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Abstract

Biological oceanographers are increasingly adopting
machine learning techniques to conduct quantitative as-
sessments of marine plankton. Most supervised plankton
classifiers are trained on labeled image datasets annotated
by domain experts under the closed world assumption: all
object classes and their priors are the same during both
training and deployment. This assumption, however, is hard
to satisfy in the actual ocean where data is subject to dataset
shift due to shifting populations and from the introduction of
object categories not seen during training. Here we present
an alternative approach for training and evaluating plank-
ton classifiers under the more realistic open world scenario.
We specifically address the problems of out-of-distribution
detection and dataset shift under the class imbalance setting
where downsampling is needed to reliably detect and clas-
sify relatively rare target classes. We apply a hard negative
mining approach called Background Resampling to perform
downsampling and compare it to other strategies. We show
that Background Resampling improves detection of novel
particle classes while simultaneously providing competitive
classification performance under dataset shift.

1. Introduction

Marine plankton are a critical component of the bio-
geochemical processes that are responsible for regulating
the climate, supporting the aquatic food web, and produc-
ing oxygen [21, 1]. The innumerable ecological roles of
plankton make it imperative to monitor their populations
as a function of natural and anthropogenic environmen-
tal change. Quantifying the fluctuations of individual taxa
and the diversity of planktonic communities in response to
perturbations is fundamental to understanding planktonic
ecosystem dynamics. However, technological limitations
constrain our ability to obtain highly temporally resolved
time series of individual taxa.

Plankton ecologists are increasingly using in situ imag-

Figure 1. a) Using target and background training datasets, de-
noted as Dtarg

train and Dout
train respectively, the parameters of a clas-

sifier, fθ1 , and background image weights, w, are jointly learned
using an alternative optimization approach. b) the background
dataset is downsampled by interpreting w as resampling probabil-
ities. c) the original target dataset and downsampled background
dataset is used to train a new classifier, fθ2 . d) testing is then per-
formed using target, novel, and dataset shift datasets with fθ2 .

ing and deep learning to make population estimates of
plankton. Numerous imaging systems have been developed
and deployed to study plankton in their natural environment
[4, 11, 9, 41]. One of the most widely used plankton im-
agers is the Imaging FlowCytobot (IFCB), which was de-
veloped at Woods Hole Oceanographic Institution (WHOI)
to study microorganisms within the 10-100 µm range [36].
The WHOI-Plankton annotated dataset is one of the largest,
best maintained labeled plankton image sets available [39].

Together with in situ imaging, advances in deep learn-
ing have enabled oceanographers to sample ocean popu-
lations with higher spatiotemporal resolution and provide
the opportunity to produce long, highly resolved time se-
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ries of individual taxa. Convolutional Neural Networks
(CNNs), a family of deep neural network architectures, have
been shown to improve classification accuracy on marine
plankton imagery versus ensemble or margin-based meth-
ods [38, 16, 39]. CNNs obviate the need for defining hand-
crafted features by learning the feature extraction and clas-
sification process end-to-end. This training paradigm en-
ables the learning of feature representations with more dis-
criminative power [26, 25]. CNNs could therefore alleviate
the human cost of manually examining the collected data in
order to extract ecologically relevant information.

In many cases, biological oceanographers are only inter-
ested in identifying organisms that belong to a small set of
classes, referred to here as target classes. Some projects
are specifically formulated to reduce the number of target
classes: Harmful Algal Bloom (HAB) monitoring and par-
asite tracking to name a few [37, 14, 24, 35, 5, 10, 6]. The
annotation process requires a trained taxonomist to search
through a large set of images obtained from an experiment
or deployment and sort them into ecologically meaning-
ful classes. Either by design or due to circumstance, the
available data for classifier training will consist of labeled
images associated with the target classes and a large pool
of unlabeled data often simply called “other”. Classifier
training is thus often formulated as an N+1 classification
problem, where there are N target classes and all other ob-
ject types are mapped to an additional background class.
The term background therefore refers to data that the clas-
sifier has been trained to distinguish from target examples,
whereas out-of-distribution (OOD) refers to data from novel
classes that the classifier has not been trained on and is only
exposed to during the testing stage or deployment.

