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Abstract

CoralNet is a cloud-based website and platform for man-
ual, semi-automatic and automatic analysis of coral reef
images. Users access CoralNet through optimized web-
based workflows for common tasks, and other systems can
interface through API’s. Today, marine scientists are widely
using CoralNet, and nearly 3,000 registered users have up-
loaded 1,741,855 images from 2,040 distinct sources with
over 65 million annotations. CoralNet is hosted on AWS, is
free for users, and the code is open source 1. In January
2021, we released CoralNet 1.0 which has a new machine
learning engine. This paper provides an overview of that
engine, and the process of choosing the particular archi-
tecture, its training, and a comparison to some of the most
promising architectures. In a nutshell, CoralNet 1.0 uses
transfer learning with an EfficientNet-B0 backbone that is
trained on 16M labelled patches from benthic images and a
hierarchical Multi-layer Perceptron classifier that is trained
on source-specific labelled data. When evaluated on a hold-
out test set of 26 sources, the error rate of CoralNet 1.0 was
18.4% (relative) lower than CoralNet Beta.

1. Introduction

It is commonly understood that coral reefs are in rapid
decline globally due to confounding factors including rising
temperatures, ocean acidification, pollution, over-fishing,
disease, predators like crown of thorns, etc. [9, 13, 28, 20]
Consequences include losses of up to 80% of coral cover in
the Caribbean and 50% in the Indo-Pacific and Great Barrier
Reef over the past 30 years [10, 19]. Quantifying the state
of the reefs, determining the impact of the various causative
factors, and measuring the benefit of remediation efforts re-
quires carefully designed surveys, the means for acquiring
image data, and methods for analysis, each of which must
operate at large scale.

The goal of a typical survey is to measure the cover of

1https://github.com/beijbom/coralnet
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Figure 1. CoralNet 1.0 machine learning system. The first stage
is to train a single deep backbone network pooling a large collec-
tion of data. After training, the backbone network is then used as
a feature extractor. In the second stage, a per-source classifier is
trained on feature vectors z extracted by the well-trained backbone
network.

study-specific taxa. If the goal is simply to estimate coral
coverage, it may be sufficient to classify coral vs. non-coral.
If the health of reefs is degrading, it may be relevant to also
classify the state of the corals – healthy, bleached, diseased,
dead. It may be desirable to classify the major functional
groups on a reef – coral, algae, sand, rock. Perhaps finer
granularity is needed to classify the corals to the genus or
species level or to classify algae as crustose coralline algae,
turf algae, or macro algae, as well as to categorize sponges
and other common invertebrates on the reef. The set of la-
bels varies with each study, and typically ranges from a few
classes to a hundred.

Due to the vast scales (e.g., reefs can be hundreds of
square kilometers), it is impractical to survey an entire reef,
and so studies rely on sampling. Typically, surveys [12] are
done with downward pointing cameras, often photograph-
ing the reef through a frame or quadrat of a known size
(e.g. 0.5m×0.5m) that is just above the bottom, so that the
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absolute scale and coverage in an area can be determined
up to some experimental accuracy. The coverage area of
each class within the image is traditionally done through la-
belling of a sample of point locations in the images. The
point locations may be deterministic (e.g., a 10 × 10 grid)
or randomly placed. An analyst will then classify each point
location using the specific set of labels for that study. Com-
monly used tools for manual annotation include Coral Point
Count with Excel Extensions (CPCe) [23], PhotoQuad [41],
PointCount99 [32], BIIGLE [24]. CoralNet was conceived
as a tool for semi-automatic and automatic analysis of ben-
thic images using this same methodology.

The astute computer vision researcher will recognize that
even greater coverage and potentially accuracy could be
achieved using semantic segmentation, where every pixel in
the image is labeled using the study-specific label set rather
than up to a few hundred pixel. In practice, the vast ma-
jority of marine scientists have opted for manual labelling
of points rather than densely segmenting images because
dense labelling of objects with complex, irregular bound-
aries is incredibly time consuming. Consider that a typ-
ical survey taken by a pair of divers on scuba may yield
about a thousand images per week. Manual point annota-
tion of that data may take one or two months. When sci-
entists have produced manual semantic segmentation of im-
ages, it has usually been for a small number of classes, often
for the purpose of measuring the growth of individual coral
heads [31] or determining spatial distributions [11]. Given
the widespread use and availability of labelled point data,
CoralNet presently only supports point labelling although
semantic segmentation is being developed.

