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Abstract

Underwater visual perception requires being able to deal
with bad and rapidly varying illumination and with reduced
visibility due to water turbidity. The verification of such al-
gorithms is crucial for safe and efficient underwater explo-
ration and intervention operations. Ground truth data play
an important role in evaluating vision algorithms. However,
obtaining ground truth from real underwater environments
is in general very hard, if possible at all.

In a synthetic underwater 3D environment, however,
(nearly) all parameters are known and controllable, and
ground truth data can be absolutely accurate in terms of
geometry. In this paper, we present the VAROS environ-
ment, our approach to generating highly realistic under-
water video and auxiliary sensor data with precise ground
truth, built around the Blender modeling and rendering
environment. VAROS allows for physically realistic motion
of the simulated underwater (UW) vehicle including mov-
ing illumination. Pose sequences are created by first defin-
ing waypoints for the simulated underwater vehicle which
are expanded into a smooth vehicle course sampled at IMU
data rate (200 Hz). This expansion uses a vehicle dynamics
model and a discrete-time controller algorithm that simu-
lates the sequential following of the waypoints.

The scenes are rendered using the raytracing method,
which generates realistic images, integrating direct light,
and indirect volumetric scattering. The VAROS dataset
version 1 provides images, inertial measurement unit (IMU)
and depth gauge data, as well as ground truth poses, depth
images and surface normal images.

1. Introduction
In the automotive community dealing with driver assis-

tance and self-driving cars, the KITTI [13] data set initiated
a significant boost to systematically investigate and char-
acterize various challenges in robotic environment percep-

tion. While KITTI is a family of datasets obtained in the real
world, the CARLA [10] simulated autonomous driving en-
vironments provided an important completion as it allows,
beyond testing perception systems, also to test planning and
control algorithms (’AI agents’) that steer simulated cars.
CARLA is based on a game engine and computer graphics,
and can provide provably precise ground truth.

By generating visual and sensor data using simulations
and high-end computer graphics methods, it is possible to
achieve realistic imagery and have access to completely ac-
curate information about vehicle poses and simulated sen-
sor measurements for every timestep. As the 3D geometry
of the scene is known, this can be used to generate correct
point clouds and depth maps in all environments that can
be simulated. The COnGRATS [4] dataset is one synthetic
traffic dataset including such information coupled with re-
alistic path-traced imagery.

Figure 1. The image types contained in the initial version of the
VAROS underwater dataset: underwater images and correspond-
ing images with uniform lighting and no water, as well as pixel-
accurate surface normal and depth maps.

In this paper, we present an approach that allows the flex-
ible creation of highly realistic synthetic image sequences,
featuring visually degraded underwater scenes with corre-
sponding ground truth data (cf. figure 1). For the genera-
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tion of image and auxiliary sensor data, we use the public
domain modeling and rendering engine Blender [6] ver-
sion 2.93, extended by a set of own software. In contrary
to the game engine Unity, Blender allows to control
more imaging parameters leading to more realistic image
sequences.

Combining basic pose sequencing tools in Blender
with a custom build control-system allows for detailed con-
trol of the vehicle course including moving illumination.
Image sequences can thus be created both from an in-
vehicle perspective as well as from a static position looking
onto the underwater scenery, allowing high configuration
flexibility applicable to a wide range of applications.

The scenes are rendered using the raytracing method,
which is capable of producing images with accurate illu-
mination by integrating direct light, and indirect volumetric
scattering. Depth images, surface normal vectors for each
pixel, non-uniformly and uniformly illuminated RGB im-
ages, sensor measurements from an IMU, and depth sen-
sor were generated as noise-free data, such that they can be
augmented with noise to fit a wide range of sensor-models
depending on the users application.

2. Related Work

Datasets such as KITTI [13] and LiU [21] provide a
large amount of image- and sensor data for traffic scenar-
ios. Likewise, for micro aerial vehicles EuRoC [7] provides
images, sensor data and accurate ground truth position mea-
surements from a Leica multistation land surveying tool.

Above water datasets can utilize a global positioning sys-
tem (GPS) for large-scale traffic scenarios or multistations
for land surveying to gain a high level of accuracy, but these
possibilities are not present in most underwater scenarios.
Alternative methods to obtain a measure of the ground truth
pose data varies. AQUALOC [12] uses an offline and highly
accurate structure from motion method to obtain an estimate
of the camera poses and the 3D environment. A different
approach [22] is to place markers in the underwater envi-
ronment, where the position of each marker relative to the
other markers is measured.