The combined abundance of objects from the target
classes is often much smaller than the prevalence of all other
objects that form the background, the so-called class imbal-
ance problem [27, 7, 6, 17]. The issue is exacerbated by the
size structure of particles in the ocean and design constraints
of imaging systems. There are orders of magnitude more
small objects near the lower resolution limit of any optical
imaging system. As a result, in situ optical imaging systems
will image more small indistinguishable objects than large
easy-to-identify particles [41, 36, 17]. Therefore, the back-
ground class will often be populated by many examples of
these small undifferentiated particles.

Training on imbalanced data will encourage a machine
learning based classifier to minimize its loss by accurately
and reliably classifying majority class examples at the price
of diminishing recall of minority class examples [33]. A
widely adopted strategy for addressing the imbalance prob-
lem is to upsample the minority classes via data augmenta-
tion and downsample the larger classes via random down-
sampling [40, 7]. However, random downsampling is likely
to lose crucial information regarding the distribution of pos-

sible features that are associated with objects belonging to
the background class.

Developing effective machine classifiers for plankton
imagery is further complicated by the diversity and con-
stant flux of novel taxa present in the sampling environment
[20, 44]. N+1 classifier training implicitly assumes the clas-
sifier’s learned representations are robust enough that any
and all future objects that do not belong to the set of target
classes will be mapped to the background class. But this
kind of generalization is not explicitly enforced or encour-
aged when the classifier is trained and evaluated on datasets
that share the same set of labels; a common practice in
plankton ecology studies [35, 38, 16, 17, 9, 12].

When a classifier is tasked with labeling unlabeled data,
another assumption is made: that the class priors and dis-
tribution of features characterizing the classes are unchang-
ing. Changes in these distributions are broadly referred to as
dataset shift, and have been shown to impact classifier per-
formance. This problem has received a significant amount
of attention in both the plankton ecology [40, 19, 2] and
machine learning [34, 54, 18] communities.

Plankton recognition in the open ocean is a particularly
challenging endeavor because incoming data is almost guar-
anteed to be imbalanced, composed of novel classes, and
subject to dataset shift. In this work, we present an effec-
tive solution to this integrated recognition task for the case
where the goal is to identify images belonging to relatively
uncommon plankton groups. We examine how the con-
struction of the background class training set via downsam-
pling can impact out-of-distribution detection and dataset
shift classification performance. We use a hard negative
mining approach called Background Resampling to opti-
mize the downsampling procedure to preserve information
regarding the set of features associated with the background
class. Our study makes the following three particular con-
tributions:

1. We present a new framework for training and evalu-
ating plankton classifiers that addresses the challenges
that are encountered in an open ocean deployment, pri-
marily OOD detection and dataset shift.

2. We show that downsampling via hard negative min-
ing can endow models with greater generalization abil-
ities across a range of challenging test scenarios where
other approaches are inconsistent.

3. We benchmark a contemporary OOD detection tech-
nique on a fine-grained OOD detection problem.

2. Related Work

2.1. Out-of-distribution detection

Out-of-distribution (OOD) detection methods seek to
train a classifier to successfully recognize data that does not
belong to the set of target classes. In the case of marine
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plankton classification, OOD data would present as novel
object classes. Outlier Exposure (OE), a popular new ap-
proach for OOD detection, leverages the fact that deep net-
works produce an estimate of the posterior class distribu-
tion. OE measures the entropy of the posterior class dis-
tribution to estimate the likelihood that a given data point
is OOD [23]. This is implemented with a softmax network
layer, which models the probability of an input x being rec-
ognized as class i as

P (i|x) =
exp

(
wTi g (x; θ) + bi

)∑N
j=1 exp

(
wTj g (x; θ) + bj

) (1)

where i ∈ {1, 2, ..., N} indexes one of the N target classes.
g(x; θ) denotes the embedding of example x in feature
space as a function of network parameters θ. wj and bj
denote the weight vector and bias terms for class j respec-
tively. The classifier is trained to output a high entropy
(i.e., uniform) distribution P (i|x) for background exam-
ples, and a confident low entropy distribution for examples
from the target classes. For OE, classification is performed
by thresholding the softmax scores, where the threshold T
is determined empirically from a validation set and cali-
brated to provide a desired recall on the target classes. If
T < maxi P (i|x) then the classification is upheld, other-
wise, the example is classified as non-target.