CoralNet has had three major releases, and this paper
documents the deep learning classification engine for Coral-
Net 1.0, released in January 2021. CoralNet Alpha was re-
leased in Fall 2011 and used a method reported in [3] based
on texture and color features, textons, a Bag of Words model
and an SVM classifier running on a deskside server. Coral-
Net Beta was released in December 2016 and used a con-
volutional neural network (VGG16) with transfer learning
[37] that was trained on 63, 000 labeled images that had
been uploaded and labelled on CoralNet Alpha. CoralNet
Beta, like the current version, ran on Amazon Web Services
(AWS). The contributions of this paper are to provide an
overview of the CoralNet 1.0 deep learning engine, and the
process of choosing particular architecture, its training and
comparisons to some of the most promising architectures.

On CoralNet, a study is referred to as a ”source”, and
it contains a collection of images and set of user selected
labels drawn from a globally defined label set. CoralNet’s
machine learning engine performs automatic point annota-
tion - for a given pixel location in an image, the location is
classified from a set of labels in a source’s label set. The in-
put to the classifier is an image patch cropped from the full

size image about that point, and the output is score ranging
from 0.0 to 1.0 over each of the n mutually exclusive labels
in the label set. For a typical CoralNet source, there are be-
tween 5 and 80 labels with most sources having fewer than
20 labels. The label with the highest score is taken to be
the annotation for the point. The n scores sum to 1.0 akin
to a probability and provide a measure of the confidence of
the decision. This score is used in the alleviation ability of
CoralNet, that will be described below.

It should be noted that labelling of benthic coral reef
images, even by experts, tends to be much more ambigu-
ous than object category labelling typically used in object
recognition. This holds when comparing labels by experts
of previously unseen data or relabeling their own image
data, and because of this inconsistency one expects a ceiling
on accuracy by automatic systems such as CoralNet [2].

The CoralNet classification engine is built on a transfer
learning approach with two stages to classification. The first
stage is a feature extractor (convolutional neural network)
that takes an image patch (usually 224 × 224 pixels) cen-
tered on the given point and outputs a feature vector with
length that ranges from 1, 024 to 4, 096 depending upon the
particular network. The classifier takes the feature vector as
input and outputs the n scores.

The CoralNet feature extractor is a convolutional neural
network that has been trained on large quantities of ben-
thic images, feature vectors are computed when images are
uploaded, and they are stored in a database. The classifier
is trained repeatedly on a per source basis, using manually
labelled points from that source. For a fresh source the la-
belset is created by the user. In a typical workflow, the user
starts manually labelling points in images through a web-
based graphical user interface. Once 20 images have been
manually labelled, a classifier is trained using the precom-
puted features as input with the output compared to these
manual labels. With a trained classifier for a source in hand,
CoralNet can now use inference to suggest potential labels
which the user can verify or manually correct. Every time
a user labels 10% additional images, another classifier is
trained. Using a validation set comprised of 1/8 of the
already labelled images, CoralNet will replace a previous
classifier if the new classifier is at least 1% more accurate
than the previous classifier.

Generally speaking, supervised networks require 1000’s
of examples of each class (label) to be effectively trained,
which is typically not available for sources in the CoralNet
scenario. The alternative that we developed on CoralNet
is to train a single feature extractor pooling a large collec-
tion of data and then to train individual classifiers for each
source. During the life cycle of a source, classifiers are re-
peatedly trained for a number of reasons:

• Users manually annotate additional points.

• Users confirm automatic annotations.
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Figure 2. Examples from different coral sources. Original high-resolution (varies from 1948 × 1980 pixels to 3556 × 3264 pixels)
coral images from 8 different sources. First row from left to right: Moorea Labeled Corals, LTER Back Reef, KI Benthic Analysis 2014,
OV1 362. Second row from left to right: GU CESU AAFB SPP, Taiping Islands, Barbuda Reef Cover, Canopy-forming Species Levantine
Basin. For each coral image, the number of annotated points might vary from 20 to 200 depending upon the source. Figure 4 shows an
example from Moorea Labeled Corals and patches centered at each annotated point with a window size of 224 × 224. We point out that
images from this figure are hand picked to clearly demonstrate the diversity of each coral source.
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Figure 3. Distribution of Labels. The number of time a label is used to annotate a point varies significantly, and the most common label
(turf) occurs almost 10M times whereas other labels are far rarer. A log plot of the number of annotations (sorted in descending order) for
each of the 1,275 labels.
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• Users may decide to add or remove labels from the
source’s label set.