The availability of underwater robotic simulation soft-
ware in the research field is scarce [23, 26]. The availability
of underwater robotic simulation software in the research
field is limited, where the largest software packages are
[23, 26]. In general, these software packages has varying
functionalities, such as support for fluid dynamic simula-
tion, different vehicle models and motion controllers. They
have in common that simulation of realistic underwater im-
agery is not the main priority, which results in relatively
low-quality underwater images. With the increasing use of
computer vision, the demand for realistic underwater imag-
ing is increasing.

Physics based underwater image generation: Some un-
derwater imaging simulators use physics based models to
simulate how photons travel through water. However, the
analytic method, namely the radiative transfer equation
[24], is difficult to solve. Therefore, approximations are
used. The two most frequently used approximations are
the Fog model [8] for shallow sea water and the Jaffe-
McGlamery [17, 27, 29] model for deep-sea water. Gener-
ally these methods require knowledge of the inherent optical
properties of the water that is simulated, and by extension
different optical approximation models for deep and shal-
low water. The main drawback to this approach is that the
inherent optical properties [25] of water, like the absorp-
tion [1] and scattering coefficients [15] are wavelength de-
pendent. This information is difficult to obtain, and highly
depend on the type of water [18].

Existing image simulators: As discussed, the existing
simulation software such as the UUV Simulator [23], which
builds upon the Gazebo [20] simulator, and UWSim [26]
provides a highly interactive simulation environment, but
they do not provide the physically realistic imagery we re-
quire. Other methods, as explored by [11], involves using
an image mosaic from a real underwater mission and then
simulating different visual conditions. This method has two
main drawbacks. First, the underwater conditions at the
time of image acquisition for the image mosaic will effect
the quality of the virtual seafloor. Second, the seafloor is
modeled as a flat scene which does not contain any other
geometry information that influences the light scattering
which comes from the simulated vehicle. Looking back at
the automotive community, the COnGRATS [4, 5] dataset
generates high quality physically realistic imagery using
path-traced 3D computer graphics with dynamic vehicle
lights and varying weather conditions.

Due to the lack of proper underwater imagery with
highly accurate ground truth, we have created an underwa-
ter dataset with physically realistic imagery in a detailed
underwater environment. We make use of the information
the image generation process generates in order to provide a
significant amount of ground truth data which exceeds what
is commonly available through underwater datasets created
from real-world scenarios.

3. Approach
Our approach to generating highly realistic underwater

video and auxiliary sensor data with precise ground truth
consists of three main building blocks: First, we need a re-
alistic computer graphics model of a large-scale underwater
environment in which a simulated underwater robot can be
steered (cf. sec. 3.1). The second building block com-
prises the generation of image and auxiliary sensor data us-
ing Blender. This task is significantly more complex for
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an underwater scenario compared to regular computer vi-
sion scenarios. Particular attention has to be paid to the
realistic modeling of the dispersive medium, that is: sea-
water with a significant amount of backscattering (cf. sec.
3.2). Third, the generation of physically realistic vehicle
and camera pose sequences is done by defining waypoints
for the simulated vehicle in the given underwater environ-
ment and subsequently following these waypoints using a
dynamic vehicle model and a controller algorithm (cf. sec.
3.3). We describe these steps for environment, sensor data,
and pose sequence generation in more detail in the subse-
quent sections.

3.1. Underwater Environment

Creating realistic synthetic video and simulated sensor
data obviously requires a realistic 3D scene model. For
the VAROS simulation, an underwater landscape was cre-
ated by transferring a photogrammetric model of a real
(above water) landscape into the underwater domain and re-
texturing it with fine grained sand and rock textures. In or-
der to make the environment more complex, we have added
3D models of man-made objects. The resulting environ-
ment contains both plain areas with a simple seafloor as well
as complex areas populated with many man-made objects.

More details of the underwater scene creation are pro-
vided in the next sections.

3.1.1 Underwater 3D Landscape

In order to reduce the artistic labor required and maximize
realism, we used a scene model of the Vasquez Rocks by
Austin Beaulier [3] which is available under the Creative
Commons Attribution license [9]. The model has been cre-
ated using photogrammetric methods; we used it as an un-
derwater model by modifying some of the geometric at-
tributes and replacing some surface textures (cf. figure 2).

Seafloor model pre-processing: The original pho-
togrammetric mesh model consists of many separate 3D
meshes. We have joined them into one object and merged
nearby vertices. As the model still contained some holes
and non-connected vertices, it was ”shrinkwrapped” with a
new watertight mesh, which had a higher resolution than the
original mesh. This was necessary as we need higher resolu-
tion representations for close-up views. We used Zbrush1

to project a new mesh onto the photogrammetry model.
First, the new mesh was projected at a low resolution, then
the resolution was increased and projected again. This was
repeated until the new mesh contained 16.6 million vertices,
and then it was decimated2 to contain 250.000 vertices. This
decimated mesh was then imported back into Blender.