OE has been shown to generalize well to OOD examples
that come from an entirely different domain [23, 28, 15].
This inspired a wave of OOD detection models which build
from the OE concept. [15] introduced Objectosphere loss
which aims to minimize the magnitude of g(x; θ) for back-
ground data, which naturally results in low confidence soft-
max outputs. [30] incorporated scaling and input prepro-
cessing to further increase the softmax output disparity be-
tween target and background data. However, these methods
are typically tested using OOD and target data from com-
pletely separate domains. This is unlike many real-world
applications, where OOD data is from the same domain as,
and looks very similar to, target class examples. In the case
of marine particle classification, particle classes can be vi-
sually very similar, which makes OOD detection a challeng-
ing problem [12, 48, 32, 55].

2.2. Hard negative mining

Hard negative mining (HNM) approaches seek to iden-
tify a set of negative (or background) examples that are
likely to generate a false positive [45, 13, 53]. Focusing
classifier training on these hard examples has been shown to
improve classification performance relative to other down-
sampling methods [13, 29]. While similar techniques have
been applied to datasets consisting of hand-crafted features
to predict phytoplankton blooms, to our knowledge, they
have not been applied to plankton image classification [49].

3. Dataset
We use the WHOI-Plankton dataset1 for all experiments

[52]. This fully annotated dataset is comprised of 103
classes totaling over 3.5 million grayscale IFCB images,
ranging from millions to as few as four examples per class.
The bulk of the images belong to the mix category which
corresponds to small unidentifiable particles. This dataset
was amassed over 9 years (2006-2014) from nearly contin-
uous sampling at the Martha’s Vineyard Coastal Observa-
tory. An expert taxonomist labeled all images collected in
two randomly selected, non-consecutive, single hour time
points from each two-week period. Each hour thus repre-
sents a complete, independent sample of the plankton pop-
ulation at that point in time. The image data is sorted into
subfolders reflecting the image acquisition year.

4. Methods
4.1. Background resampling

Background Resampling (BR) is a HNM approach
which aims to ameliorate the class imbalance problem while
improving OOD detection [29]. BR assigns each back-
ground training image a weight that is proportional to the
confidence with which the image is classified as one of the
target classes. Then a subset of the background images is
sampled according to the image weights which are inter-
preted as resampling probabilities. This downsampled set is
then used to train a new classifier. BR is from the family of
OE methods for OOD detection and therefore requires both
background and target training datasets, denoted as Dout

train

andDtarg
train respectively. Dout

train andDtarg
train are used to train

the parameters θ1 of a classifier, denoted as fθ1 , to output
high and low entropy distributions over the softmax outputs
(eq. 1) respectively. The BR procedure can be broken into
two distinct phases:

Phase (1): Using Dout
train and Dtarg

train, learn the back-
ground image weights w and θ1 with the alternative opti-
mization

θ
(t)
1 = argmin

θ1

[
Ltarg (θ1) + αLout(θ1;w

(t−1))
]

(2)

w(t) = argmax
w

[
Ltarg(θ

(t)
1 ) + αLout(θ

(t)
1 ;w)

]
(3)

where Ltarg is the cross-entropy classification loss term
used to penalize incorrect classifications for target class
data. Lout is the loss term that penalizes overly confident
predictions on background examples and is defined as the
Kullback-Leibler divergence between the uniform distribu-
tion and the softmax outputs. The solution to this system
of equations is approximated using a differential relaxation
(stochastic gradient descent) and batches of images from

1doi:10.1575/1912/7341
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both Dout
train and Dtarg

train. w(t) is defined as the set of im-
age weights that maximize the associated loss at time step
t, where t denotes the batch number. This ensures that the
reweighting algorithm will assign high weight values to im-
ages from Dout

train that are difficult to classify, guaranteeing
that the resampling process selects challenging background
images that are visually very similar to the target class ex-
amples. The adversarial nature of the iterative process –
classification vs selection of difficult examples for the clas-
sifier – is critical to accurately learning the boundary be-
tween target and background classes. The hyperparameter
α controls the trade-off between learning to output confi-
dent and low-confident predictions for target class and back-
ground examples respectively. For all experiments, we set
α = 0.5 in accordance with the standard OE default [23, 29].