Once a classifier is deemed to be sufficiently well-
trained, the CoralNet user may choose to fully rely on all
suggested labels or those where the confidence is greater
than a user-specified threshold; the rest are then verified or
labelled manually. This significantly alleviates the manual
burden with little impact on accuracy. CoralNet also offers
a web API that lets users programmatically classify images
using a previously trained classifier on CoralNet by simply
passing a URL to an image along with a set of row, column
locations to be classified. In one study, the API was used to
classify over five million points in more than 175,000 im-
ages [29].

2. Related Work

There are many potential choices of deep network fea-
ture extractors in the computer vision literature and many
potential classifiers from the machine learning literature.
CoralNet Beta’s feature extractor was based on the VGG
[37] classifier and was trained in 2017 on 2.4M annotations
from 62, 000 images. CNN’s usage for image classification
are well known and publicized, and full literature review is
beyond the scope of this paper. In the course of selecting
a next generation feature extractor for CoralNet, we exam-
ined the ResNet [17] and EfficientNet [39] families.

2.1. Machine learning for coral analysis

An early research method proposed by Beijbom et al.
[3] used a ‘bag of visual words‘ approach together with a
Support Vector Machine and evaluated it across 9 classes
on images from the island of Moorea in French Polynesia.
Other earlier works including [26, 36] also relied on combi-
nations of hand engineered feature extractors and machine
learning. Treibitz et al. used fluorescence signals to utilize
the chlorophyll signature present in living organisms and
further improve classification performance [40].

More recent works demonstrate significant performance
improvement using deep convolutional neural networks [30,
18, 15, 27]. These studies fine-tune deep networks for each
study site which requires an abundance of annotations. In
contrast, this work performs a shared “pre-tuning“ of a large
network on the joint CoralNet data corpus and then uses that
network in turn as a feature extractor. This allows a more
feasible cloud deploy and provides good operating perfor-
mance even on surveys with very few samples available.

Deep learning has also been extended to semantic seg-
mentation of both 2D images [1, 21, 33] and 3D reconstruc-
tions [18].

2.2. Impact on large scale surveys

CoralNet is now being widely used by marine scientists
in the course of their research and conservation efforts. An
independent 2018 NOAA study, using images from about
1400 coral reef survey sites, demonstrated that CoralNet
Beta was capable of estimating coral cover data with accu-
racy comparable to human analysts, although estimates of
some coral genera and algal groups were less accurate [42].
Another large scale study compiled and examined images
from five different global regions in the period from 2012 to
2016: Central Pacific Ocean, Western Atlantic Ocean, Cen-
tral Indian Ocean, Southeast Asia and Eastern Australia.
They used the same deep learning based classifier as is used
in CoralNet and found unbiased and high agreement be-
tween the ecological compositions calculated from expert
and automated observations [16, 35].

2.3. Software services

Other efforts related to automatic analysis of coral in-
clude Squidle (https://squidle.org/) and Reef-
cloud (https://reefcloud.ai/). Both provide sim-
ilar capabilities as CoralNet for importing, annotating and
analyzing benthic surveys. MAIA [43], an extension of BI-
IGLE [24], also provides an annotation platform with auto-
matic annotation.

Squidle [4] is developed by Greybits Engineering 2 and
the public data view suggests wide site adoption across the
world in particular by larger programs. One such example
is the Australian Center of Field Robotics which rely on
Autonomous Underwater Vehicles to collect large amounts
of survey data.

Reefcloud is an open access platform developed by the
Australian Institute of Marine Science and is supported by
the Australian government.

3. Dataset
Marine scientists have uploaded 1.7 million images from

over 2, 040 ecological surveys (“sources”) from around the
world since the release of CoralNet Alpha. As the name
implies, CoralNet was originally created for the annotating
of coral reefs, but scientists have found value in a broader
range of habitats and classes from sea grasses and cold wa-
ter rocky habitats to oil rigs, pier pilings and autonomous
reef monitoring structures (ARMS). The vast majority of
sources are from the tropics, but uploaded images range
from as far south as Antarctica to as far north as Scotland.

