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Figure 1: From a collection of single line hyperspectral images captured with an Underwater Hyperspectral Imaging (UHI)

push-broom camera (a), the proposed method allows to create accurate hyperspectral 3D models of underwater environments

(c) from which geometrically correct ortho-images can be extracted (d). In opposition to classical hyperspectral mosaicking

methods (b), ours is not based on a planar scene assumption and leverage on multi-view 3D reconstruction techniques to

produce reliable material for scientific analysis. Comparing the RGB ortho-image (e) to the hyperspectral one (d) highlights

the enhancement of the proposed method over basic mosaicking (b). Note that for hyperspectral images, RGB-like colors

have been simulated here using three spectral bands but hundreds are available, allowing much finer spectral analyses of the

data compared to classical RGB cameras.

Abstract

Hyperspectral imaging has been increasingly used for

underwater survey applications over the past years. As

many hyperspectral cameras work as push-broom scanners,

their use is usually limited to the creation of photo-mosaics

based on a flat surface approximation and by interpolat-

ing the camera pose from dead-reckoning navigation. Yet,

because of drift in the navigation and the mostly wrong

flat surface assumption, the quality of the obtained photo-

mosaics is often too low to support adequate analysis. In

this paper we present an initial method for creating hyper-

spectral 3D reconstructions of underwater environments.

By fusing the data gathered by a classical RGB camera,

an inertial navigation system and a hyperspectral push-

broom camera, we show that the proposed method creates

highly accurate 3D reconstructions with hyperspectral tex-

tures. We propose to combine techniques from simultaneous

localization and mapping, structure-from-motion and 3D

reconstruction and advantageously use them to create 3D

models with hyperspectral texture, allowing us to overcome

the flat surface assumption and the classical limitation of

dead-reckoning navigation.

1. Introduction

In coastal areas, the methods of acquiring and analyzing

hyperspectral data of shallow waters have been successfully

developed in recent years [23]. Thanks to the spectral rich-
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ness of these sensors, which can capture hundreds of con-

tiguous spectral bands across a wide light spectrum [7], it

is possible to estimate the relative contribution of several

properties characterizing the complexity of marine ecosys-

tems. Hyperspectral cameras deployed both in situ and on

airborne platforms, have thus demonstrated their ability to

(i) estimate the optical properties of the water column by in-

version methods [24, 30, 17] and (ii) to characterize benthic

habitats [8, 36]. Spatial approaches have also been devel-

oped to map and quantify changes in the health status of

coral reefs [2].

Until recently, hyperspectral imaging data has been ac-

quired mostly using passive sensors installed either on aerial

platforms or satellites. These sensors use the sun as the

light source and record reflected solar radiation. This ap-

proach becomes limiting where sunlight is at best partially

filtered, if not totally absent, and is thus not applicable for

deep underwater environments. Hence, hyperspectral sen-

sors have been deployed on underwater ROVs platforms to

map deep environments [25]. It has been used in a range of

applications including monitoring of species such as corals

and sponge and mapping of their habitats, identification of

sediment types and cuttings from drilling operations, and

identification of minerals for deep sea mining [20].

In this work, we are interested in mapping the seabed us-

ing a push-broom based Underwater Hyperspectral Imaging

(UHI) camera system [18]. The UHI camera considered in

this paper creates hyperspectral images from a single array

of pixels with N channels which correspond to the spectral

resolution over the spectral range of the camera (see Fig. 2).

This allows for the simulation of RGB-like images by sim-

ply extracting three channels whose wavelengths are close

to the red-green-blue colors but, in practice, a much finer

spectral analysis can be performed.

The difficulty with push-broom based hyperspectral

cameras comes from the fact that they capture images in

a single spatial dimension. In opposition, mosaic snap-

shot hyperspectral cameras capture images in two spatial

directions, like classical cameras. However, snapshot hy-

perspectral cameras are quite limited in terms of both spa-

tial and spectral resolutions (typically ≤ 500 × 500 px and

≤ 25 spectral bands) whereas push-broom cameras provide

wide spatial and spectral resolutions (typically ≥ 960 px

and > 100 spectral bands) [25]. Despite the easier process-

ing of mosaic snapshot hyperspectral images, push-broom

based ones still provide richer and finer information.