Phase (2): A resampling percentage γ is empirically set
and will typically reflect the degree of imbalance between
the background and target classes. Using the learned back-
ground image weights, the background class is downsam-
pled to γ percent of its original size. This is done by select-
ing each background image xi, associated with weight wi,
independently with probability pi = min

(
1,

γDout
train∑

j=1 wj
wi

)
.

Once the background image weights are obtained, fθ1 is
discarded. The downsampled background dataset and full
target training dataset are then used to train another classi-
fier, denoted as fθ2 . Testing is then performed with fθ2 . For
all experiments, we use γ = 0.05. A schematic diagram of
the entire process is shown in Fig. 1.

4.2. Experimental setup

Our experiments were designed to simulate a scenario
where a biological oceanographer is interested in tracking
the prevalence of a few relatively rare plankton groups. The
abundance of these groups can fluctuate over a very large
background class whose images are not of interest. We con-
struct subsets of the WHOI-Plankton dataset to perform our
experiments:
Target Data. The classes to be detected, or target classes,
are Ceratium, Dinobryon, Pleurosigma and Ephemera. All
the available data for these four classes is denoted asDtarg.
Both the Dinobryon and Ceratium genus are associated
with algal blooms. The Pleurosigma genus is of interest
in biomedical applications because they are believed to pro-
duce rare but important organic compounds [3, 56]. The
Ephemera class is taxonomically ambiguous, but previous
studies have identified it as difficult to classify because of its
visual similarity to other organisms in the WHOI-Plankton
dataset [55]. Images from these four classes were drawn
from each year of the WHOI-Plankton dataset but capped
at 900 examples per class. This was to prevent significant
class imbalance within the set of target classes and to pro-
vide a realistic amount of data that could be obtained rela-
tively easily from a low-budget data annotation campaign.

Figure 2. Three examples, selected by a human annotator, from
classes in Dtarg

test (left column) and Dout
novel (right column) showing

the morphological similarity between specimen of these classes

Training Data. 55% of data fromDtarg (1783 images) was
randomly selected (stratified by class) to serve as a training
set for the target classes and is referred to as Dtarg

train. The
background training dataset, denoted as Dout

train, consists of
all images from the year 2006 (totaling 134,293 images)
that do not belong to the target classes.
Validation data. 22% of data from Dtarg\Dtarg

train (311 im-
ages), referred to as Dtarg

val , was randomly selected to be
used to learn the OOD detection decision threshold T .
Testing Data. We construct three different testing datasets
to assess classification performance on target examples,
novel object classes, as well as a dataset shift scenario
where the prior probabilities of the classes in Dout

train are
subject to change. The remaining 78% of data from
Dtarg\Dtarg

train (1125 images) was selected for testing tar-
get class classification and is referred to as Dtarg

test .
There are 13 classes in the WHOI-Plankton dataset that

are not present inDtarg
train∪Dout

train. These classes were used
to form a hold-out set of novel classes to test OOD detec-
tion performance. This hold-out set is referred to as Dout

novel

(totaling 1112 images). Many of the classes in Dout
novel look

remarkably similar to the classes inDtarg
test , underscoring the

difficulty of OOD detection in plankton imagery (Fig. 2).
For OOD detection testing, we utilize datasets Dtarg

test and
Dout
novel. Since they are approximately the same size, test-

ing on the combination of these sets implicitly assumes that
the number of target class and OOD examples is similar.
This may be realistic if the novel classes are relatively rare,
but in practice the target examples are often rare compared
to non-target examples. Therefore, we test classifier perfor-
mance using several ratios of target to OOD examples using
subsamples from Dtarg

test and the full Dout
novel set.