Since there is no universally agreed upon set of labels
or taxonomy, and since most sources are created by differ-
ent groups of marine scientists, users have defined a total of
4, 489 labels. This includes duplicates - different labels and
names for the same taxa. With the help of coral biologists,

2https://greybits.com.au/
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we identified 315 duplicate labels covering 5, 436, 343 an-
notations, and merged corresponding duplicates into a com-
mon label. We selected 280 representative sources for train-
ing the deep learning engine, and these contain 432, 489 im-
ages with 15, 137, 977 annotated points. These sources are
randomly divided into 254 sources for training and testing
the backbone networks and 26 sources for training and test-
ing the classifiers. We selected 1, 279 labels that 1) are used
in at least 3 sources, 2) are used to annotate at least 100
points, and 3) which do not designate “unsure”, “dark”, or
similar catch-all categories. We designate this first set V1.
In a later version of the dataset, designated as V2, we ex-
ported 50 more sources for training and further removed 4
more catch-all type labels. In summary:

• V1: 280 sources, 432, 489 images, 15, 137, 977 anno-
tated points; 254 sources for training the backbone net-
work with 1, 279 classes in common; 26 sources for
training the classifiers, each randomly split into 80/20
for training and testing.

• V2: 330 sources, 591, 604 images, 16, 533, 651 an-
notated points; 304 sources for training the backbone
network with 1, 275 classes in common; the same 26
sources and splits as in V1 for training and testing the
classifiers.

Figure 2 shows examples from different coral sources,
and Figure 4 shows an example of a coral image and patches
cropped from the original image centered on the given an-
notated points with a window size of 224×224 pixels. Fig-
ure 3 shows a log histogram of the distribution of the num-
ber images for 1, 275 labels. Note that while some labels
occur more than a million times, almost half of the labels
are only used hundreds of times.

4. Training Setup

In this section, we describe two components of the
CoralNet 1.0 machine learning system – the Backbone Net-
work and the Classifier – and how these are trained. Fig-
ure 1 shows an overview of CoralNet’s transfer learning ap-
proach with two stages.

4.1. Feature extraction

In the first stage we train a convolutional neural network
(backbone) to function as a feature encoder. We follow a
standard transfer learning procedure [14] and replace the
final backbone layer with a new linear layer which maps
to the number of classes used. The backbone network is
trained end to end using cross entropy loss and the final
layer represents the probability of this patch being classified
as each of the 1, 275 classes. After training, we remove the
final layer and use the activation of the second-to-last layer

72 - Pavona
83 - CCA
89 - Porites
70 - Montipora

Figure 4. Moorea Labeled Corals example. An original 1948×
1980 pixel image from Moorea Labeled Corals on the left and
patches centered at annotated points with a window size of 224×
224 on the right. Each class is represented by a row with five
example patches. First row: Pavona. Second row: CCA. Third
row: Porites. Forth row: Montipora.

as a feature vector of 1, 024 to 4, 096 dimensions depend-
ing upon the backbone. We conducted experiments using
networks from the VGG [37], ResNet [17] and EfficientNet
[39] families.

4.2. Classification

For each source, a classifier is trained that takes as in-
put a feature vector extracted by the backbone network and
outputs a classification score for each of the n labels in that
source. We evaluated different classifiers including Logistic
Regression Classifier (LR), Multi-layer Perceptron (MLP),
Support Vector Machine (SVM) [8], Random Forest [5] and
Gaussian Naive Bayes [6].

Hyper-parameters tuning is generally required for train-
ing Multi-layer Perceptron (MLP) in order to avoid over-
fitting and achieve better performance. Therefore we first
review the definition of MLP and define the hierarchical
MLP. The multi-layer perceptron network is composed of
K hidden layers with hidden units h1, ..., hK followed by
an activation function f that maps the input data to output
domain (e.g. coral labels).

4.2.1 Hierarchical MLP

We explored a number of different full connected net-
works (Multi-layer Perceptron) with a softmax layer as a
classifier, varying the number of layers, the number of hid-
den units per layer, and the activation function. We also ex-
plored different learning rates for training these networks.
In the process of hyper-parameter tuning, we found that a
3-layer network outperformed a 2-layer network when the
amount of training data was large (e.g., more than 50, 000
annotations), and we felt that it was desirable to provide
users with higher accuracy when they had gone to the trou-
ble of manually annotating or verifying so many points.
Since we are not restricted to use the same MLP archi-
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tecture for all sources, we decided on a hierarchical struc-
ture. For large sources with more annotations than a thresh-
old (50, 000), we would use one network; for sources with
fewer annotations, we would use a smaller network.

