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Abstract

We propose a system for 6-DoF estimation of Aruco
markers with associated uncertainties in the challenging
underwater environment. A state-of-the-art object detection
framework (EfficientDet) was adapted to predict the corner
locations of Aruco markers, while dropout sampling at in-
ference time is used to estimate the predictive 6-DoF pose
uncertainty. A dataset of Aruco markers captured in a wide
variety of turbidities, with ground truth position of the cor-
ner locations, was gathered and used to train the network
to robustly predict the 6-DoF pose. We report median trans-
lational errors of 2.6cm at low turbidity (8.5m attenuation
length) and up to 10.5cm at high turbidities (0.3m attenu-
ation length). The respective uncertainty, reported as in-
terquartile ranges (IQRs), range from 3.2cm up to 27.9cm.
The rotational median errors varied from 5.6◦ to 10.7◦ with
IQRs of 6.4◦ to 26.2◦. We also discuss how the pose uncer-
tainty can be applied to reduce the risk in a subsea inter-
vention operation.

1. Introduction

Autonomous underwater vehicles (AUVs) can only op-
erate reliably if they have robust 6-degrees of freedom (6-
DoF) localization capabilities. Basing critical autonomous
decisions on highly uncertain localization information can
potentially lead to catastrophic outcomes that not only risk
the success of the AUVs mission, but also endanger human
lives.

Deep learning networks have shown impressive accu-
racy, even surpassing human performance, on several chal-
lenging vision tasks [1]. Object detection with deep learn-
ing, which is crucial for scene understanding and generally
a backbone for 6-DoF localization methods, has over the
last years seen strong improvements on both detection accu-
racy and efficiency. Some of the most prominent networks
are two-stage region-based CNNs [4, 9, 10] and one-stage
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detectors such as YOLO [18]. Recently, EfficientDet [21]
has improved the efficiency of one-stage detectors by in-
cluding a bi-directional feature pyramid network on top of
an EfficientNet [20] backbone, and they use AutoML to op-
timize for size, resolution and depth of the model structures.

Pose estimation of relevant objects is an important pre-
requisite to enable vehicles to safely operate autonomously.
There are two main approaches to estimate the 6-DoF – di-
rect and indirect. The direct approach regresses the transla-
tional and rotational parameters directly, such as in PoseNet
[13] and EfficientPose [3]. A challenge with these ap-
proaches is to define the loss function over the complex
pose space in a stable manner. In the indirect approach,
object keypoints are regressed in 2D, and a Perspective-N-
Point [16] (PnP) algorithm is used to estimate the 6-DoF
pose. Because the predictions are performed in 2D image
space, robust loss functions are easily constructed [22]. A
relatively simple approach to 6-DoF estimation is to detect
artificial markers with known geometry in the scene, e.g.
Aruco/Charuco markers where the four corners are detected
and used to compute the 6-DoF pose [8]. In DeepCharuco
[11] they showed that a deep learning approach can outper-
form the classical Charuco approach to detect the markers,
especially under challenging light situations. Some works
have studied the effect of the underwater environment on
the detection of Aruco markers [5], [6] and proposed meth-
ods to improve the detection rate by e.g. applying dehazing
algorithms [24]. They are generally evaluated according to
the rate of detection of the markers – not the pose accuracy.
In [17] they evaluate the accuracy of the Aruco detection
in an underwater environment with very clear water. They
report a mean translational error of 11.8cm and a mean ro-
tational error of 4.2 degrees.

A pertinent question is how much a robot can trust the 6-
DoF pose predictions of the deep learning (DL) networks?
Current deep neural network (DNN) methodology tends to
make overconfident decisions based on point-predictions.
DL systems typically returns softmax scores that are pro-
portional to the systems confidence of the prediction - not
calibrated probabilities [14].
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Figure 1: Network structure. We use an EfficentNet backbone network for feature extraction, a bi-directional Feature Pyramid
Network (BiFPN) for efficient feature fusion, and separate class and corner prediction heads.

Recent advances have shown potential for combining
Bayesian methodology with DNNs to effectively reason
about model and data uncertainty to characterize the dis-
tribution over outcomes [12]. These methods can incor-
porate data uncertainties in the prior and characterize the
full predictive uncertainty. These methods are often based
on computationally expensive sampling schemes such as
Markov Chain Monte Carlo (MCMC), however approxi-
mations such as Dropout sampling [7] and ensemble meth-
ods [14] have been proposed to alleviate this.

