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Abstract

Machine learning and deep learning algorithms have
achieved great success in plankton image recognition, but
most of them are proposed to deal with closed-set tasks,
where the distribution of the test data is the same as the
training one. In reality, however, we face the challenges of
open-set tasks, which are also recognized as the anomaly
detection problems. In these tasks, there often exist abnor-
mal classes, which are not in the training set, and the final
goal of anomaly detection is to detect the anomalies cor-
rectly so that the misclassification of them can be reduced.
However, little attention has been paid to anomaly detec-
tion in marine related fields. In this paper, to help marine
plankton observers to detect anomalies conveniently and ef-
ficiently, we propose an anomaly detection pipeline includ-
ing both the training and the testing phases. The training
phase includes two parts, the pre-training and the post-
training. In the pre-training phase, we propose a new loss
function to better detect the abnormal classes and classify
the normal classes simultaneously, which incorporates the
expected cross-entropy loss, the expected Kullback-Leibler
divergence, and the Anchor loss. We conduct several ex-
periments to show the efficacy of the proposed method and
compare its performance with other competitors based on
a newly released dataset of in situ marine plankton images.
Numerical results show that the proposed method outper-
forms its competitors in terms of classification accuracy and
other commonly used criteria.

1. Introduction

Marine plankton play important roles in marine ecology
and have a great impact on aquaculture and global climate
change. To understand the biological and ecological pro-
cesses that regulate plankton populations, a fundamental
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task is to observe the abundance and taxonomy of plank-
ton over time and space [51]. With the development of un-
derwater optical imaging technology and machine vision,
many in situ plankton imaging instruments have emerged
[34]. Compared with the traditional method that collects
water samples by nets and classifies them by light micro-
scope manually, the machine vision technology that based
on in situ plankton image capturing greatly improves the
efficiency for plankton observation.

Although some recent research shows that the machine
learning methods have achieved success in other objects im-
age classification [5, 13, 14, 25, 29, 41, 58], the classifi-
cation of natural seawater samples still encounters a lot of
challenges in practice. Schulze et al. [57] developed an
automated analysis system for the identification of phyto-
plankton. Dai et al. [8] proposed a deep learning archi-
tecture for automatic classification of zooplankton images.
Sosik et al. [59] used a combination of feature selection and
a support vector machine to classify phytoplankton images.
Blaschko et al. [3] utilized a variety of features and clas-
sification methods for automatic identification of plankton.
Zheng et al. [62] proposed an automatic image classifica-
tion system incoporating multiple view features by multiple
kernel learning. All the above efforts belong to closed-set
classification tasks, where the distribution of the test data is
the same as the training one. As a matter of fact, however,
we encounter lots of open-set tasks, which are also recog-
nized as anomaly detection. In these tasks, there often exist
abnormal classes, which are not in the training set, and the
final goal of anomaly detection is to detect the anomalies
correctly so that the misclassification [1, 12, 24, 53, 54] of
them can be reduced. However, little attention has been paid
to anomaly detection in marine plankton image classifica-
tion tasks. It is known that in addition to marine plankton,
abnormal classes, such as bubbles and various suspending
particles exist in the natural seawater. These non-plankton
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particles were reported to even occupy more than 97% in
the coastal waters [34], which make the classification of the
plankton images even harder in the real world. Thus, addi-
tional manpower is often needed to identify those images,
which is impractical if the data volume is large.