More specifically, we performed a hyper-parameter
search of single network and hierarchical networks, by
considering the parameters of the number of layers (2 or
3), the number of hidden units per layer hi, the learning
rate n, the activation function f ∈ {ReLU, tanh}, and
whether it is a hierarchical MLP denoted by the presence of
a threshold, itself a hyper-parameter. A sample network’s
hyper-parameters are:

mlp(h1;n = 10−3; f = ReLU ; s ≤ threshold)

mlp(h2, h3;n = 10−4; f = ReLU ; s > threshold)

4.3. Implementation details

For training the backbone networks, we used a batch size
of 128, initial learning rate of 10−3 and Adam [22] opti-
mizer with one cycle learning policy [38] to adjust the learn-
ing rate throughout the experiments.

For training the classifiers, we used the default hyper-
parameters setup provided by [34] for Logistic Regression
Classifier, SVM [8] and Gaussian Naive Bayes [6]. We set
the number of trees in the forest as 30 when training Ran-
dom Forest [5]. We provide a detailed hyper-parameter tun-
ing for Multi-layer Perceptron in Table 4.

5. Empirical Evaluation of Design Choices
In this section, we provide experimental results that lead

to the design decisions for the deployed deep learning en-
gine for CoralNet 1.0. We first consider the accuracy and
speed of different backbone networks and then consider dif-
ferent classifiers for transfer learning. We then explore the
effect of floating point precision, and conclude the evalua-
tion with a comparison of CoralNet 1.0 to CoralNet Beta.

5.1. Backbone accuracy

We first need to select a backbone network to use for
CoralNet 1.0. To evaluate performance after training the
backbone on dataset V1, we performed transfer learning
using Logistic Regression on the 26 CoralNet sources that
were not used for training the backbone. Table 2 shows
the mean and standard deviation of accuracy over the 26
sources for VGG16 [37], ResNet50/101 [17], EfficientNet-
B0/B1/B4 [39] as backbone feature extractors.

Since the size of feature vector might significantly affect
accuracy, we also trained three variations of EfficientNet-
B0 [39] with embedding sizes of 1, 280 (default), 2, 048 and
4, 096, and accuracy is also shown in Table 2.

The slight benefit to accuracy for a larger embedding size
was outweighed by longer training time and larger storage

costs. It is worth noting that the standard deviation in accu-
racy reflects the difficulty of the classification task for dif-
ferent sources.

5.2. Backbone inference time

A pragmatic decision for deploying a free service such
as CoralNet that is expected to operate at large scales is
the cost of inference. GPU’s are faster than CPU’s, but
cost more. Backbone networks have different computation
cost. For CPU timing, we use an AMD Ryzen 7 3700x
8-core processor × 16, and for GPU we use a GeForce
RTX 2080 Ti/PCIe/SSE2. EfficientNet-B0 [39] outper-
forms other network architectures in both CPU and GPU
inference time. Figure 5 shows the trade-off of inference
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Figure 5. Inference time vs. Accuracy. X-axis represents CPU
inference time in second (s) and y-axis represents Average accu-
racy on 26 test sources in percentage (%). Patch size corresponds
to the input image size.

time vs. accuracy for each backbone network. From this
we conclude that nearly all of the networks are faster than
CoralNet Beta (VGG16), potentially twice as fast. The ac-
curacy of CoralNet Beta is 71.36%, and all of the other
networks are more accurate by a solid margin. Two net-
works stand out: ResNet101 [17] is the most accurate net-
work at 77.54%. EfficientNet-B0 [39] pays a small price
on accuracy (76.50%), but it is more than twice as fast as
ResNet101 [17]. Consequently, we chose EfficientNet-B0
for CoralNet 1.0.

5.3. Classifiers

Having chosen EfficientNet-B0 [39] as the backbone net-
work, we needed to select a classifier architecture for trans-
fer learning. We evaluated Logistic Regression (LR), Multi
layer Perceptron (MLP), Support vector machines (SVM)
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Source ID
# Total
images