In order to recover an exploitable material for scientific

analysis, the UHI images must be processed. The most

naive way to produce understandable hyperspectral data is

to sequentially stack the captured images (Fig. 1 top-left). If

one makes the assumptions of a perfectly planar scene with

an ROV following a trajectory while keeping a constant

depth, speed and orientation, this simple method should

Figure 2: UHI camera – Push-broom scanner for which

each image is a single array of pixels with N channels, each

corresponding to a captured wavelength.

give acceptable results [26]. However, in practice none

of these assumptions hold and the resulting stacked hy-

perspectral images exhibit strong distortions. Hence, most

works using UHI cameras have relied on mosaicking tech-

niques to exploit and analyze the gathered hyperspectral

data [19, 27, 20, 35, 12]. Yet, the creation of such mosaics is

performed by interpolating the UHI camera trajectory using

drifting dead-reckoning navigation systems, leading to ap-

proximate trajectory estimation. Furthermore, mosaicking

techniques also use a flat surface assumption on the imaged

scene, leading to distorted results whenever this assumption

is wrong (see Fig. 1 top-right).

This paper presents a method for creating accurate un-

derwater hyperspectral 3D reconstructions by fusing the

measurements of a UHI camera, an RGB camera and an In-

ertial Navigation System (INS) embedded on an ROV. We

propose to use the RGB camera to accurately estimate the

trajectory followed by the ROV at the video’s frame-rate in

conjunction with the INS predictions for scaling purposes.

This allows us to interpolate the trajectory followed by the

UHI camera. Additionally, we produce a dense 3D recon-

struction using the acquired RGB images that we then link

to the UHI images thanks to an approximately known trans-

formation between both cameras. Doing so, we manage to

map the 3D mesh with hyperspectral textures, thus produc-

ing accurate and reliable 3D hyperspectral reconstructions

that can be used to produce non-distorted ortho-images for

further scientific analysis (see Fig. 1 bottom-line).

The remaining of the paper is organized as follows. In

section 2 we describe the architecture of the ROV employed

to gather the required data. Then, in section 3, we detail

the full pipeline of the proposed method. Finally, section 4

presents the results obtained on the data acquired during a
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Figure 3: This is an overview of the Ariane HROV with

the UHI setup. Both the RGB video camera and the UHI

where mounted on a tiltable mechanical support, at the bot-

tom front of the vehicle.

science cruise led by Ifremer 1.

2. ROV Architecture and Hyperspectral Cam-

era

The hyperspectral data presented in this paper has been

acquired with Ifremer’s Ariane HROV which can operate

down to 2500m depth, in the scope of a test mission that

took place in the Mediterranean sea. This is an hybrid

ROV in the sense that it can both be used as an ROV or

an AUV. For the ROV mode used for the hyperspectral

survey, the high bandwidth link between the vehicle and

the surface is provided by a reusable optical fiber. The

vehicle is equipped with state of the art payloads. The

optical equipment consists of multiple HD cameras and a

high resolution (24Mpix) DSLR still camera. Concerning

the navigation, the vehicle is equipped with high-end gyro-

fiber INS, a front and a down looking Doppler Velocity

Log (DVL) and an USBL positioning system. With the

hybridisation of all navigation sensors, we can expect a

meter accuracy localisation even in steep environment.

High localisation accuracy is of prime interest for optical

surveys geo-referencing and to prevent trajectory drift for

the mapping algorithms.

The HROV can also be equipped with modular payloads

thanks to many standard interfaces. Given this ability, we

integrated an Ecotone® 2 hyperspectral camera [18] on the

vehicle, in place of the DSLR still camera. As can be seen

in Figure 3, the UHI was coupled with an HD video cam-

1https://wwz.ifremer.fr/en/
2https://ecotone.com/teknologien-var-til-forskning/

?lang=en

era and mounted on a tiltable mechanical support. This en-

abled us to acquire data on any type of terrain, from flat to

very steep area. Furthermore, thanks to the accurate CAD

model of the HROV, we obtained an approximate 3D trans-

formation (extrinsic calibration) between the HD and UHI

cameras.

