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Abstract

Being inherently limited by the wave properties of light,
underwater plankton cameras compromise between their
imaging resolution and field of view (FOV) for in situ ob-
servations. In order to enlarge the sampling volume in
single frame acquisition, lower magnifications are usu-
ally adopted to enable larger FOV but sacrifice the res-
olution. In this paper, we build a real-underwater im-
age dataset called IsPlanktonSR for in situ plankton im-
age super-resolution (SR), in which paired low resolution
(LR) and high resolution (HR) images of the same individ-
ual live planktonic organisms are captured by a customized
dual-channel darkfield imaging system. An image registra-
tion algorithmic pipeline is also proposed to preprocess and
align the image pairs at different scaling factors of 2× and
4×. The IsPlanktonSR dataset is used to train an enhanced
deep residual network for SR through the L2, the perceptual
and the contextual losses, respectively. Our extensive exper-
imental results demonstrate that the deep learning model
trained on real data through the contextual loss has de-
livered better visual and quantitative SR performance than
those trained on simulated data or through other loss func-
tions. The trained SR model is also proved to generalize
well to images of various plankton species or captured by
different instruments. The proposed SR technology is antic-
ipated to enhance the existing darkfield plankton imageries
and enable the future in situ plankton imaging instruments
for better observation capability and hence deepen under-
standing of the plankton ecology.

1. Introduction
In situ optical imaging technology can capture images

of the marine plankton in their natural state in seawater, and
has become a new powerful means to study the marine plan-

Figure 1. Compromise between magnification (FOV) and reso-
lution in underwater plankton imaging. (a) and (b) are darkfield
plankton images at magnifications of 0.46× and 2×; (c) and (d)
are aligned real LR-HR underwater plankton image pair after im-
age registration. (c) is displayed after bicubic interpolation for a
side-by-side comparison with (d).

ktonic ecosystem [22]. Since 1990s, several categories of in
situ optical imaging systems have been developed for plank-
ton observation. Generally, they can be classified into the
brightfield and the darkfield imagers. Brightfield imagers
are often deployed in mobile platforms such as research ves-
sel [1, 7, 8, 23, 33] and even autonomous glider [28]. These
imagers are usually poorer in imaging resolution and con-
trast [1, 7], and their images are susceptible to interference
from the excessive debris in coastal waters [6, 10]. Dark-
field cameras generally have higher resolution and contrast,
and are more suitable for long-term high-frequency contin-
uous observations at fixed spots, such as the shore [29], the
sea floor [11], and even under a surface buoy [18].
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There is a serious issue faced with existing imaging sys-
tems. Specifically, in real scenarios, the density of plank-
ton is often sparse in seawater. In order to observe more
plankton individuals, existing in situ optical imaging sys-
tems have to sample more water volume per unit time, re-
sulting in a sacrifice of imaging magnification. Note that
the sampling volume per image is usually estimated by the
product of the field of view (FOV) and the depth of field
(DOF). However, this will inevitably lead to a decreased
imaging resolution, which is insufficient to obtain enough
image details for the relatively small plankton targets, as
shown in Figure 1. Besides, this phenomenon will also seri-
ously affect the accuracy of subsequent plankton taxonomic
recognition and quantification.

Image super-resolution (SR) refers to the image restora-
tion technology that recovers a high-resolution (HR) im-
age from its low-resolution (LR) counterpart [38]. In re-
cent years, deep learning based SR has made substantial
progress in various imaging modalities, such as the natural
scene images [15, 17, 20] , medical images [12, 13], light
microscopy images [32, 39] and so on. If the SR technol-
ogy could be used to improve the resolution of the in situ
plankton images on the premise of reserving their original
FOV and DOF, it would be helpful to obtain indistinguish-
able details of the small organisms, and possibly improve
the accuracy of subsequent species identification [3].