We propose a system for 6-DoF estimation of Aruco
markers with associated uncertainties in the challenging un-
derwater environment. A state-of-the-art object detection
framework (EfficientDet) was adapted to predict the corner
locations of Aruco markers, while dropout sampling at in-
ference time is used to estimate the predictive 6-DoF uncer-
tainty. A dataset of Aruco markers captured in a wide range
of turbidities, with ground truth position of the corner loca-
tions, was gathered and used to train the network to robustly
predict the 6-DoF pose.

We present results, both in terms of rotational and trans-
lational errors with associated robust uncertainty measures
and how this may be useful to reduce the operational risk in
an autonomous subsea intervention procedure.

2. Methods

2.1. Prediction of 6-DoF using EfficientDet

We build our Aruco regressor on top of EfficientDet
[21] which is a state-of-the-art object detector. EfficientDet
uses an EfficientNet backbone and a Bi-directional Feature
Pyramid Network (BiFPN) for feature fusion which also
shares features across scales. The classification and cor-
ner prediction heads consists of three-layer convolutional
networks the same width as the output of the BiFPN layer.
EfficientDet uses anchor bounding boxes to regress ob-
ject bounding boxes. We have adapted the 4-component
(x, y, width, height) box prediction of the original Effi-
cientDet to instead predict the 8-component vector of the
four corner coordinates: ci = [x1, y1, x2, y2, x3, y3, x4, y4].
The loss function of the regression head then becomes:
Lr(c; ĉ, δ) =

1
N

∑N
i=1 E(ci, ĉi; δ) , where ĉ is the ground

truth corner locations and E is a Huber loss. Each regres-
sion difference (predicted corner position versus the annota-
tion difference) is scaled by the respective anchor box width
/ height. A standard focal loss [15] is used for the classifi-
cation head.

2.2. Uncertainty characterization using MC-
dropout

Given a predicted set of four corner points ci, we use a
perspective 4-point algorithm to estimate the 6-DoF of the
Aruco marker in the camera coordinate system. It has been
shown that a neural network with dropout applied before
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each weight layer is equivalent to a (variational) approxi-
mation to the deep Gaussian process (marginalised over the
covariance function parameters) [7]. In practice, standard
dropout is not applied before each weight layer, but rather
in the last layers in the model, and this has been shown to
produce equivalent results. We apply dropout on the second
and third to last convolutional layers in the regression head.

In a Bayesian perspective, dropout is equivalent to draw-
ing samples from: ci ∼

∫
p(ci|Ii, θ)p(θ)dθ , where Ii is an

image of an Aruco marker and θ describes the neural weight
parameters. The predictions from a standard Gaussian Pro-
cess is by definition a Gaussian. However, in our case,
the Markov Chain (MC) dropout approach is only an ap-
proximation to a Gaussian process and may be multi-modal
and potentially severely skewed as can be seen in Figure 6.
Hence, we cannot assume that the mean and standard devi-
ation are robust and accurate summaries of the MC-dropout
samples. The primary mode of the distribution is the most
likely outcome, but can be difficult to robustly estimate in
multi-modal settings. Consequently, we choose to use the
median as a proxy for the mode, and use interquartile range
(IQR) as robust uncertainty summaries.

2.3. Dataset

A dataset was established of Aruco markers imaged in
a small aquarium under a large span of turbidities. The
aquarium measured 100cm x 50cm x 60cm and is shown
in Figure 2. A Toshiba BU238M machine vision camera
was placed at the short end of the aquarium. A halogen
lamp and a LightCrafter 4500 DMD was used for illumina-
tion of the scene. Three Aruco markers (7,9 and 10 from
DICT 4x4 250) with sides of 10cm were placed in five dif-
ferent geometrical configurations as shown in Figure 3. The
markers were rigidly attached to a wood plate laying on top
of the aquarium. They were located approximately 0.7m-
0.9m from the camera.