In the field of anomaly detection, a number of tradi-
tional machine learning algorithms have been put forward
[12,24,43, 53, 55]. To make the model acquire prior knowl-
edge of the abnormal classes by utilizing auxiliary datasets,
the idea of outlier exposure (OE) [31] has been used widely.
[21, 31, 44] proposed supervised deep learning methods us-
ing GAN [16, 27] or real-world dataset to generate an arti-
ficially abnormal class, which is used to train the network
along with the normal ones. However, these methods may
result in inaccurate classification of the normal classes; see
[2, 26, 32, 52] for other supervised learning methods for
anomaly detection. Besides, to achieve desired detection
rate of the anomalous classes, Liu ef al. [37] proposed a
semi-supervised learning method based on an additional un-
labeled “training” set containing a fraction of anomalies;
also see [50]. However, semi-supervised learning methods
[37, 50, 60] perform worse than the supervised ones if the
model and parameters are not chosen correctly [11]. In ad-
dition, unsupervised learning methods have also been devel-
oped for anomaly detection [6, 10, 20, 30, 36, 42, 56], but
the prior knowledge about anomalous classes is generally
unavailable. Thus, the anomaly detection by unsupervised
learning methods may be highly uncertain, and their perfor-
mance fail to outperform the supervised learning methods.

In this paper, we design an anomaly detection pipeline
that consists of both a training phase and a testing phase
for marine plankton images classification in a supervised
way. The training phase includes two parts of pre-training
and post-training. In the pre-training phase, a convolutional
neural network (CNN) is trained to classify the normal in-
put as well as the auxiliary input as abnormal in advance.
The normal input possesses high classification confidence,
while the confidence of the auxiliary one is low. In the post-
training phase, a detector is trained by transforming the fea-
tures of an input image extracted by the pre-trained model
into a corresponding score. If the score is smaller than a
specific threshold ¢, the detector will discriminate the cor-
responding input as abnormal, otherwise it recognizes the
input as normal, and the pre-trained CNN will further clas-
sify it into one normal class. Based on a specific true pos-
itive rate (TPR), the whole post-training process is able to
determine the threshold . For testing, the feature informa-
tion of the input is extracted by the pre-trained CNN as a
feature extractor. Then, the detector transforms the features
into a score. Based on the threshold determined in the post-
training phase, the detector is capable of discriminating the
input. This discriminating process is similar to the one in
the post-training phase. In addition, we provide concrete ex-

ecution methods for the pipeline. In the pre-training phase,
not only do we propose a general loss function based on
the OE technique, but also a specific one named CKA loss
by incorporating the expected cross-entropy loss, the ex-
pected Kullback-Leibler (KL) divergence, and the Anchor
loss. The proposed loss function achieves the goal of de-
tecting abnormal classes and accurately classifying the ones
belonging to the normal classes simultaneously. To make
use of the prior knowledge of the anomalies, one possible
approach is to utilize the real-world images as an auxil-
iary dataset, which is trained together with the original one.
However, this idea fails in specific tasks, such as the ma-
rine related one in this paper because we lack enough addi-
tional plankton datasets. Thus, we propose a data augmen-
tation technique, including image rotation, flipping, blur-
ring [7, 33, 49], and noise addition, to generate abnormal
images artificially only based on the training dataset. In
the post-training phase, we provide several existing post-
training models as references.

The main contributions of this paper are as the follow-
ing. Firstly, an anomaly detection pipeline consisting of
both a training and a testing phase is designed. Secondly,
a data augmentation technique is used to generate auxiliary
datasets so that the model is able to acquire prior knowledge
of the abnormal classes. Thirdly, in the training phase, we
propose a CKA loss function to detect abnormal classes and
classify the ones belonging to the normal classes simultane-
ously.

We conduct experiments on a newly released dataset of
in situ marine plankton images named DYB-PlanktonNet
[35] and compare the proposed method with the state-of-
the-art anomaly detection methods [21, 42, 44]. Numerical
results show that the proposed method outperforms its com-
petitors in terms of classification accuracy, TNR95, AU-
ROC, AUPR and DTACC. We also consider the case in
which sufficient in situ images are available in advance and
can serve as the auxiliary dataset directly. Compared with
the augmented auxiliary dataset, we find that the real-world
one improves classification accuracy but undermines the
anomaly detection performance. Additionally, we conduct
the case study to show the comparable performance of our
method in the testing phase.