Most of the existing training datasets for perceptual SR
are constructed by subsampling HR images. However, these
methods fail to super-resolve real-world LR images, be-
cause the degradation process is much more complicated
and unknown [24]. In recent years, a few real-world SR
datasets have been proposed, e.g., the RealSR [4] and the
City100 [5], which have improved the SR performance for
the DSLR and phone cameras. Since the camera systems
for in situ plankton imaging have to work in more harsh
and complex underwater environments than terrestrial set-
tings, the degradation model between their HR and the LR
images is even more complex and unpredictable. In situ
plankton imaging belongs to macro/microscopic photogra-
phy, and the speed of plankton swimming (or with the water
flow) is very fast. These facts will make pixel-level im-
age registration very difficult when constructing the real-
underwater image pairs, and the lack of registration accu-
racy will seriously affect the performance of the trained SR
models [39]. Therefore, direct training SR networks by the
simulated data or by existing real SR datasets is unlikely to
produce satisfactory results for underwater plankton image
SR. It is necessary to construct a real-underwater plankton
dataset. However, it is by no means a trivial task.

In order to address the above problem, we design a dual-
channel darkfield imaging system that is capable of simulta-
neously capturing HR-LR image pairs of the same individ-
ual live plankton organisms in a real underwater environ-

ment. We capture a large number of raw HR-LR image pairs
of living plankton in the first place by using this system.
Then we apply a series of image processing techniques,
including image correction, target detection, focus evalu-
ation, and image registration, to generate a real-underwater
plankton image dataset, called IsPlanktonSR (Is stands for
in situ). Further, we train an Enhanced Deep Residual Net-
work (EDSR) [20] with the IsPlanktonSR dataset, and com-
pare its SR performance on different training datasets under
the L2 loss, the perceptual loss [14], and the contextual loss
[25], respectively. After we have confirmed that the com-
bination of using real datasets and contextual loss performs
the best, we train a 2× and a 4× SR model with the IsPlank-
tonSR dataset. Finally, we apply the trained 4× SR model
on images captured by various in situ imaging systems and
a laboratory stereoscopic microscope to test the generaliz-
ability of the method. Extensive experiments demonstrate
that all these tests have delivered good results.

In summary, the major contributions of this work are:

• We build a real-underwater IsPlanktonSR dataset con-
sisting of registered HR-LR plankton image pairs with
2× and 4× scaling factors, providing an in situ ma-
rine plankton image benchmark for real-underwater
SR model training and evaluation.

• We experimentally verify that training the EDSR
model with contextual loss on the IsPlanktonSR
dataset can achieve satisfying SR effect for in situ
darkfield plankton images.

• The developed SR algorithm can improve the image
resolution of existing darkfield plankton image data,
and provided new design possibilities for developing
future multi-resolution underwater plankton imagers.

2. Related Work

In situ Plankton Darkfield Imaging Systems. Among
the underwater darkfield cameras developed for in situ
plankton observations, the Scripps Plankton Cameras (SPC)
[29], continuous plankton imaging and classification sys-
tem (CPICS) [11], and the underwater darkfield plankton
imager developed by Li et al. [18] all used a strategy of
supporting installation and replacement of one telecentric
lenses with different magnifications. Thus, each magnifi-
cation can support the observation of the plankton groups
within a certain size range. Obviously, this strategy can-
not enable simultaneous observation of plankton at differ-
ent resolutions and the replacement of different magnifica-
tion lenses is troublesome and costly. Recently, the SPC
have evolved a new version to support two magnifications
of 5× and 0.5× lenses in the same housing for simultaneous
observation of both zooplankton and phytoplankton [26].
This strategy is equivalent to installing two cameras in one
housing and hence raises the cost and system complexity.
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Wang et al. devised an underwater darkfield camera using
a motorized lens nosepiece supporting the rotary switching
among three lenses with different magnifications [36]. Such
a scheme is not only expensive and bulky, but also increases
the potential risk of system failure when applied in the fields
for long-term deployment. From the hardware perspective,
there is currently a lack of underwater imaging systems that
can support different magnification and resolution for in situ
plankton observations.