For each static geometrical configuration of the mark-
ers, we acquired a set of 30 images for each permutation
of pre-defined lighting conditions, exposures and turbidi-
ties. Images were acquired at a resolution of 1900x1200,
but scaled down to 512x512 with fixed aspect ratio to be
suitable for input in the CNN network. All external lighting
was turned off for the acquisition. Lighting configurations
included: 1) Halogen lamp behind zero, one and two sheets
of diffusive paper, 2) LightCrafter projector. Fifteen expo-
sure times were used within the range 30µs to 16 400µs. In
total, we acquired 4 950 images for each configuration.

The pool was filled with fresh tap-water before adding
1g of blue modelling clay for each increase of turbidity. We
acquired a full set of images for five different turbidities.
Figure 4 shows example images across turbidities for one
of the configurations. We use the attenuation length of the

water as a proxy for the turbidity and measured it with a
camera and blinking light source as shown in Figure 2a. The
attenuation length is defined as the distance at which 1

e ≈
37% amount of light remains. The estimation procedure we
employ is described in [19]. We estimated the attenuation to
be 8.6m in clear tap water (turbidity 0), and down to 0.3m
after adding a total of 4g of dissolved blue clay (turbidity
4).

We used the images acquired at turbidity 0 to establish a
ground truth location of the Aruco corners which would be
valid across the turbidities, lighting and exposure variations.
We used the standard Aruco library to compute the mean
ground truth corner locations of the markers using the 10
exposures of the lighting and exposure configuration of the
marker which provided the best signal to noise ratio (SNR)
over the marker. The SNR was computed by taking the sig-
nal of the pixels representing the white parts of the marker
over the noise of the pixels representing the dark parts of
the marker.

The intrinsic calibration matrix was established through
a standard checkerboard calibration [23].

2.3.1 Dataset augmentations

The static dataset only includes the markers at a small set of
geometrical configurations but includes a diverse range of
lighting and turbidity configurations. Hence, we add aug-
mentations that varies the geometrical configuration of the
markers as seen in Figure 5. We apply a random affine trans-
formation to simulate variations in distance (scaling), posi-
tion (translation) and orientation (shearing, rotation). Ran-
dom crops were added to the image (see Figure 5b) to make
sure that the network learns the marker and not its location
in relation to the background. We also added random noise
over markers that ended up on the image boundary as shown
in Figure 5c.

2.4. Training and inference

The dataset was divided into a training set using images
from configurations 1-4, while images from configuration
5 was used for the test set. We trained the network for
200 epochs, using mini-batches of 16 images, and observed
that the loss converged after approximately 150 epochs. We
used a drop-out rate of 30% during training for regulariza-
tion purposes, and 0.0% during test time when we evaluate
the loss function. During inference, post training, we used a
dropout rate of 30% and drew 1 000 samples to characterize
the distributions. For the classification (focal) loss we used
α = 0.25 and γ = 2.0 , while the Huber regression loss
function used δ = 1/9.
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(a) (b)

Figure 2: Acquisition setup. 2a The attenuation measurement setup. A blinking spotlight is located at the bottom left of the
aquarium, while the camera is located on the bottom right of the aquarium. 2b Acquisition of the Aruco markers. The camera
and light sources are located on the left side of the aquarium.

Figure 3: Aruco marker configurations. The legend shows the marker id and the corresponding marker SNR.

3. Results

3.1. 6-DoF estimation in turbid waters

This section summarizes the results on the test set (i.e.
configuration 5). In Figure 6, we show the inferred distribu-
tions for each corner location of marker 9 across turbidities
at the same lighting and camera exposure of 1ms. At at-
tenuation length 0.3m the SNR for the marker is 0.4. It is
very difficult to discern the marker visually, and the net-
work produces wider distributions where some of them are
multimodal.

In Figure 7 (left) we show results of the estimated trans-
lational error in centimetres in relation to the turbidity for
the three translational components. In Figure 7 (right) we
show the translational error for the three translational com-
ponents in relation to the SNR of the marker. Since these
results aggregate information across exposures and light-
ing conditions, there is not a direct relationship between the
SNR and the turbidity. The uncertainty (IQR) is stable at
approximately 0.4cm, 0.5cm and 3cm for the three compo-
nents down to an SNR of about 3, where the uncertainty
increases rapidly. The z-uncertainty is considerably higher
because of the PnP computation which effectively aggre-

gates the x- and y- uncertainty.
The rotational error estimates are shown in Figure 8. The

error was computed as the single axis rotation between the
ground truth and estimated coordinate frames. The figure
shows the rotational error in relation to both the attenua-
tion length and the SNR. We observe the same effect as for
the translation, that the rotational error and uncertainty in-
creases at low SNRs/high turbidity.