2. Related Work

Anomaly Detection for Plankton. Gonzalez et al. [15]
utilized the Hellinger distance to study the difference of the
distributions between training and test datasets and showed
how this distance influences the accuracy of the classifier
and the corresponding validation methods. In addition, they
emphasized the necessity to focus on designing new learn-
ing algorithms which are more robust to anomaly detection.
Based on a specific threshold, Zimmerman et al. [63] pro-
posed an image quantization method for anomaly detection
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Figure 1. The proposed anomaly detection pipeline, which consists of both the training and the testing phases.

based on the edge strength. Pastore et al. [45] adopted one-
class SVM to detect anomalies, which is defined as a sig-
nificant deviation from the established classification.

Outlier Exposure. Lee ef al. [31] proposed a training
method by a deep neural network (DNN) to detect anoma-
lies while maintaining the classification accuracy of the nor-
mal classes. Specifically, Lee et al. [31] considered an ad-
ditional cross-entropy loss to guarantee that the predicted
distribution of anomalies is uniform, and two models are
jointly trained to detect anomalies by alternately minimiz-
ing their loss functions. Thus, the trained DNN is extremely
unconfident about the anomalies. Hendrycks ef al. [21]
generalized the method of Lee ef al. [31] by OE, which
enables the DNN to learn anomalies in advance with the
help of an auxiliary dataset. Based on the OE technique,
Papadopoulos er al. [44] proposed a new loss function con-
sisting of two constraints. The first constraint minimizes
the Euclidean distance between the training accuracy and its
average confidence for the training dataset. Thus, the DNN
can accurately classify the normal classes. The second one
guarantees that the softmax probability of the anomalies is
approximately uniform, making the DNN extremely uncer-
tain about them.

Auxiliary Datasets. OE used an auxiliary dataset, which
is disjoint from the test one, to train a DNN with better rep-
resentation for anomaly detection [21]. Goodfellow et al.
[17] proposed to use adversarial samples to achieve better
robustness. Mahajan et al. [40] showed that the perfor-
mance of object detection could be improved by representa-
tions, abstracted from sources including search engines and
photo-sharing websites. Radford ez al. [48] trained an unsu-
pervised network by a corpus of Amazon reviews to obtain

high-quality sentiment representations. Adhikari et al. [23]
built six random forest classification models with differ-
ent sets of objective features, and the inclusion of auxiliary
features significantly improved the classification accuracy.
Qu et al. [47] comprehensively analyzed the performance
of different auxiliary features in improving the accuracy of
pixel- and object-based land use and land cover classifica-
tion models, and they showed that the overall classification
accuracy can be improved regardless of the types of auxil-
iary features. Lee et al. [31] proposed to use GAN to gener-
ate auxiliary datasets for anomaly detection, and Hendrycks
et al. [21] and Papadopoulos et al. [44] used real-world
datasets instead.

3. Method

In this section, we design an anomaly detection pipeline
to help marine plankton observers to deal with plankton
image recognition tasks conveniently and efficiently. The
pipeline is schematically illustrated in Figure 1. In addition,
we provide concrete execution approaches for the pipeline.
It’s worth mentioning that a data augmentation technique
is proposed to generate auxiliary datasets so that the model
is able to acquire prior knowledge of the abnormal classes.
Furthermore, in the pre-training phase, we propose a new
CKA loss function to help the model to achieve the goal of
correctly identifying the normal classes and detecting the
anomalies simultaneously.

3.1. Anomaly Detection Pipeline

As shown in Figure 1, we have designed an anomaly de-
tection pipeline, which consists of a training phase and a
testing phase. The training phase includes pre-training and
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post-training. To classify the normal input as well as the
auxiliaries, a CNN is pre-trained in advance. The normal in-
put possesses high classification confidence [44], while the
confidence of the auxiliary one is low. In the post-training
phase, a detector is trained by transforming the feature in-
formation extracted by the pre-trained CNN into the corre-
sponding score. For discrimination, the input will be judged
as abnormal if the score is smaller than a specific threshold
€, otherwise it is recognized as normal, and the pre-trained
CNN will further classify it into one of the normal classes.
Based on a specific TPR, the whole post-training process
is able to determine a threshold €, which is used directly
in the testing phase. For testing, the feature information of
the input is extracted by the pre-trained CNN feature ex-
tractor. Then, the detector transforms the feature into the
corresponding score. Based on the threshold determined in
the post-training phase, the detector is capable of discrim-
inating the input, and the discriminating process is similar
as the one in the post-training phase.