# Patches per
image

# Total
Annotation

# Labels CoralNet Beta CoralNet 1.0

s16 2,055 199 408,945 16 78.60 84.15
s338 1,970 200 394,000 43 54.90 64.52
s472 2,336 100 233,600 21 78.50 82.33
s111 1,571 100 157,100 46 71.50 85.37
s1579 15,258 10 152,580 34 71.30 77.83
s586 2,209 50 110,450 37 69.40 76.23
s407 700 100 70,000 11 76.90 81.00
s1070 687 100 68,700 28 68.10 87.13
s1504 303 225 68,175 19 79.10 81.33
s1091 2,270 30 68,100 25 77.50 86.29
s843 2,820 20 56,400 42 72.90 76.99
s1055 1,701 30 51,030 10 86.80 92.16
s699 914 50 45,700 25 80.90 85.74
s1074 211 200 42,200 9 54.80 53.00
s294 201 200 40,200 9 80.00 86.35
s521 350 100 35,000 16 72.80 76.52
s656 1,279 24 30,696 49 59.10 66.31
s614 1,201 25 30,025 32 56.20 59.10
s609 598 50 29,900 23 77.70 88.42
s1559 453 50 22,650 21 68.00 73.02
s1591 2,048 10 20,480 10 69.70 72.50
s601 315 50 15,750 12 70.20 67.41
s367 312 50 15,600 13 64.60 66.63
s672 387 25 9,675 19 59.80 63.18
s1396 600 10 6,000 4 89.80 90.00
s1420 300 20 6,000 16 66.20 73.13

Mean±STD - - - - 71.36±9.16 76.79±10.14

Table 1. CoralNet 1.0 vs. CoralNet Beta. Summary of 26 coral sources including 1) number of total images, 2) number of patches
(annotated points) per image, 3) number of total annotations and 4) number of labels (classes) and the accuracy (shown in %) on each
source of CoralNet Beta vs CoralNet 1.0. For CoralNet 1.0, we use EfficientNet-B0 [39] as backbone network trained on dataset V2 and
hierarchical MLP setup 2⃝ shown in Table 4. The table is sorted by the number of total annotations in descending order.

Source
ID

CoralNet
Beta

VGG16 ResNet50 ResNet101
EfficientNet (network version - embedding size)

b0 - 1280 b0 - 2048 b0 - 4096 b1 - 1280 b4 - 1280

Mean±STD 71.36±9.16 73.72±11.13 76.81±10.29 77.54±10.36 76.50±10.36 76.86±10.09 77.06±9.82 77.02±10.04 77.34±10.45

Table 2. Performance of different backbone networks. Logistic Regression (LR) classifier accuracy (shown in %) with backbone
networks Beijbom et al. [3], VGG16 [37], ResNet50 [17], ResNet101 [17], EfficientNet-B0 [39], EfficientNet-B1 [39] and EfficientNet-
B4 [39] on 26 test sources. We further show the results of EfficientNet-B0 with different embedding sizes (default 1280, 2048 and 4096).
All backbone networks are trained on dataset V1.

[8], Random Forest [5] and Gaussian Naive Bayes [6], and
these are shown in Table 3. We found that even a simple
2-layer MLP was more accurate than the other classifiers,
and so we explored different MLP configurations in a sec-
ond set of experiments (Table 4). As shown in Figure 3,
there can be severe class imbalance, and we tried a variety
of data balancing methods from sub-sampling the dominant
class to augmentation of the sparser classes. We also ap-
plied SMOTE [7] to address the imbalance (See Table 4),
but none of these methods had a significant effect on accu-
racy. Ultimately, we chose the Hierarchical MLP architec-
ture shown in bold in Table 4 for transfer learning.

5.4. Floating point precision

Floating point precision can affect accuracy and run
time, and we show this trade-off in Table 5. Accuracy and

F1-score do not change considerably when the data type
varies from half precision to double precision. However,
half precision and single precision are considerably faster.

5.5. CoralNet 1.0 vs. CoralNet Beta

Having chosen and trained EfficientNet-B0 as a back-
bone and selected a hierarchical MLP as a classifier for
transfer learning for CoralNet 1.0, we now compare Coral-
Net 1.0 to CoralNet Beta using 26 sources. Table 1 sum-
marizes the 26 sources and the accuracy on each source of
CoralNet 1.0 vs. CoralNet Beta and Figure 6 shows a his-
togram of accuracy improvement of CoralNet 1.0 compared
to CoralNet Beta across these 26 sources. The new classi-
fiers outperform those from CoralNet Beta by a solid margin
on most sources.
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Source
ID

CoralNet
Beta

EfficientNet-B0 ResNet101

LR MLP SVM RF GNB MLP-SMOTE LR MLP

Mean±STD 71.36±9.16 76.35±10.48 76.79±10.14 76.39±10.49 75.13±10.51 65.91±11.87 76.69±10.23 75.97±10.3 76.2±9.89

Table 3. Performance of different classifiers. Accuracy (shown in %) of different classifiers: Logistic Regression (LR), Multi-layer
Perceptron (same hierarchical MLP setup as Table 4 2⃝), Support Vector Machine (SVM) [8], Random Forest (RF) [5], Gaussian Naive
Bayes (GNB) [6] with backbone networks EfficientNet-B0 [39] and ResNet101 [17] both trained on dataset V2.