While we wish to develop classifiers that reliably detect
novel examples, it is important that improved OOD detec-
tion does not diminish classifier performance on other im-
portant aspects of plankton recognition, such as recognition
under dataset shift. To simulate a real world deployment,
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Figure 3. Class distribution of the downsampled background sets generated from each of the downsampling strategies. a) class distribution
for the 15 least abundant classes that have at least 100 examples in the original Dout

train set. b) class distribution for the five most abundant
classes in Dout

train. Note the change in vertical axis scale between a) and b).

each day’s worth of data from the WHOI-Plankton 2014 im-
age directory is used to test each classifier under a dataset
shift scenario, where the classes are the same as Dout

train,
but the prior probabilities and appearance of the background
classes are subject to change. This testing dataset is denoted
as Dout

shift (totaling 329,835 images). For dataset shift test-
ing, each day’s worth of data from Dout

shift is combined with
a random 75% sample of Dtarg

test , ensuring that the back-
ground and target classes are subject to dataset shift.

4.3. Models and training

The dataset size ratio Dtarg
train:Dout

train is approximately
1:75. For the class with the fewest examples in Dtarg

train, de-
noted as Dtarg min

train , the ratio Dtarg min
train :Dout

train is approx-
imately 1:400. Training on data with this degree of imbal-
ance typically results in poor detection for minority class
examples [7, 49, 50]. Instead, it is common to downsample
the majority classes and upsample the minority classes to
improve results [51, 31, 47]. Using our downsampling per-
centage γ = 0.05, the ratio Dtarg min

train :γDout
train is approxi-

mately 1:20. To fully balance the classes, we upsample the
four target classes using random image rotations.

It is possible that all images of a rare background object
class are lost when using random downsampling. This in-
creases the risk that the classifier trained on the randomly
downsampled data will assign examples of that class to one
of the target classes. In the case where the images inDout

train

are assigned their true class label, Dout
train can be downsam-

pled by taking an even number of examples from each class
within Dout

train, referred to as class-balanced downsampling.
This guarantees that every class is represented in the down-
sampled dataset, therefore maximizing the feature diversity
in this new downsampled set. For this reason, we consider
the scenario where a fine-grained labeled image set is avail-
able and class-balanced downsampling is possible. In this
setting, images associated with the background meta-class
are assigned their true class label, but still trained as one
class.

All classifiers are fine-tuned ResNet-18 models [22],
pre-trained on ImageNet [46]. Three downsampling meth-
ods are used to train the classifiers and compared. Each
classifier uses the same training procedure, usingDtarg

train but
a different subset of Dout

train:
1. Resampled: Trained on a subset of images from
Dout
train of approximate size γDout

train that was selected
according to the resampling probabilities described in
Sec. 4.1.

2. Random: Trained on a subset of Dout
train of approxi-

mate size γDout
train drawn randomly. This represents

the standard downsampling approach and therefore
serves as a baseline for comparison.

3. Manual (class-balanced): Each subclass within the
background meta-class is downsampled by capping the
number of examples at 196. This upper limit was de-
termined empirically to yield a downsampled back-
ground meta-class of approximate size γDout

train. Note
that this mode of downsampling is only possible if la-
beled data is available for background examples. Us-
ing this classifier as a baseline, we seek to determine
whether BR is beneficial when labeled data is available
for background examples.

For each phase (defined in Sec. 4.1), we used image
batch sizes of 64 from both Dout

train and Dtarg
train. The weight

learning optimization is performed until the loss associated
with the background image weights (eq. 3) fails to decrease
for 10 epochs. For phase 2 training, each classifier was
trained on its respective subset of Dout

train for 50 epochs, us-
ing an initial learning rate of 0.0003 which was reduced by
a factor of 0.5 after every 10 epochs.

Predetermining the number of epochs is common for
studies involving OE [23, 28, 29, 42] since the validation
set is used to learn the decision threshold T rather than to
perform early stopping. The values for all other hyperpa-
rameters used during training are those of [29]. After train-
ing, a decision threshold is calculated for each classifier as
the largest threshold that allows for 95% recall of examples
from Dtarg

val .
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Figure 4. Samples from each target class and their respective hard negatives. Ten background classes are represented by the hard negative
examples.