For pre-training, we choose Wide ResNet (WRN) [61] as
the CNN model, but other CNNSs can also be used such as
the ResNet [19] and the DenseNet [22]. We train the WRN
with our CKA loss in the pre-training phase; see the CKA
loss in Section 3.3 for details. Of course, existing losses
such as OE [21], OECC [44] and CAC [42] can also be cho-
sen. Since ensemble models tend to perform better than a
single one, we propose to combine an existing post-training
detector with the pre-trained CNN. For the choice of the
post-training detector, it should have good compatibility
with the pre-trained CNN, and the model should have good
capability in fully using the previous information. For post-
training, the Mahalanobis Distance (MD) classifier [9, 32]
is used by default. The existing Maximum Softmax Prob-
ability (MSP) [20] classifier and the energy-based one [38]
are also good alternatives.

3.2. Data Augmentation

For open-set learning, OE techniques are commonly
used for anomaly detection, and auxiliary datasets, such as
other real-world or artificially generated ones, should be uti-
lized in advance. The auxiliary datasets can be viewed as
train-time anomalies. Existing methods mainly assume the
availability of external open-source images [28, 43], but it is
not the case for a number of tasks like the one presented in
this paper, where we consider the anomaly detection based
on the plankton images taken in the coastal waters. How-
ever, seldom can external open-source images serve as the
auxiliary data for this specific task.

In this paper, we propose to use data augmentation tech-
niques, including image rotation, flipping, blurring, and
noise addition, to obtain train-time anomalies from the nor-
mal classes for improving the generalization of the pro-
posed method. Specifically, the probability of clockwise

rotation is set to 0.8 for each image in the normal classes,
and the corresponding rotation angle is uniformly generated
from [—30°,30°]. The probability of both horizontal and
vertical flip is set to 0.7, and 0.8 for blurring. The random
noise [4] is added to each of the normal images, and the
noise is generated randomly by one of the following mecha-
nisms, including Gaussian noise, local variance noise, Pois-
son noise, salt noise, pepper noise, salt and pepper noise,
and speckle noise; see [3, 20, 21, 44] for details. Figure 2
shows the generated images by each of the above data aug-
mentation techniques using an original plankton image. In
this paper, we consider a combination of these techniques to
generate train-time anomalies, and the generated anomalies
not only maintain the basic structure of the original images
but also provide the “boundary” information; see Figure 3
for details.

®
F1gure 2. The output of a marine plankton image after each of the
data augmentation methods. (a): original image; (b): rotation with

30°; (c): horizontal flip; (d): vertical flip; (e): blurring; (f): noise
addition.

(@)

Figure 3. (a) is an original plankton image, and (b) is a generated
anomaly from (a) by a combination of data augmentation tech-
niques, including rotation, flipping, noise addition, and blurring.
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3.3. Loss Function

Conventional image classification tasks train the DNN
by minimizing the cross-entropy loss, which aims to make
the predicted distribution as close to the training one as pos-
sible, so they are only applicable for closed-set learning.
For open-set problems, however, they may lead to over-
confident classification, resulting in misclassifying abnor-
mal images to one of the normal classes. In this part, based
on the OE technique, we propose a CKA loss function con-
taining three loss terms to detect the anomalies and maintain
the classification accuracy for the images belonging to the
normal classes.