Source
ID

LR 1⃝ (100;n = 10−3; f = ReLU)
2⃝ (100;n = 10−3; f = ReLU ; s ≤ 50, 000) 3⃝ (100, n = 10−3; f = tanh; s ≤ 50, 000) 4⃝ (200, n = 10−4; f = ReLU ; s ≤ 10, 000) 5⃝ (200, n = 10−4; f = tanh; s ≤ 10, 000)

(200, 100;n = 10−4; f = ReLU ; s > 50, 000) (200, 100;n = 10−4; f = tanh; s > 50, 000) (200, 100;n = 10−4; f = ReLU ; s > 10, 000) (200, 100;n = 10−4; f = tanh; s > 10, 000)

Acc (%) F1-score Acc (%) F1-score Acc (%) F1-score Acc (%) F1-score Acc (%) F1-score Acc (%) F1-score

Mean±STD 76.35±10.48 0.7456±0.1130 76.67±9.84 0.7559±0.1023 76.79±10.14 0.7565±0.1047 76.77±9.96 0.7562±0.1038 76.64±10.17 0.7553±0.1058 76.62±10.12 0.7534±0.1071

Table 4. Performance of different MLP hyper-parameters. Accuracy and F1-Score of different Multi-layer Perceptron hyper-parameters
settings. 1⃝ Single layer. 2⃝ 3⃝ 4⃝ 5⃝ Hierarchical setup depending on the total number of samples s of each source, n denotes the learning
rate and f denotes the activation function. Adam optimizer is used in all setups. Take s16, s521 and setup 2⃝ for example, as s16 has
s = 408, 945 samples, (200, 100;n = 10−4; f = ReLU ; s > 50, 000) is used. Similarly, s521 has s = 35, 000 samples, (100;n =
10−3; f = ReLU ; s ≤ 50, 000) is used instead.

Accuracy (%) F1-score Training time (s)

FP16 76.91 ± 10.25 0.7583 ± 0.1049 35.0504
FP32 77.08 ± 10.15 0.7599 ± 0.1059 32.9096
FP64 76.85 ± 10.25 0.7576 ± 0.1072 373.0312

Table 5. Performance of floating-point data types. Mean and
standard deviation of accuracy and F1-score of MLP with setup 2⃝
shown in Table 4 over 26 test sources. Feature vector in different
floating-point types (half precision as FP16, single precision as
FP32 and double precision as FP64) are extracted by EfficientNet-
B0 [39] trained on dataset V2.
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Figure 6. Accuracy improvement. Accuracy a1 of EfficientNet-
B0 with MLP 2⃝ shown in Table 4 compared to accuracy aβ of
CoralNet Beta across 26 test sources. X-axis represents the abso-
lute accuracy improvement a1 − aβ , for example, 6 test sources
have more than 10% improvement in accuracy compared to cur-
rent CoralNet Beta.

6. Discussion and Conclusion
We provided an overview of CoralNet’s new deep learn-

ing engine named CoralNet 1.0. We show that EfficientNet-
B0 [39] as the backbone network with Multi-layer Percep-
tron (MLP) classifier provides better performance consider-
ing both accuracy and speed and therefore serves as the new
engine.

As the CoralNet 1.0 engine provides faster and more
accurate automatic coral analysis, some future directions
would be worth investigating. One would be to use a
well-trained backbone network and classifier for direct
semantic segmentation without further training. The
backbone network can be adapted into fully a convolutional
network [25] and transfer the learned representations to
the segmentation task. Another one would be to train the
backbone with multi-domain classification objective. The
label set in CoralNet is flat, and there would be benefits
of allowing generic and user defined taxonomies, such
as genera-species-subspecies or morphologies. It would
also be useful to support multiple labels per point (e.g.
coral type as one label, and coral health as a second label).
Finally, domain transfer and semi-supervised learning are
made possible because of the rich feature information
and large amount of labelled and unlabelled image data
provided by CoralNet.
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