We note that, while the Ifremer’s Ariane HROV has quite

a specific design, the method proposed in this paper only

makes use of generic underwater sensors, i.e. an RGB cam-

era and an INS, in combination with the UHI camera. These

sensors are most common on ROVs and AUVs and the pro-

posed pipeline is thus most likely applicable for any under-

water scientific acquisition with ROVs or AUVs embedding

a UHI camera.

3. Hyperspectral 3D Mapping

The creation of hyperspectral 3D reconstructions re-

quires the following information: an estimate of the trajec-

tory followed by the UHI (i.e. an estimate of both the 3D

position and orientation of the UHI for each acquired im-

age), a 3D model of the environment that we want to map

with hyperspectral textures and an estimate of the 3D trans-

formation between the UHI and the 3D model.

We propose to leverage the RGB camera mounted on

the ROV in order to estimate the trajectory followed by the

UHI. More precisely, we employ a monocular Visual Si-

multaneous Localization And Mapping (SLAM) algorithm

to get the estimate of the trajectory followed by the RGB

camera. In addition, we fuse the visual SLAM estimates

with the prediction from the INS embedded on the ROV in

order to recover scaled and geo-referenced estimates. Using

the scaled SLAM results, we then compute a dense 3D mesh

of the surveyed environment. Finally, we use the approxi-

mately known extrinsic calibration between the RGB cam-

era and the UHI in order to get an estimate of UHI trajectory

and then raycast the hyperspectral images on the dense 3D

model. The proposed pipeline is illustrated in Fig. 4.

3.1. Monocular Visual SLAM for trajectory and
sparse 3D map estimation

As a push-broom scanner, the UHI must capture images

at a quite high frame-rate (20 - 40 Hz) in order to suffi-

ciently cover the scanned area. Correctly processing these

images requires to know the pose of the UHI at every image.

Ideally, with a non-drifting INS and a ROV keeping a per-

fectly constant orientation and speed, the UHI poses could

be estimated by means of interpolation. However, in a real-

world scenario, none of these assumptions hold. In order to

overcome this issue, we propose to rely on the RGB camera

as our main pose estimation sensor. As the RGB camera

acquire a video stream at a quite high frame-rate (25 Hz),

computing the pose of this camera at every acquired image

would give a very close estimation for the UHI pose.
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Figure 4: Pipeline of the proposed method for computing hyperspectral 3D reconstructions.

The main solutions for estimating the trajectory followed

by an RGB camera are Structure-from-Motion (SfM) and

Visual SLAM (VSLAM). On one hand, SfM is an offline

technique that consists in processing a set of acquired im-

ages in order to create a 3D model by both estimating the

pose of the images and a 3D reconstruction of the scene

scanned. Such techniques are at the base of photogramme-

try software packages [34, 28, 32, 1]. Yet, these methods

being computationally expensive, they are not designed to

process video streams acquired at high frame-rate and do

not scale well on such datasets. On the other hand, VSLAM

is a technique that is mostly used in the robotics community

where having a prediction of the current robot position and

orientation at almost any point in time is highly useful for

numerous underlying applications [29, 22, 11]. While VS-

LAM and SfM share similarities in the way images are pro-

cessed, in VSLAM, acquired images are processed online,

that is the current pose is only computed from past and cur-

rent data, and a pose estimate is computed for every image.

While VSLAM might be slightly less accurate than SfM be-

cause of its limitation to past and present measurements at

any given point (whereas in SfM all the measurements are

processed simultaneously), it is actually a very reliable so-

lution in this context as it copes with the camera’s video

frame-rate and thus provides an accurate basis for the com-

putation of the UHI images’ pose.