Equation (1) shows the proposed loss function:

L (0) =1 (9, X1, Yl) + Alo (0, Xo, Yg)

1
+)\2l3 (0;X1,Y1). ( )

In the proposed loss function, /3 is used for classifica-
tion of the normal images, and various loss functions can
be used, such as the expected cross-entropy loss and the
mean squared error loss. Based on the auxiliary dataset,
l> should make the DNN extremely unconfident for detect-
ing the anomalies, that is, the loss term should guarantee
the estimated distribution of the auxiliary data is approxi-
mately uniform. Since o makes use of the OE technique,
it inevitably reduces the classification accuracy for the nor-
mal classes. Thus, we add an additional term I3 to improve
the classification accuracy. For the parameters in the loss
function, O represents the model parameters of the DNN;

(X1, Y1) = {( l,y )} is the training set of [N nor-

mal images of size s X s, yZ = {yi1, Yi2,s - - -, Yix } is the
one-hot encoder for z} and K is the number of the normal
classes; (X2, Y2) = {(w?, yf) }N1+N2 is the set of Ny
Jj=N1+1
auxiliary images of the same size as those in the normal
ones, y? = {yj1, yjo, s yjxfand yjn = - = yjx =
K~1'; A\ > 0and Ay > 0 are two tuning parameters.
Based on (1), by incorporating the expected cross-
entropy loss, the expected KL divergence, and the Anchor
loss, we propose the CKA loss. In the CKA loss, [ is the
following expected cross-entropy:

h(0; X1,Y1) = —— Z Zyzk log Pix (6),  (2)

i=1 k=1

where P;j, (0) is the softmax probability with respect to the
i-th image and the k-th class. The expected cross-entropy
loss is only applied to the images of the normal classes to
guarantee the consistency of the predicted distribution asso-
ciated with the normal classes as close as the training one.
For open-set problems, if the DNN is trained only by
minimizing the cross-entropy loss (2), it leads to erro-
neously misclassifying anomalies into the normal classes.

To overcome this difficulty, based on the generated anoma-
lies by the proposed data augmentation techniques, we use
KL divergence [46] as 5 in the CKA loss so that the DNN
can be extremely unconfident for classifying the anomalies.
The expected KL divergence is as the following:

Ni+Ns K

1
XD % = log PIZ ,E)

1=N1+4+1 k=1

l (0 X27},2

Except for the expected cross-entropy (2) and the ex-
pected KL divergence (3), we consider an additional An-
chor loss as I3 to ensure clustering of the normal images,
so that classification accuracy of the normal images can be
maintained. The Anchor loss is described as the following:

K Nk

=> > (zin — )?, “)

k=11i=1

l3(0; X1, Y1)

where p;, = (nk)_1 Z?:"l Zik» Mk is number of the original
images in the k-th class, and {z;1, ..., z;x } are the output
features of the i-th original image in the k-th class.

4. Experiments

In this section, we evaluate the anomaly detection per-
formance of our method and compare it with other com-
petitors based on a subset of the DYB-PlanktonNet dataset
[35], which is collected by a buoy-borne underwater plank-
ton imaging system [34] deployed in Daya Bay, Shenzhen,
China. We conduct our experiments on a subset of the
dataset, and it contains 43 classes with 24,880 images in
total, including 41 classes of normal plankton, a class of
suspending particles and a class of bubbles. The 41 classes
of plankton are treated as normal, and the particles and the
bubbles are treated as abnormal; see Figure 4 for their repre-
sentatives. In the experiments, the training dataset consists
of 5/6 of the 41 classes of normal plankton images, and they
are randomly selected. The remaining 1/6 normal plankton
images as well as the abnormal ones are treated as the test-
ing dataset.

In the following experiments, the WRN is chosen as the
basic CNN model in the pre-training phase, and the train-
ing loss is the CKA loss by default; see Table 1 for the
model parameters. As mentioned in the previous part, the
MD classifier is used for detecting the anomalies by default.

| Parameter | Value | Parameter [ Value |
Layers 40 Momentum 0.9
Widen Factor 2 Weight Decay | 0.0005
Optimizer SGD Batch Size 128
Learning Rate | 0.01 Epoch 100
Dropout Rate 0.3

Table 1. Model parameters for training the WRN.
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Figure 4. Representative images of plankton, bubbles, and invalid suspending particles of the DYB-PlanktonNet. The first seven columns
are plankton images, and the last two columns are suspended particles and bubbles.