We summarize robust measures of the translational and
rotational errors in Table 1. The accuracy and detection rate
of the OpenCV Aruco library using standard detection pa-
rameters is also reported. We observe that the detection rate
falls off rapidly with higher turbidities, while the proposed
method provides a detection rate of 100%. However, one
should probably characterize detections with a high uncer-
tainty as a missed detection, and consequently the detection
rate would be reduced accordingly.

3.2. Subsea intervention: gripping of a fish-tail han-
dle

One direct application of the proposed approach to 6-
DoF pose estimation is for autonomous interventions sub-
sea. If an Aruco marker is rigidly placed in relation to a
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(a) Turbidity 0: 8.6m (b) Turbidity 1: 1.2m (c) Turbidity 2: 0.7m (d) Turbidity 3: 0.4m (e) Turbidity 4: 0.3m

Figure 4: Example images from across turbidities. Images were acquired of the same configuration under five different
turbidites ranging from 8.6m down to 0.3m attenuation length. The legend shows the marker id and the corresponding
marker signal to noise ratio.

(a) (b) (c)

Figure 5: Augmentations. Figure 5a An original image without augmentation. The marker corners are overlaid. To span
the space of possible configurations we applied random affine transformations (translation, rotation, shear and scale) to the
images. Two examples are shown in Figure 5b and Figure 5c. We also added random crops filled with random values to
the images to make sure that the network learns the marker and not the location of the marker on the background (see 5b).
Markers which end up on the image boundary after augmentation are removed by filling the bounding box with random
values. This can be seen in Figure 5c.

Turbidity[m] T%25[cm] T%50[cm] T%75[cm] R%25[deg] R%50[deg] R%75[deg] Aruco T%25 Aruco T%50 Aruco T%75 ArucoDetectionRate DetectionRate

8.6 1.0 2.0 3.2 3.1 4.6 7.8 0.0 0.0 12.3 100.0 100.0
1.1 1.1 2.3 3.9 3.3 5.0 8.1 0.0 0.0 0.0 51.7 100.0
0.7 1.2 2.4 4.1 3.6 5.4 8.5 0.0 0.0 6.1 11.7 100.0
0.4 1.3 2.5 4.0 4.5 6.5 8.8 NaN NaN NaN 0.0 100.0
0.3 1.8 3.8 10.6 5.7 8.1 10.9 NaN NaN NaN 0.0 100.0

Table 1: Quantitative results. Robust estimates of the translational (T) and rotational (R) errors. We report the median (%50)
and the lower (%25) and upper (%75) IQRs. Notice that none of these error estimates can go negative, while the component-
wise measures in Figure 7 can go negative. We also report the detection rate based on the OpenCV Aruco library and the
proposed method, where NaN means that no markers were detected. One may argue that the detections with the proposed
method should be classified according to the uncertainty, which would result in a decline in detection rate according to the
user specified uncertainty threshold.

fish-tail handle which the AUV should intervene with, the
AUV can automatically position itself and the gripper in re-
lation to the fish-tail. The gripping procedure can be ad-
justed according to the uncertainty of the pose estimate of

the fish-tail. With high uncertainty, the movements can be
slower, and the gripper can open up more before closing
up the gripper. This will help reduce the risk of damaging
the gripper and the fish-tail. This is of course a bit simplis-
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(a) (b) (c)

Figure 6: Corner prediction overlaid on image for attenuation lengths 8.6m (6a), 0.7m (6b) and 0.3m (6c). We have plotted
iso-contours of the marginal probability of the different corner locations. The prediction is relatively stable across turbidities,
except for at the highest turbidity where there is limited signal. At the highest turbidity we observe that the distributions are
multimodal and considerably wider than at lower turbidities.

Figure 7: Translational errors across turbidities (left) and across signal-to-noise ratios (right).

tic picture of the challenging intervention procedure which
involves a number of complex tasks such as floating base-
control [2].