Figure 5. Daily average background image weight value associated with each of the hard background classes presented in the order: a)
Dictyocha; b) detritus; c) Skeletonema; d) pennate. The bars represent the standard deviation of the weight values. Note that the vertical
axis scale in a) is greater than that of b)-d).

4.4. Performance metrics

We use two metrics to assess model performance:

1. F1 score is a metric for binary classification, defined
as the harmonic mean of the precision and recall for a
given class. The F1 score is calculated for each class,
by treating all other classes as a single class. The F1
scores are then uniformly averaged over each class.

2. Accuracy (overall precision) is the fraction of cor-
rectly classified images from the four target classes and
background class.

Using these two metrics, we benchmark each classifier on
an OOD detection task (Sec. 5.2) and dataset shift scenario
(Sec. 5.3).

4.5. Alternative target classes

To test the generalization of BR, we repeated all ex-
periments for five different sets of four target classes.
These classes were randomly selected but were restricted
to classes with 600-10,000 examples. This restriction was
added to preserve the Dtarg

train:Dout
train ratio across all sets of

target classes. For all target classes considered, the number
of examples per class was capped at 900.

5. Results

5.1. Downsampling analysis

Based on the class frequency distribution, BR draws dis-
proportionately more examples from the minority classes
compared to random downsampling (Fig. 3). While man-
ual downsampling also samples disproportionately from the
minority classes, it creates a class distribution that is radi-
cally different than the natural population distribution.

To visualize difficult OOD samples, we drew examples
from the background class that were classified into one of
the target labels with high confidence (Fig. 4). These “hard
negatives” reveal that the classifier confused background
examples from more than just a select few classes. Four
background classes are represented in these hard negatives
more than others: Dictyocha, detritus, Skeletonema, and
pennate. We refer to these as “hard background classes”.

The daily average image weight values associated with
the hard background classes vary substantially between
classes and over time (Fig. 5). This information allows
us to determine whether examples within the hard classes
were consistently ascribed higher weight values or if hard
negatives are outlier examples for those classes.
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Figure 6. OOD testing results. Left-to-right: Accuracy and F1 score obtained from an average of model runs using Dtarg
test :Dout

novel ratios of
{1: 400, 1: 50, 1: 10, 1: 1}. Error bars reflect standard deviation.

5.2. OOD testing

Testing is done using k-fold cross-validation where the
number of folds reflects the desired imbalance ratio. We
consider Dtarg

test :Dout
novel ratios of {1: 400, 1: 50, 1: 10, 1: 1}

where classifier performance is averaged over each fold
(Fig. 6). The ratios considered here are designed to re-
flect sampling environments that a plankton ecologist may
encounter during deployment. The 1:400 ratio represents
the most extreme case of population flux, where the de-
ployment environment consists overwhelmingly of novel
classes. This is akin to taking a classifier trained on data
from the North Atlantic and using it to detect the same four
classes in the Tasman Sea. The 1:10 and 1:50 ratios rep-
resent a more amenable scenario, where the model is de-
ployed in a similar environment where target class organ-
isms are not as rare. The 1:1 ratio produces a balanced test-
ing set, and assumes an even number of novel and target
class examples in the deployment environment.

5.3. Dataset shift testing

When background class population statistics remain
roughly constant throughout deployment, the training
dataset generated by BR may produce a classifier that
is biased against identifying the more common classes.
This is because training is disproportionately focused on
rare/abnormal examples under the BR procedure (Fig. 3).
To assess model performance under a variety of deployment
scenarios, we test and average the performance of each clas-
sifier over each day’s worth of data inDout

shift combined with
randomly drawn target class examples (Table 1). This as-
sessment measures the classifiers ability to classify under
changes in prior distributions and dataset shift. No novel
classes were used in this testing scenario.