4.1. Evaluation Metrics

We consider the following criteria to evaluate the per-
formance of the proposed method and compare it with its
competitors by treating the anomalies as positive and the
normal as negative. The Accuracy is the classification cri-
terion for normal classes, and the other four are used for the
anomaly detection performance.

* Accuracy (ACC): (TN+TP) /(FP+TN+TP+FN), where
TP, TN, FP, and FN are true positive, true negative, false
positive and false negative, respectively.

¢ True negative rate at 95% true positive rate (TNR95):
TNR = TN/ (FP+TN) when TPR = TP / (TP+FN) is 95%.

¢ Area under the receiver operating characteristic curve
(AUROC), where the ROC curve is a graph plotting TPR
against the false positive rate, FP / (FP+TN).

¢ Area under the precision-recall curve (AUPR), where
the PR curve is a graph plotting the precision, TP /
(TP+FP), against the recall, TP / (TP+FN), by various
thresholds.

¢ Detection accuracy (DTACC). This criterion corre-
sponds to the maximum classification probability over all
possible thresholds &:

1 — min { Phormal (¢ () < &) P (x is from Dyormal)
c (%)
+Pabnormal (q ((L‘) > E) P (:E is from Dabnormal)} )
where ¢ (x) is the confidence score, Pormal (¢ () <€)
is the probability of discriminating a normal image
x as abnormal, P (x isfrom Dyorma1) is the probabil-
ity that the image =« belongs to a normal class, and

Pibnormal (g () > €) and P (x is from Dapnormal) are de-
fined in a similar manner; see [39] for details.

4.2. Data Augmentation

Based on the 41 classes of the normal plankton, the
goal of this part is to look for the best combination of the
data augmentation techniques for generating an auxiliary
dataset. Since rotation and flipping only change the ori-
entation of the object, they do not generate images on the
“boundary” of the distribution associated with the normal
classes. That is, the combination of these two techniques
improves the generalization but fails to generate anomalies.
However, noise addition and blurring can generate abnor-
mal images, which have a different distribution as the orig-
inal one. To generate anomalies with wider generalization,
we consider the following combinations: rotation + flip-
ping + noise (RFN), rotation + flipping + blurring (RFB)
and rotation + flipping + noise + blurring (RFNB). We also
compare the above three combinations with two artificially
synthetic methods [21] by arithmetic and geometric averag-
ing of the pixel values of the RGB channels, as depicted in
Figure 5.

The classification accuracy of the normal classes is
93.13% by the RFN, 93.16% by the RFB, and 93.21% by
the RFNB, respectively. Compared with the results by the
two artificial synthetic methods of arithmetic mean (AM)
and geometric mean (GM) in [21], which are 85.39% and
81.77%, the three data augmentation techniques achieve
more than 8% improvement in terms of accuracy. How-
ever, the difference among the three data augmentation
techniques is not significant, and it is necessary to compare
them on the performance of anomaly detection. In the test-
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Figure 5. The generated anomalies by different data augmentation

methods. (a): original image; (b): arithmetic mean; (c): geometric
mean; (d): RFN; (e): RFB; (f): RENB.

ing phase, we treat the suspended particles and the bubbles
as the abnormal classes. The experimental results are shown
in Table 2, and we conclude that the third data augmenta-
tion technique, e.g., RENB, performs better than the other
two for detecting anomalies.

4.3. Ablation Studies

In the following, based on the MD classifier, we validate
the efficacy of the proposed loss function, and we take the
CKA loss as the example of validation.