In this work, we have used the open-source algorithm

OV2SLAM 3 [10] to perform VSLAM on the video se-

quences. OV2SLAM uses optical flow [3] to track key-

points over the image sequences and use these tracks to both

estimate the camera’s poses and a 3D map of the imaged

scene. Note that we have used OV2SLAM here because we

3https://github.com/ov2slam/ov2slam

found out that it performs well on underwater data but in

theory any other VSLAM method could be used. We refer

the interested readers to [10] for more information on the

algorithm. An example of the trajectory and 3D map that

we estimate using the VSLAM algorithm is shown on the

bottom-left of Fig. 4.

Nonetheless, in a monocular configuration (i.e. using

only one RGB camera), the trajectories and 3D maps esti-

mated by SfM and VSLAM methods are limited by a scale

ambiguity and hence the estimations are performed up to

an unknown scale factor which must be recovered to con-

vert these estimations on a metric scale. Furthermore, it is

often useful to have geo-referenced estimations for further

analysis. In the following section we detail how we man-

age to both scale and geo-reference the VSLAM estimations

thanks to the INS.

3.2. Scaling and georeferencing by fusing INS pre
dictions

The INS geo-referenced prediction of the ROV position

has been extracted at a rate of 1 Hz for this survey. These

predictions are given in the geodetic latitude-longitude-

altitude format but they can be easily converted to produce

relative positions of the ROV in a North-East-Down world

frame.

Using the VSLAM algorithm, we obtain a pose estimate

Twci
∈ SE(3) for each processed image, where SE(3) de-

notes the 3D Special Euclidean group [4], a set of 3D map

points λw

k
∈ R

3 and a set of 3D map points 2D observa-

tions per image xik ∈ R
2. Considering a calibrated camera,

these state parameters are related by the projection function

π : R3 7→ R
2:
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xik = π (Tciw
⊙ λw

k
) (1)

xik = π (Rciw
· λw

k
+ tciw

) (2)

where Tciw
= T−1

wci
and Rciw

and tciw
are respec-

tively the rotation matrix and the translation part of image i

inverse pose Tciw
.

We can relate a subset of images to the INS predictions

by taking the images closest in time to a given prediction.

From those, we can define a nonlinear optimization prob-

lem where we seek to align the images’ poses and the 3D

map points with the geo-referenced predictions of the INS.

We denote the full set of images’ poses linked to an INS

prediction pi ∈ R
3 as ζ. We further include in ζ all the 3D

map points observed by the images already in ζ. We can

now define a Bundle Adjustment like nonlinear optimiza-

tion problem made of a collection of 2D reprojection errors

along with a collection of 3D positioning errors:

ζ∗ = argmin
ζ

∑

i∈K

∑

k∈Li

∥xik − π (Tciw
⊙ λw

k
)∥

2

Σ

+
∑

i∈K

∥pi − twci
∥
2

Σ
′

where K is the set of keyframes in ζ and Li is the set of

3D map points observed by keyframe i. The covariances Σ

and Σ′ are respectively associated to the 2D visual obser-

vations and to the INS predictions.

In practice we solve this optimization problem using

the Levenberg-Marquardt algorithm [21]. Once the op-

timization has converged, we obtain a fully scaled and

geo-referenced 3D maps. However, we only have geo-

referenced pose estimates for the subset of the images in-

cluded in ζ. While we could have added all the images to

the previous optimization problem, it would have lead to a

huge problem difficult to solve on standard computers. In-

stead, we simply compute the new pose of every remain-

ing images using their known 2D observations of now geo-

referenced 3D map points by applying a the Perspective-

from-N-Points method [13]. Note that, if geo-referencing is

not required, any other sensor able to provide a scaling in-

formation could be used in place of an INS here [14, 15, 9].

We can now use the extrinsic calibration to interpolate

the geo-referenced trajectory of the UHI from the RGB

camera estimated trajectory. Assuming a flat surface, this

result would be sufficient to produce hyperspectral photo-

mosaics. However, as we want to create 3D reconstruc-

tion that strictly respects the reality of the surveyed envi-

ronments, we still need to produce a dense 3D model from

the sparse 3D map estimated by the VSLAM and a way for

texturing this 3D model with hyperspectral intensities.