1Zbrush is a digital sculpting software from http://pixologic.com/
2Decimation triangulates and reduces the amount of vertices present in

a mesh while preserving details.

Figure 2. Comparison of the original Vasquez Rocks 3D model by
Austin Beaulier [3] (top) and the modified version used in the un-
derwater environment (bottom). These rendering results use uni-
form ambient illumination and do not show any seawater effects.

Adaptive texturing using surface normal vectors: We
applied some modification to the texturing of the mesh
model in order to let it correspond more realistically to
real underwater scenes. Horizontal flat areas of the model
should be covered in sand, while vertical areas should ex-
pose rock. Using Blender’s material node editor, we cre-
ated a highly customized physically based rendering (PBR)
material for the scene seafloor using the ”Principled BSDF”
node. The bidirectional scattering distribution function
(BSDF) determines the direction where the light bounces
upon hitting the material in the rendering process.

By accessing the surface normal vectors of an object, a
mask is created which isolates horizontal areas where the
surface normal is pointing upwards. A ’procedural blend-
ing mask’ is used to apply a sand texture for horizontal parts
of the model, and a rock texture everywhere else. Tiling a
4096 × 4096 texture 50 times to cover the model results in
a sufficient resolution when viewed from a close distance.
Ensuring that the same pattern is not repeated remains a
pending challenge. The procedural blending mask removes
the need to manually adapt the texture to the environment
geometry and reduces the apparent repetition of the tiled
textures. Figure 2 shows the original and modified environ-
ments.

3.1.2 Additional Man-made Objects

Scene content diversity and the pre-conditions for reality-
like mission simulation were achieved by populating the
scene with man-made objects (’assets’ in computer model-
ing language) modeled by us. These objects include straight
and 90-degree corner pipes, pipe supports, bolts and nuts
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(cf. figure 2). When using assets in the scene, it must be en-
sured that their geometry is similar to that of the real world
equivalents. Sharp corners in the models have been beveled
or rounded, in order to reflect light from such an edge. This
is important as the perfectly sharp 90-degree corners often
found on computer-aided design (CAD) models will not re-
flect light, which decreases the realism of the image and
may even affect the performance of computer vision algo-
rithms. Furthermore, we created procedural dirt and rust
materials in Blender for these assets, allowing for high-
resolution textures at a low computational cost. By using
the objects location as a pseudo-random seed in material
generation, each dirt pattern is unique.

The creation of the water volume along with its physical
properties utilized in the generation of images and sensor
data are described in the following sections.

3.2. Sensor Data Generation

In this section we describe the generation of image and
auxiliary sensor data using Blender.

3.2.1 Image Data

In the VAROS dataset, images were generated using the
path-tracing renderer Cycles in Blender [6], which uses
a Monte-Carlo sampling process for each pixel. The higher
the number of samples is, the more realistic is the resulting
distribution of light in the scene. For our underwater images
(which we call image type A), we empirically determined
375 samples per pixel to be sufficient. Subsequently, the
”denoiser” node in the ”compositor” of Blender, which
is used for render post processing and image output, is ap-
plied. In order to avoid too expensive rendering times we
use Open Image Denoise [16] instead of dramatically in-
creasing the number of ray samplings. If like in usual prac-
tice, texture and geometry information is used in the de-
noiser as well, then this information will imprint onto areas
obscured by the scattering volume, which introduces visual
artifacts in the image. Therefore, we use only the noisy im-
age in that step.

For the full-transparency versions of the underwater im-
age with uniform lighting (image type B), as well as the sur-
face normal vector (image type C) and depth images (image
type D), 20 samples per pixel are used to gain a sufficient
level of quality with moderate computational effort. Here,
the NLM3 denoiser is used, which works on any CPU or
AMD/Nvidia GPU.

Before we describe in the subsequent sections, the gen-
eration of these different image types, we elaborate on the
image modeling, considering the constraints of the Blender
software which do not allow a perfect coincidence with de-
tailed physical models.

3NLM: Cycle’s native ”non-local means” denoiser.

Table 1. Parameters used to create the water scattering volume in
Blender. Color values are represented in RGB, ”A” refers to the
alpha channel indicating a measure for transparency.