Based on the expected cross-entropy loss with and with-
out the expected KL divergence, we first compare the clas-
sification accuracy and the anomaly detection performance.
The experimental results are shown in Table 3. Although
the classification accuracy of the normal classes reduces a
little after adding the expected KL divergence, its anomaly
detection performance is significantly improved. Thus, it’s
necessary to add the expected KL divergence in the tasks
of anomaly detection. Furthermore, we consider the fol-
lowing two different loss functions. One is the expected
cross-entropy loss incorporated with the expected KL di-
vergence as mentioned above, and the other is the expected
cross-entropy loss incorporated with both the expected KL
divergence and the Anchor loss. The experimental results
are also shown in Table 3. The loss function based on all
the three loss terms performs better than the one with the ex-
pected cross-entropy loss and the expected KL divergence
only, since the Anchor loss term clusters the normal classes
and mitigates the interference of the abnormal one. As
shown in Table 3, although /; performs better than I +15+13
in terms of the classification accuracy, its anomaly detec-
tion performance is not so good. All in all, the proposed
loss function shows its superiority on both classification and
anomaly detection.

4.4. Comparison of experimental performance

In this part, based on the MD classifier, we compare the
proposed CKA loss with the existing ones on the classifica-
tion accuracy and the anomaly detection performance, and
the auxiliary dataset is the RENB generated one in Section
4.3. The experimental results are shown in the first four
rows of Table 4. The classification accuracy, TNR95 and
DTACC by OECC are 93.80%, 80.52%, and 90.22%, re-
spectively, which are higher than the corresponding results
by other methods. However, the CKA loss performs better
on AUROC and AUPR, which are 96.30% and 98.23%, re-
spectively. Thus, we conclude that the proposed CKA loss
outperforms the OE and the CAC since we combine the ad-
vantage of these two methods. Although OECC performs
slightly better than the proposed method in terms of classi-
fication accuracy, TNR95 and DTACC, it trains the network
twice. Thus, the training process of the proposed method is
much simpler compared with the OECC. Besides, the pro-
posed method does perform better than OECC in terms of
AUROC and AUPR. Overall, the proposed CKA loss is bet-
ter than the existing state-of-art ones.

Additionally, we want to compare the performance of
different choices for the post-training model. As an ex-
ample, based on the CKA loss, we replace the MD clas-
sifier by the MSP mentioned in Section 3.1. Since the MSP
classifier may lead to overconfident posterior distributions
[18], it should perform no better than the MD, and numeri-
cal results in the last two rows of Table 4 have also proved
this conjecture. Compared with the MD classifier, the MSP
one leads to more than 12% reduction in terms of TNR9S,
AUROC and DTACC. Besides, the MSP classifier reduces
AUPR from 98.23% to 95.71%. Thus, the MD classifier
performs much better than the MSP one.

| [ TNR95 | AUROC | AUPR | DTACC |

RFN 77.13 95.28 98.16 88.36
RFB 76.22 94.17 98.01 87.29
RFNB 79.94 96.30 98.23 89.34

Table 2. Anomaly detection performance (%) comparison based
on three different data augmentation techniques.

[ [ ACC | TNR95 | AUROC | AUPR | DTACC |

151 95.51 73.98 91.02 92.76 82.33
1 412 92.89 79.13 95.98 98.21 88.95
l1 +12413 | 9321 79.94 96.30 98.23 89.34

Table 3. The classification accuracy (%) and the anomaly detection
performance (%) based on the combination of the different loss
terms.

4.5. Comparison of auxiliary datasets

In this part, we consider the case in which sufficient in
situ images are available in advance so that these images
can be used as the auxiliary ones directly. We compare the
performance of the proposed method by using different aux-

3667



[ [ ACC | TNRY5 | AUROC [ AUPR [ DTACC |
OE 92.81 | 78.12 9428 [ 96.84 [ 87.94
CAC 93.15 | 79.01 9488 | 97.73 | 89.07
OECC | 93.80 | 80.52 9565 | 97.86 | 90.22
CKA 9321 | 79.94 9630 | 9823 | 8934

CKA
(+MSP) 93.21 65.59 80.66 95.71 76.47

Table 4. Comparison of experimental performance (%).

iliary datasets, e.g., obtained by the proposed data augmen-
tation technique, RFNB, and a real-world source.