Deep Learning-based SR. Since Dong et al. proposed
the SRCNN [9], many learning-based SR models using HR-
downsampled image pair datasets for training and testing
have emerged, and their SR performance have also been
continuously improved [40, 21, 37]. However, the mapping
between the real HR-LR image pair is often more complex
and unpredictable than that can be extracted from simulated
data training. As a result, the SR performance of these ef-
forts are often unsatisfactory for real-world LR images.

To further improve the SR performance, people have
tried to build real-world datasets by developing customized
imaging system and image registration algorithms to pro-
duce spatially aligned HR-LR image pairs, as represented
by [4, 5, 32]. Ozcan et al. for the first time achieved
2.5× SR of histopathological micrographs by training a
CNN model with real HR-LR image pairs obtained by an
automated brightfield microscope [32]. The authors of [4]
and [5] used DSLR cameras to capture real-world HR and
LR images at different focal lengths, and further processed
them to construct real-world SR datasets called RealSR and
City100, respectively. However, the methods for construct-
ing real-world SR datasets in these works cannot be readily
transferred into the application for in situ plankton imag-
ing, as the underwater environment is more complex and
the plankton are small and can move very fast. Moreover,
the loss functions used in these works are pixel-level loss
(e.g., L2 loss) or content loss (e.g., VGG loss), which re-
quire highly accurate image registration processing, greatly
increasing the difficulty of real-underwater plankton image
SR dataset construction [39].

3. Method

3.1. Real SR Image Dataset Construction

To construct the real-underwater plankton image
datasets, it is necessary to simultaneously record pairs of
HR and LR images of the same plankton target. In order to
achieve this goal, we design a dual-channel imaging system
that consists of two orthogonally-oriented telecentric imag-
ing subsystems. Both subsystems point towards the same
underwater live plankton targets in a customized quartz con-
tainer through an optical beam-splitter [31]. In both sub-
systems, two identical digital cameras are attached to two
lenses with different magnifications. They are synchronized

to capture paired snapshots of the live plankton organisms
while a pulsed darkfield lighting is triggered. The captured
image pairs are saved into a laptop computer immediately,
and this acquisition process continues until enough numbers
of paired images are obtained.

We perform an HR-LR image registration preprocessing
to generate the real-underwater plankton image datasets af-
ter the raw image pairs are obtained. Here we apply several
preprocessing steps described in [18] and further use tem-
plate matching method to convert the raw image pairs into
aligned pairs [2]. The detailed processing procedures are
schematically illustrated in Figure 2 and explained as fol-
lows:

Figure 2. Procedures of the IsPlanktonSR dataset construction.

There are six post-processing steps after capturing the
raw HR-LR image pairs. (1) We perform background cor-
rection to all the raw images by subtracting them with their
corresponding background images. (2) We perform white-
balance correction to all the raw images by the reference
from a customized white target. (3) We perform object de-
tection on the HR images and crop out the region of inter-
est (ROIs) where the individual planktonic organisms are
present. (4) We use a focus evaluation algorithm to filter
the cropped ROIs and only keep the in-focus ones as the
HR images in the IsPlanktonSR dataset. The first four steps
are similar as in [18]. Next, (5) we downsample a clear
HR ROI by a scaling factor of L (L=high lens magnifica-
tion/low lens magnification) as a template to search for a
matching ROI in the corresponding detected LR image, and
the best-matched ROI in the raw LR image is cropped and
reserved. (6) Since the magnification ratio between the raw
HR-LR image pairs is not an integer, we upsample all the
reserved 0.46× LR images to 0.5× as the final LR images in
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the IsPlanktonSR dataset to satisfy the integer upsampling
requirement by the pixelshuffle layer in the EDSR network
[20]. Interested parties are welcome to contact us for the
access to the IsPlanktonSR dataset for scientific research.

3.2. SR Network and Loss Function Selection

The SR model used in this paper is an EDSR network
proposed by Lim et al. [20]. Its network structure is illus-
trated in Figure 3.

Figure 3. Network structure of the EDSR (adapted from [20]).