5.4. Alternative target class testing

For the different sets of target classes, the relative
performance among the classifiers was similar to the results
shown for the target classes considered in Sec. 4.2.
OOD testing. BR brought the largest performance gains

Method Accuracy F1 Score
Resampled 88 ± 1.4 94.1 ± .23
Random 85 ± 1.3 93.9 ± .12
Manual 79.7 ± 2.8 79.2 ± 1.5

Table 1. Dataset shift testing results (in % including ± Std Dev.).

when the target and OOD classes were visually very
similar. All OOD detection results are reported for the 1:1
testing ratio. For accuracy, the Resampled classifier on av-
erage outperformed the Random and Manual classifiers by
5.1% and 0.2% respectively. For F1 score, the Resampled
classifier on average outperformed Random and Manual
classifiers by 4.7% and 0.0% respectively.
Dataset shift testing. For accuracy, the Resampled clas-
sifier on average outperformed the Random and Manual
classifiers by 0.9% and 9.8% respectively. For F1 score, the
Resampled classifier on average outperformed the Random
and Manual classifiers by 0.1% and 7.1%.

6. Discussion
We have shown that when downsampling is required,

OOD detection performance can be improved by selecting
an optimal subset of background training images. In each
testing scenario, BR slightly outperformed its nearest com-
petitor. However, BR was the only downsampling method
to perform well in both testing scenarios, whereas the per-
formance of the other two downsampling methods varied
significantly in each regime. This was observed for the al-
ternative target classes as well. This finding underscores the
efficacy of BR since an automated plankton classifier de-
ployed on real-time data is almost guaranteed to experience
both novel classes and dataset shift.

For some hard background classes, the distribution of
image weights appears to have a seasonal dependence (Fig.
5). The image weights associated with the detritus class
(Fig. 5b) are comparatively low, suggesting that only occa-
sional instances of detritus will possess physical attributes
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that pose a challenge to the classifier. This makes sense con-
sidering the large range of shapes and textures that objects
described as “detritus” can have. This differs from classes
like Dictyocha, Skeletonema, and pennate whose images
are assigned comparatively larger weight values. However,
these three classes show seasonal, and even daily, with-in
class variability as indicated by the standard deviation of the
image weights (Fig. 5d). This variability suggests that an
optimal background training set for OOD detection has to
be curated at the example level - randomly sampling from
harder background classes may not produce adequate dis-
crimination between the background and target classes. BR
optimizes the downsampling strategy by deliberately select-
ing hard negatives that are very close to the target classes
(Fig. 4).

The F1 score from each test set suggests that the 1:10
and 1:50 imbalance ratio produces greater performance dif-
ferences (Fig. 6a). Despite the relatively higher accuracy
obtained by the Resampled and Manual classifiers, the tar-
get classes become so polluted by false positives that abso-
lute and relative performance – as measured by F1 score –
degrades significantly with increasing imbalance ratio.

Overall, BR provides competitive or even slightly better
OOD detection performance than the class-balanced down-
sampling used to train the Manual classifiers (Fig. 6).
The improved performance can likely be attributed to the
fact that class-balanced downsampling, while drawing from
each class disproportionality, still performs random down-
sampling within each class. BR, in contrast, selects dis-
proportionately from each class, while simultaneously se-
lect challenging examples from within each class. This may
be particularly valuable for taxonomic groups where organ-
isms can express different phenotypes as they go through
different life stages.

While the Manual classifier yields satisfactory detection
on novel classes (Fig. 6), this classifier significantly un-
derperforms on natural population changes compared to the
other classifiers (Table 1). This is likely because class-
balanced downsampling produces a background class dis-
tribution that is significantly different from the background
class distribution encountered during deployment. The clas-
sifiers trained on randomly drawn subsets perform com-
paratively well in the dataset shift scenario, likely because
the background class distribution generally resembles the
class priors encountered during testing. BR will typically
draw relatively more examples from the minority classes
and fewer examples from the most abundant classes as com-
pared to the Random training set (Fig. 3). But BR’s dis-
proportionate subsampling is not as extreme as the class-
balanced downsampling. The fact that BR preserves a sig-
nificant amount of information regarding the class priors is
perhaps why it performs better than class-balanced down-
sampling for natural population distributions

7. Comments and recommendations

In order to adequately simulate the deployment of a clas-
sifier, our testing procedure involved the use of data from
training and novel classes as well as shifting prior distribu-
tions. We believe this to be the most rigorous form of testing
and hope that this study can serve as a framework for future
plankton classifier benchmarking. The high visual similar-
ity between the target and OOD examples makes this a chal-
lenging detection problem. Most of the methods introduced
in the OOD literature, including BR, test using OOD exam-
ples that come from an entirely separate domain. This study
is one of the first studies to benchmark the performance of
a contemporary OOD detection method on in-domain OOD
data. It is our hope that these results will facilitate the devel-
opment of new tools for HAB species monitoring and early
detection systems. The reduced false positive rates demon-
strated in our experiments make the output of the algorithm
more amenable to quality control for verification.