3.3. Hyperspectral 3D reconstruction

In order to extract a dense 3D mesh from the sparse 3D

map computed in the previous stage, we apply a 3D De-

launay tetrahedralization followed by a graph-cut method

[16] using the open-source OpenMVS library 4 [6]. The

dense 3D mesh obtained in this step is then textured using

the method of [37]. The top-right of Fig. 4 displays an ex-

ample of the textured 3D mesh we manage to recover.

In order to now apply hyperspectral textures to the mesh,

we propose to raycast the hyperspectral images on the 3D

mesh. To do so, we project a ray for every pixel in every

hyperspectral image onto the 3D mesh in order to find the

coordinates of its intersection with the mesh and hence get

a depth value for each pixel. Henceforth, after this step we

obtain the equivalent of a depth map for all the hyperspec-

tral images that we can directly use along with the known

UHI poses to produce a dense 3D pointcloud with hyper-

spectral intensities (bottom-right of Fig. 4).

While the proposed method already produces high qual-

ity 3D maps, the uncertainty of the extrinsic calibration in

addition to the measurements’ noise contributed to some

mis-alignment between the RGB and the hyperspectral tex-

tures. The extrinsic calibration Trel between the RGB and

UHI cameras is thus additionally refined. By leveraging

on the dense 3D reconstructions obtained in the previous

stages and converting them into 2D ortho-images, associ-

ations between some pixels from the initial UHI images

and known 3D map points in the frame of reference can

be obtained through feature matching between both ortho-

images as shown in Fig. 5. In our case we have used ORB

features [31]. By relating known 3D coordinates and UHI

ortho-image’s pixels, the extrinsic calibration can be refined

through nonlinear optimization such as Bundle Adjustment

in which the mis-alignment is minimized.

In such approach, the accuracy of such RGB-UHI corre-

spondences depend on the resolution of the produced ortho-

images. In our case, we have created the ortho-images with

a resolution of 5 × 5 mm per pixel which led to satisfying

results.

4. Experimental Results

The results presented in this section have been acquired

with the HROV Ariane (Fig. 3) while performing close

to seabed transects. We have used a UHI camera from

Ecotone® [18] running at 30 Hz and capturing 1920× 1 px

images with 211 spectral bands, from which 3 bands have

been extracted to simulate red-green-blue colors in the fol-

lowing results. The HD camera captured RGB images at 25

Hz which have been down-sampled into 960 × 540 px im-

ages before processing and the INS output predictions at 1

Hz.

4https://github.com/cdcseacave/openMVS
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(a) RGB ortho-image. (b) Hyperspectral ortho-image.

(c) Features matched between the RGB and the hyperspectral

ortho-images.

Figure 5: Features matching between RGB and

hyperspectral ortho-images for extrinsic calibration

refinement.

Figure 6: Hyperspectral - RGB refinement. From top to

bottom: initial hyperspectral mesh, RGB mesh, refined hy-

perspectral mesh.

All the developments have been made in C++ and rely

on open-source software and libraries: OV2SLAM [10] for

the VSLAM, OpenMVS [6] for the RGB 3D mesh recon-

struction, OpenCV [5] for image processing tasks and Ceres

[33] for nonlinear optimization operations.

4.1. Qualitative results

To assess the efficiency of the method we propose for

creating hyperspectral 3D reconstructions of underwater

environments, we show results obtained on four different

datasets. For every dataset we compare the hyperspectral

3D model that we reconstruct to both the RGB 3D model

obtained on the same sequence and to the initial UHI im-

ages simply stacked horizontally. The benefit of applying

the extrinsic calibration refinement step is shown in Fig. 6,

where the improved result is shown together with the initial

mis-alignement between the RGB and hyperspectral recon-

structions.