The settings are the same as the previous parts. We treat
the 41 classes of the plankton as normal, and a class of sus-
pending particles and a class of bubbles as abnormal. From
the DYB-PlanktonNet, we randomly choose 30 classes of
the plankton as the real-world auxiliary data, which are not
in the normal and abnormal set.

The experimental results are shown in Table 5. Com-
pared with the RFNB, the real-world auxiliary dataset leads
to better classification accuracy of the normal classes, since
it possesses real semantic features of the in sifu plankton
images, and it has less influence on the model prediction.
However, the auxiliary dataset generated by the proposed
RFNB performs better for anomaly detection. One possible
reason is that the real-world auxiliary dataset only contains
the feature information of some plankton, thus it lacks suf-
ficient prior knowledge of the other species.

| [ ACC [ TNR95 | AUROC | AUPR | DTACC |
RFNB | 9321 | 7994 | 9630 | 9823 | 89.34

Real- | o) 18 | 7636 94.84 9712 | 87.65
world

Table 5. Evaluation performance (%) using the RFNB generated
data and using the real-world auxiliary data, respectively.

4.6. Case Study

To demonstrate the application of the anomaly detection
model for practical problems, we carry out a case study
of using the method for discriminating suspended particles
from plankton in coastal water samples, in which the num-
ber and heterogeneity of the particles are known to be over-
whelmingly larger and more complex than that of plank-
ton [34]. If the observation interest is plankton, it will be
very difficult to use just one CNN model to well achieve
the classification task, as the data is so imbalanced and
many particles also look very alike with certain plankton
species. Li et al. considered a relayed usage of two classi-
fication CNNs for excluding the interference from the sus-
pended particles and bubbles, such that they could better
classify the plankton (normal) species in the end [34]. Here
we design a toy dataset to compare the performance of our
method with the VGG-11 model used in [34] for the same
purpose. The dataset consists of 1015 suspended particles
and 99 plankton ROIs that are never seen by both methods
during their training phases. Specifically, the plankton ROIs

are extracted from the DYB-PlanktonNet, and the particles
ROIs are collected differently in space and time. So, the
particle data can be regarded as shifts from those used in
the training phase.

[ [ ACC | Precision | Recall | F1 Score |

VGG-11[34] | 95.42 68.15 92.93 78.63
Our Method | 96.08 72.73 88.89 80.00

Table 6. Classification performance (%) of the case study.

The result shown in Table 6 proves that both methods
achieve comparable performance in the task of excluding
particles from the plankton, and our approach is a little
bit superior. Compared to using two cascaded CNNSs, our
model is more integrated when applied for finer plankton
taxa classification. It can achieve similar performance to
a conventional classifier with a relatively small augmented
dataset, so the requirements for number and diversity of the
training data are much lower. Limited by the real-world data
availability, the dataset shift in this case is still not obvious
enough. We believe that our method will have better per-
formance on data with more serious shift in practice, e.g.,
better generalizability.

5. Conclusion

In this paper, we propose an anomaly detection pipeline
as well as concrete methods for the execution of this
pipeline for the open-set problem in marine plankton im-
age classification task. Especially, we discuss different
data augmentation techniques to generate auxiliary datasets,
and propose a CKA loss function in the pre-training
phase, which achieves satisfactory performance for detect-
ing anomalies and preserves high classification accuracy of
the normal in the experiments. We conduct experiments on
the DYB-PlanktonNet dataset and show the usefulness of
our approach achieving state-of-the-art performance, and
we also emphasize the importance of the choices of the
post-training models and the auxiliary dataset. Addition-
ally, we conduct the case study to show the comparable per-
formance of our method in the testing phase. The proposed
open-set classification methods are expected to help marine
biologists to better identify their observation targets of inter-
est, so that the in situ monitoring of marine plankton could
become more convenient and efficient.

In the future, we will investigate to improve the robust-
ness of our approach for both classification and anomaly
detection, and apply it on more challenging applications.
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