The BR procedure can be used to improve classification
systems that incorporate an ensemble of “one-versus-all”,
which are popular within the plankton ecology community
and have been used for HAB species monitoring [8, 43].
This could be done by training each one-versus-all classi-
fier using a subset of background images that is optimized
to produce the best discrimination for the class that each
classifier is trying to detect.

We note that the utility of the background weight learn-
ing mechanism is not limited to HNM approaches. It can
in and of itself be used to communicate potential failure
modes to a human supervisor. For example, by examin-
ing the background images that were assigned large weight
values, a human user could learn prior to deployment which
non-target classes are likely to produce false positives. With
this knowledge, they may decide to train the model to detect
these tough classes as well.

We have shown that obtaining class labels for back-
ground objects for the purpose of class-balanced downsam-
pling does not improve OOD detection performance. There-
fore, we conclude that for any future plankton classifica-
tion campaigns similar to this experimental setup, all human
annotation efforts should be focused on the target classes.
Instead of random or class-balanced downsampling, auto-
matic procedures such as BR should be used to optimally
resample the ‘other’ category.
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land, and Jean-Michel Robert. Important sedimentary ses-
terterpenoids from the diatom Pleurosigma intermedium.
Chemical Communications, (6):501–502, 2000.

[4] Mark Benfield, Philippe Grosjean, Phil Culverhouse, Xabier
Irigolen, Michael Sieracki, Angel Lopez-Urrutia, Hans Dam,
Qiao Hu, Cabell Davis, Allen Hanson, Cynthia Pilskaln, Ed-
ward Riseman, Howard Schulz, Paul Utgoff, and Gabriel
Gorsky. RAPID: Research on Automated Plankton Identi-
fication. Oceanography, 20(2):172–187, June 2007.

[5] Tristan Biard, Lars Stemmann, Marc Picheral, Nicolas
Mayot, Pieter Vandromme, Helena Hauss, Gabriel Gorsky,
Lionel Guidi, Rainer Kiko, and Fabrice Not. In situ imag-
ing reveals the biomass of giant protists in the global ocean.
Nature, 532(7600):504–507, Apr. 2016. Number: 7600 Pub-
lisher: Nature Publishing Group.

[6] Erik Bochinski, Ghassen Bacha, Volker Eiselein, Tim J. W.
Walles, Jens C. Nejstgaard, and Thomas Sikora. Deep Active
Learning for In Situ Plankton Classification. In Zhaoxiang
Zhang, David Suter, Yingli Tian, Alexandra Branzan Albu,
Nicolas Sidère, and Hugo Jair Escalante, editors, Pattern
Recognition and Information Forensics, Lecture Notes in
Computer Science, pages 5–15, Cham, 2019. Springer In-
ternational Publishing.

[7] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A
systematic study of the class imbalance problem in convolu-
tional neural networks. Neural Networks, 106:249–259, Oct.
2018.

[8] Lisa Campbell, Darren W. Henrichs, Robert J. Olson, and
Heidi M. Sosik. Continuous automated imaging-in-flow cy-
tometry for detection and early warning of Karenia brevis
blooms in the Gulf of Mexico. Environmental Science and
Pollution Research, 20(10):6896–6902, Oct. 2013.

[9] R W Campbell, P L Roberts, and J Jaffe. The Prince William
Sound Plankton Camera: a profiling in situ observatory of
plankton and particulates. ICES Journal of Marine Science,
77(4):1440–1455, July 2020.

[10] Svenja Christiansen, Henk-Jan Hoving, Florian Schütte, He-
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