In Figure 9, we show an example where we have used
the pose distribution (1000 samples) given by the proposed
algorithm when detecting an Aruco marker at an attenuation
length of 0.7m at 90cm distance. We create a marginal prob-
ability volume around the gripper which tells us the proba-
bility of the fish-tail being present in that particular voxel.
This is done by transforming the fish-tail handle with the
1000 pose samples and for each time a voxel is inside the
transformed model an accumulator is incremented for that
voxel. When the gripper (the yellow model to the right in

the figure) is closing its grip, we can report the probability
of whether it is now gripping the fish-tail. The snapshot of
the gripping process in the figure shows that the probability
of the grip is 99%.

4. Discussion

Underwater vehicles operating autonomously are depen-
dent on having localization systems that can provide 6-DoF
pose estimates that are both accurate and where the associ-
ated uncertainty of the prediction is characterized. Making
high-risk decisions without knowing the full predictive dis-
tribution over the 6-DoF pose can lead to catastrophic out-
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Figure 8: Rotational errors across turbidites (left) and across signal-to-noise ratios (right).

(a)

(b) (c)

Figure 9: Qualitative example of gripping a fish-tail. The pose of the fish-tail is computed based on the marker shown in
Figure 6b. 9a shows the distribution of the translational components centered around the median value. A probability volume
of the location of the fish-tail is constructed based on the pose distribution. In 9b and 9c we show example visualizations
of the gripper versus the probability volume of the fish-tail at two different stages of the grip process. This probabilistic
information can help the AUV to decide how to approach and grip the fish-tail with minimum risk of damaging the gripper
or fish-tail.

comes, such as loss of costly equipment or human lives.
Consequently, the uncertainty threshold which is applied
during operations should be adjusted according to the op-
erational risk.

We have introduced a method for estimating the uncer-
tainty of 6-DoF estimates based on Aruco markers. The
network was trained on a realistic dataset of three Aruco
markers acquired underwater in a wide range of turbidities
and lighting conditions. We used the Aruco detections in
clear water as a proxy for the ground truth detections, and
acknowledge that there may be minor sub-pixel deviations
from the real pixel positions. We observed median transla-

tional errors ranging from 2.6cm at low turbidity to 10.5cm
at high turbidities. The respective IQRs (uncertainties) are
3.2cm up to 27.9cm. The rotational median errors varied
from 5.6◦ to 10.7◦ with IQRs of 6.4◦ to 26.2◦. Our transla-
tional errors across all turbidities are lower than the 11.8cm
that is reported in clear water in [17], while their rotational
error of 4.2◦ is approximately the same as we report for the
clear water case.

Blue clay was used to generate a turbid environment
which exhibits absorption and scattering. It may be that the
optical effects (absorption, back- and forward-scattering) of
other sediments is different. We have not verified how well
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the results generalize to other turbid environments. We only
applied the augmentations to the training dataset, hence we
did not have any strongly inclined markers in the test set.
We expect that the accuracy will decrease and uncertainty
will increase with more inclined markers. This will be in-
vestigated in future work.

Markers associated with a 250-word dictionary was used
in this study. We have not studied the sensitivity of the
detections to the size of the dictionary. However, we ob-
served minimal mis-classification of the markers with the
250-word dictionary, even at high turbidities, so it is un-
likely that a smaller dictionary would lead to more reliable
detections.

One interesting question is whether the generated distri-
butions are well calibrated, i.e. do they accurately encap-
sulate the real uncertainty of the model? There are a num-
ber of approximations involved when establishing the iden-
tity between the MC-dropout sampling of a general-purpose
CNN and sampling from a Gaussian process, which may
cause the distributions to be uncalibrated. The drop-out rate
as well as the location where the drop-out is applied may
also affect the spread of the distributions. We chose a drop-
out rate in line with what other authors have reported. We
have not performed any checks to validate the sensitivity of
the results to the drop-out rate. One approach to validate
the distributions may be to acquire N images of the same
Aruco marker and generate corner predictions for each of
them. For a well calibrated distribution, the ground truth
position of the corner should, for a given x, be within the
x-percentile range x% of times.

Inference time (50ms per sample on an RTX 2080, so
if 100 samples is adequate to characterize the distribution
it would take about 5s) is a limiting factor for applying the
proposed uncertainty estimation scheme in a practical set-
ting. In future work we will evaluate the trade-off between
the number of samples and the accuracy of the characteriza-
tion of the distribution. We will also investigate further the
implications of having the full 6-DoF distribution on deci-
sion making during high-risk underwater operations.
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