In the training stage of the EDSR network, we perform
the L2 Loss, Perceptual Loss [14] , and Contextual Loss
(CX Loss) functions, and compare their SR performance.
CX Loss considers an image as a collection of features, and
measures the similarity between images based on the con-
textual similarity between features [25]. Its definition is as
follows:

LCX (ŷ, y, l) = log
(
CX

(
ϕl (ŷ) , ϕl (y)

))
(1)

where ϕ denotes a VGG network [34], ϕl(ŷ) and ϕl(y) de-
note the feature maps extracted from layer l of the percep-
tual network ϕ of the SR image ŷ and the LR image y. CX
denotes the contextual similarity between the features ϕl(ŷ)
and ϕl(y). One of the characteristics of CX Loss is that it
ignores the spatial location of features, so it allows certain
imperfect alignment or local deformations between the im-
age pairs in the training dataset.

3.3. Plankton Image SR Evaluation

We use two objective metrics of PSNR and SSIM to eval-
uate the SR performance of the trained model. In addition,
we adopt a non-reference perceptual metric NIQE as the
third indicator, as it is proven to be highly correlated with
human ratings [27]. In this way, the human subjectivity can
be reduced. Furthermore, we use a standard USAF1951 res-
olution target to quantify the resolution improvement of the
trained SR model, and test its generalizability by compar-
ing the highest resolution obtained from the LR image of
the target captured by a laboratory stereoscopic microscope
at 1× magnification with that obtained from its SR image.

4. Experiments
4.1. IsPlanktonSR Image Dataset

By using the dual-channel imaging system with two
combinations of lens magnifications (1×-0.5×) and (2×-
0.5×) and the data preprocessing methods described in Sec-
tion 3.1, we generate 3,453 and 5,927 registered 2× and
4× image pairs, which constitute the IsPlanktonSR dataset.
Figure 4 presents some example image pairs of the dataset.
Note all the plankton images in this paper are CLAHE en-
hanced [30] for better visual comfortableness. The regis-
tered image pairs are further processed as follows for the
SR experiments.

2× Dataset. We keep 10 image pairs as the validation
set, 20 image pairs as the test set, and the remaining pairs as
the training set. Besides, we augment the training set by 4
times by horizontal flipping, vertical flipping, and horizon-
tal and vertical flipping. After that, we extract 50% over-
lapping patches of 50×50 patch size and 100×100 patch
size from the LR image and HR image in the training set,
respectively.

It is worth mentioning that we do not keep all the ex-
tracted patches, but discard those patches containing merely
dark backgrounds, because the network cannot learn any
mapping for the plankton targets from them. To choose
the patches containing plankton parts, we set a threshold
T (default=2) in the process of patch extraction. It is only
when the average pixel value of a patch is greater than this
threshold can this patch be reserved. In addition, since the
body size of some plankton can be larger than the DOF of
the high magnification lens, some HR images are partially
blurred as shown in Figure 10. It is inevitable that some
patches extracted from these HR images are also blurred.
We further use the focus evaluation algorithm [18] to filter
out these blurred patches and only keep the sharp ones. Af-
ter the above patch filtration steps, we finally obtain 84,256
HR-LR patch pairs for network training.

4× Dataset. We keep 10 image pairs as the validation
set, 20 image pairs as the test set, and the remaining pairs
as the training set. Similar to the process of 2× dataset
construction, we perform data augmentation and patch ex-
traction on the 4× dataset, and finally generate 139, 313
HR-LR patch pairs, with LR patch size of 50×50 and HR
patch size of 200×200, respectively.

In addition to real dataset preparation, we downsample
the HR patches in the 4× dataset in IsPlanktonSR by a fac-
tor of 4 to generate a simulated dataset DownsampedSR for
subsequent SR performance comparison experiment.

4.2. SR Model Training

Before the EDSR network training, we initialize it with
a pre-trained model (training on the natural image dataset
[35]) to speed up the convergence of network. After the tra-
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Figure 4. Example in situ plankton image pairs in the IsPlanktonSR dataset.

ining starts, we randomly take 16 LR patches from training
set and feed them into the network at each iteration.