The first dataset is a small scene that highlights well the

benefit of our method for producing reliable 3D hyperspec-

tral reconstructions. The results obtained on this dataset are

illustrated in Fig. 8. It can be seen that the distortion effects

that are visible on the stacked UHI images are well removed

in the final 3D reconstruction.

The second dataset comes from a transect performed

while hovering above a scene with low but non-negligeable

3D. Fig. 9 shows the results obtained on this dataset. Once

again, the results have a high fidelity with the 3D RGB re-

construction. Fig. 7 highlights the fact that even on such

scene with low 3D variations, discarding the planar assump-

tion leads to significantly better results, with almost no dis-

tortion compared to methods based on a planar scene as-

sumption.

The third dataset is a scene with strong 3D variations.

Fig. 10 displays the results obtained on this dataset. Com-

paring to the ortho-image obtained with a planar scene as-

sumption in Fig. 1, the obtained hyperspectral reconstruc-

tion is clearly less distorted and would make a more effec-

tive material to work on for scientists.

The last dataset consists of a large transect more than 100

meters long to highlight the scalability of our method. The

resulting hyperspectral ortho-image computed from the 3D

reconstruction is shown in Fig. 11.

5. Discussion

The underwater hyperspectral 3D mapping method we

propose in this paper is, to the best of our knowledge, the

first method of this kind. Taking advantage over the great

advances in 3D reconstructions from RGB images in the

computer vision and robotics communities, we manage to

create accurate and reliable hyperspectral 3D reconstruc-

tions. While we have successfully addressed the issue of ex-

trinsic RGB-UHI calibration, additional improvements such

as avoiding matching through 2D mosaics can be made to

increase the robustness and accuracy. Another remaining

issue lies in the intensity changes due to water absorption,

scattering and the variations in altitude of the UHI. For fu-

ture work, it would be interesting to tackle the challenge of
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Figure 7: Ortho-image from planar assumption versus

ortho-image from 3D reconstruction.

(a) Initial stacked UHI images.

(b) Reconstructed Hyperspectral 3D Mesh.

(c) Reconstructed RGB 3D Mesh.

Figure 8: Comparison of the final hyperspectral and RGB

3D reconstructions obtained on a small scene.

(a) Initial stacked UHI images.

(b) Hyperspectral 3D Mesh (top-view).

(c) RGB 3D Mesh (top-view).

(d) Hyperspectral 3D Mesh (side-view).

(e) RGB 3D Mesh (side-view).

Figure 9: Comparison of the final hyperspectral and RGB

3D reconstructions obtained on a scene with low 3D.
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(a) Initial stacked UHI images.

(b) Hyperspectral 3D Mesh (top-view).

(c) RGB 3D Mesh (top-view).

(d) Hyperspectral 3D Mesh (side-view).

(e) RGB 3D Mesh (side-view).

Figure 10: Comparison of the final hyperspectral and RGB

3D reconstructions obtained on a scene with significant 3D

variations of its structure.

Figure 11: Hyperspectral ortho-image on a more than 100

meters long transect.

correcting the intensities of the UHI images to create con-

stant illumination like reconstructions which could prove to

be even more useful for scientific analysis.

6. Conclusion

The use of Underwater Hyperspectral Imaging (UHI)

system has attracted a lot of attention from the scientific

community because of the analysis perspective it offers.

Yet, as many UHI cameras work as push-broom scanners,

most previous works have used it to create photo-mosaics

based on a flat scene assumption and through the use of ba-

sic dead-reckoning navigation data, resulting in poorly ac-

curate hyperspectral reconstructions. In this paper we have

proposed a new method for creating hyperspectral 3D re-

constructions of underwater environments by cleverly fus-

ing images acquired by an RGB camera and navigation data

to the UHI images. Creating such hyperspectral 3D re-

constructions allows us to overcome the flat scene assump-

tion which leads to geometrically distorted reconstructions.

We see this work as a step forward in the production of

more reliable underwater hyperspectral material for scien-

tists which will hopefully help in better understanding un-

derwater environments and marine ecosystems.
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