets (MAE-P and MSE-P) than CSRNet.
CSONet also achieves 64% better MAE and 80% better
MSE than SPN for umbrella dataset and 46% better MAE
and MSE than ASNet for picket dataset. The SSIM mea-
sures the similarity between the ground-truth and the esti-
mated density-map images. Although SOs already impact
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Figure 9: Five crowd image samples are randomly selected from the SO object datasets and evaluated with CSRNet, SPN,
ASNet, and CSONet. We display the density maps and counts of each sample. For a given RGB image, from the left column,
the detected ground-truth (DGT) density map shows the heads (H) and umbrellas (U)/ pickets(P) counts. The CSRNet, SPN,
and ASNet prediction results (count and density map) are in columns 3, 4, and 5, respectively. The last two columns present
CSONet results. The h-map is the human map and count, and p/u-maps are the detected SO objects (pickets/umbrellas).
Finally, the CSONet map and count demonstrate the estimation of human count and density map, which applies the SOI (i.e.,
under umbrellas or behind pickets) in a particular crowd event.

Method MAE-U MAE-P MSE-U MSE-P SSIM-U SSIM-P SSIM-A
CSRNet [19] 73.6 19.1 135.9 35.5 0.83 0.92 0.76

SPN [7] 59.9 24.2 120.1 42.3 0.85 0.90 -
ASNet [15] 71.5 21.3 133.7 40.5 0.81 0.88 -
CSONet 36.5 14.6 66.5 28.4 0.87 0.94 0.91

Table 4: Performance comparisons of CSRNet, SPN, ASNet, and CSONet with cso-umbrellas and cso-pickets datasets.

the DGT images, the CSONet still creates a higher struc-
tural similarity than the other methods. Figure 9 presents
overall performance results of crowd density heatmaps and
crowd counts (human, umbrella, and picket) with five SO
image samples. According to the heatmaps of DGT, CSR-
Net, SPN, and ASNet, the area covered by SOs are shown
by low density. However, the CSONet adjusts those areas
by identifying p/u heatmaps and overlaying them to human
heatmaps, which results in more accurate crowd counting.

5. Conclusions
We proposed an architecture for scattered occlusion

characterization called CSONet for efficient crowd counting

and high-quality density heatmap generation. We first gen-
erated, annotated, and trained two new scatter occlusion ob-
ject datasets, the cso-umbrellas dataset, and the cso-pickets
dataset. We then implemented CSONet using spatial pyra-
mid pooling and dilated convolutional layers to expand the
receptive field without losing resolution in the congested
scenes. CSONet recognizes event-induced, scattered, and
multitudinous occlusions and applies the effect to a hu-
man crowd map to generate an accurate crowd count and
high-quality density-map. Through extensive evaluations,
we demonstrated that the accuracy of CSONet outperforms
over the state-of-art existing crowd counting approaches.
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