For training optimization, we use Adam [16] optimizer
and set the initial learning rate to 4 × 10−4 and halve it at
[200, 400, 500] iterations, respectively. Several different
models are trained to validate the influence of adopting dif-
ferent loss functions and datasets on the SR performance.
All experiments are conducted with Pytorch framework on
a NVIDIA RTX3090 GPU server.

4.3. SR Performance Evaluation

We firstly train three 4× EDSR models with different
loss functions using the IsPlanktonSR dataset, and their per-
formance evaluation results are shown in Table 1 and Figure
5. It can be seen that the images generated by the L2 Loss-
trained model are smoother than the other results, although
they have the highest PSNR and SSIM values. In human
visual perception, the L2 Loss-trained model does not per-
form well as the models trained through other loss func-
tions, and its performance on NIQE is also the worst. The
output images from the Perceptual Loss-trained model show
a slight improvement in terms of visual quality and NIQE
compared to those from the L2 Loss-trained model, but their
PSNR and SSIM values are lower than the results of the L2
Loss-trained model. In contrast, the output images of the
CX Loss-trained model have the worst PSNR but the best
NIQE and perception quality. Moreover, its output images
recover more high-frequency details and are not as smooth

as the outputs from the other models. This observation is
reasonable, as CX loss is robust to slight misalignment in
the training set. Therefore, we decide to choose CX Loss to
train the network.

Method L2 Loss Perceptual Loss CX Loss
PSNR 33.03 32.24 30.88
SSIM 0.78 0.69 0.77
NIQE 19.91 18.47 12.61

Table 1. Quantitative results of SR on the test images from Is-
PlanktonSR. PSNR and SSIM (the higher, the better) are adopted
for the evaluation of reconstruction accuracy; NIQE (the lower, the
better) is adopted for the evaluation of visual quality.

Method DownsampledSR 4× IsPlanktonSR
PSNR 31.01 30.88
SSIM 0.64 0.77
NIQE 17.09 12.61

Table 2. Quantitative results of SR performance on the test images
from the DownsampledSR and the IsPlanktonSR datasets.

To compare the SR performance of the model trained
by the simulated and the real data, we then train two 4×
EDSR models using the DownsampledSR and the IsPlank-
tonSR. As the results shown in Figure 5, the model trained
by the real data recovers more high-frequency details than
the model trained with the simulated data. Such visual per-
ception is in consistent with the numerical results as shown
in Table 2.
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Figure 5. Visual comparison of the SR results obtained by training the 4× EDSR model with different loss functions and datasets.

Figure 6. Visual comparison of the SR results generated by the 2× and 4× EDSR models trained by the IsPlanktonSR datasets.
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We finally use IsPlanktonSR to train the EDSR models
for 2× and 4× plankton SR tasks, and Figure 6 shows their
SR results. It can be seen that the SR images produced by
both models reveal more morphological details than their
LR inputs, and have very high similarity with their HR
ground truth.

Figure 7. SR results evaluated by the USAF1951 target. (a) 0.5×
LR image of the target captured by the dual-channel imaging sys-
tem; (b) zoom-in of the 4th and 5th elements in (a); (c) zoom-in
SR image of (a) without re-training; (d) zoom-in SR image of (a)
with re-training; (e) zoom-in LR image captured by a laboratory
stereoscopic microscope at 1× magnification; (f) SR image of (e);
(g) MTFs calculated from (b), (c) and (d); (h) MTFs calculated
from (e) and (f). (Zoom in for best view)

The results of resolution improvement evaluated by the
standard USAF resolution target image are shown in Fig-
ure 7. It can be seen from the modulation transfer function
(MTF) curves in Figure 7 (g) that the highest resolutions
calculated from the original target LR image and its SR im-
age are 17.96 pairs/mm and 22.63 pairs/mm, respectively.
The improvement in resolution is not significant. This is be-
cause the model has not been trained to learn the mapping
between the HR-LR image pairs of the target before. We
then perform data augmentation and patch extraction on the
target HR-LR images collected by the dual-channel imag-
ing system, and merge the generated data into the IsPlank-
tonSR dataset to retrain the 4× SR model. It can be seen
from Figure 7 (d) that the SR image of the target generated

by the retrained model has presented much better resolution
compared to its LR input. The highest resolution obtainable
from the SR image has reached 50.8 pairs/mm as shown in
Figure 7 (g), which is 2.82 times of that (17.96 pairs/mm)
obtained in the original LR image. Moreover, the contrast
of the SR images has also been significantly improved. As
shown in Figure 7 (e), (f) and (h), the best resolutions ob-
tained from the LR image of the target image taken by the
stereoscopic microscope and its SR image output by the re-
trained model have been increased by ∼ 1.59 times. The SR
performance is still obvious. Note that the highest resolu-
tion obtained from the 1× image is inferior to that from the
0.5× image of the target. This is because the camera used
on the microscope has much larger pixel size than (∼twice)
that used in the dual-imaging system.

4.4. Generalizability

In order to verify the SR effect on other unseen data,
we test the generalizability of the EDSR model trained with
the 4×IsPlanktonSR. For the content generalization, we test
some plankton images that are different from the species in
IsPlanktonSR, and are collected from other sea areas. The
results show that the model could still achieve good SR ef-
fect as shown in Figure 8.

Figure 8. Visual comparison of the SR results of the EDSR model
trained by the IsPlanktonSR on the test images captured by the
underwater plankton imager in [18]. (Zoom in for best view)

For the device generalization, we conduct test on some
darkfield plankton images taken by other instruments dif-
ferent from the dual-channel imaging system used to con-
struct IsPlanktonSR, and the results show that the SR effects
are also visually arresting even for unknown magnifications,
see Figure 9. Therefore, it can be proved that the SR model
trained with the IsPlanktonSR data is robust for a variety of
imaging systems and plankton targets.
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Figure 9. Visual comparison of the SR results of the EDSR model
trained by the IsPlanktonSR on the test images captured by (a and
b) the SPC (downloaded from http://spc.ucsd.edu), (c and d) the
CPICS (downloaded from https://coastaloceanvision.com), and (e
and f) a laboratory darkfield stereoscopic microscope. (Zoom in
for best view)

4.5. Discussion

Due to the restriction of the optical imaging principle, a
low magnification lens has a larger DOF than a high mag-
nification lens. It can be seen in the IsPlanktonSR data that
some plankton parts are out of the DOF in the HR images,
but still in the DOF of their LR counterparts. As shown
in Figure 10, the copepod in the HR image is out of focus
and blurred, while its SR output even appears to be clearer
than the HR ground truth. For marine plankton observation,
in addition to improving the resolution, the more attractive
point is that the SR image also maintains the large FOV and
large DOF of the original LR images. This allows the SR
images to have a larger seawater sampling volume per frame
compared to the HR images with similar resolution. Taking
the 4× SR result from the 0.5× to 2× magnifications lenses
achieved in this paper as an example, the sampling volume
of an SR image is ∼ 177 times that of its corresponding HR
image. It is no doubt that the SR technology brings a signif-
icant improvement in the observational efficiency for a high
magnification in situ imaging system.

Figure 10. DOF extension by the IsPlanktonSR trained SR model.

5. Conclusion

In this paper, we construct a real-underwater plankton
darkfield image dataset and use it to train a deep CNN
model to achieve in situ plankton images SR for the first
time. The method has been proved capable of alleviating the
contradiction between observation area and magnification
of any underwater plankton imaging system, and improving
the generated plankton image resolution without sacrificing
the observation volume. It is expected that the application
of the SR method will help to improve the resolution of ex-
isting darkfield plankton imageries [19] captured by other
instruments, inspire the future underwater plankton imager
design, and eventually enhance the accuracy of plankton ob-
servations.
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