Parameter Value
Volume density 0.125
Volume color (0.014, 0.146, 0.345, 1.00) RGBA
Absorption color (0.000, 0.394, 1.00, 1.00) RGBA
Anisotropy 0.8

Water volume simulation/creation: Light transmission
through a water volume is determined by physical as well as
chemical properties such as disolved matter, meaning float-
ing particles of different material, shape and size, which in-
fluences the absorption of the dissolved matter in general.
The water in the simulation environment is created by us-
ing a scene-wide volume which both scatters and absorbs
light. In Blender this is created using a ”principled vol-
ume” BSDF node which approximates the behavior of light
in a scattering medium to generate physically realistic re-
sults. The parameters used are the volume density, color,
anisotropy and absorption color. The volume density con-
trols the attenuation of light in the volume. The anisotropy
value g ∈ [−1, 1] determines the amount of forward light
scattering in the volume, following the Henyey-Greenstein
(HG) phase function[14]. The HG model is known to be
only an approximation, but it is the only model which is
currently available in the renderer Cycles.

Volume color determines the direct color (= the color of
the backscattering particles, becoming more apparent the
more dense the volume is) of the volume, where the color
intensity is dependent on the volume density. The absorp-
tion color is used to emulate the effect where the water
molecules and suspended particles absorb different wave-
lengths. The color change caused by absorption increases
in intensity with the distance light travels in the scattering
medium. Respective example settings for the different pa-
rameters can be found in table 1. Figure 3 shows a real
reference image and the simulated underwater image.

Vehicle lights: Simulated spotlights are placed 0.1m be-
hind the camera, and 0.15m to each side along the vehi-
cle’s x-axis. The total angle of the light cone is 65◦, with a
soft edge blend to create a lower light intensity further away
from the center of the spotlight. Again, this is only a coarse
approximation to the light distribution of a real spot light,
due to the limitations of the rendering system.

Camera intrinsics and parameters: The camera intrin-
sic and lens parameters used for the camera model in the
simulation are listed in table 2. In Blender, the lens type
is set to ”perspective”, and the aperture is used to generate
a depth-of-field effect.
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Table 2. Camera and lens parameters used in the simulation camera
model, inspired by the parameters from a real camera and lens
setup.

Parameter Value
Render resolution [pixels] 1280× 720
Sensor width [mm] 4.416
Sensor height [mm] 2.484
Shutter type Global shutter
Focal length [mm] 3.4
Aperture 1.7

Exposure correction: Exposure correction (EC) is added
in the post-processing step outside of Blender due to
auto-exposure not being natively supported in Blender.
By exporting the underwater images as lossless 16-bit
OpenEXR files, no information is lost when EC is applied.
It is first after EC that the images are exported as PNG files.
Figure 3 shows an exposure corrected image.

Figure 3. Top: Reference image from a real underwater environ-
ment. Bottom: Exposure corrected image from the simulation en-
vironment with water properties designed to closely match the vi-
sual properties of the reference image.

Image type A - Underwater monocular RGB images:
These images contain a depth-of-field effect, caused by the
aperture listed in table 2. This results in very close or very
distant objects in the scene being out of focus. The only
illumination present is provided by the spotlights on the un-
derwater vehicle. Thus the illumination is strongly varying

with the motion of the vehicle. Lastly the adaptive EC al-
gorithm is applied to these images.

Image type B - Uniformly illuminated monocular RGB
images: These images are rendered with uniform ambi-
ent lighting and disabled depth-of-field effect. They serve
as reference RGB images with constant lighting, as many
computer vision algorithms assume constant lighting. The
images are post-processed with a constant EC as the illumi-
nation is constant, and they are exported as 8bit PNG files.
These images are included as many computer vision algo-
rithms assume static lighting and can be used for determin-
ing the effect of the dynamic lighting present in the main
underwater image sequence.

Image type C - Surface normal images: Normal images
are images where the world coordinate frame surface nor-
mal, nw, for the surface visible in each pixel is stored in
the RGB channels of the image, using 8bits per channel.
To ensure correct export of the normal vectors, the color
management in Blender is disabled by setting the view
transform to ”raw” and the sequencer to ”linear” as listed
in table 3. Blender uses the OpenGL [28] normal format,
hence nw = [nw

x nw
y nw

z ]
⊤, with {nw

x , n
w
y , n

w
z } ∈ [−1, 1].

The three components of the normal vectors are mapped
from [−1, 1] to the three RGB channels in [0, 255]. To en-
sure smooth surface normals, automatic normal smoothing
was applied to all edges where the angle between each sur-
face normal of the mesh faces is equal to or lower than 30
degrees.

Image type D - Depth images: Depth images store the
distance from the camera to the surface element that cor-
responds to each pixel. Following the standard set by
the KITTI dataset [13], the data is represented as 16-
bit grayscale PNG images. The color management in
Blender is disabled to ensure that only the raw data is ex-
ported. The export and color management settings are listed
in table 3. Using the KITTI standard, the distance to a given
pixel is mapped to a value in [0, 216 − 1] ⇔ [0, 65535]. Let
the start and end distance be denoted as dend and dstart,
then the resolution is expressed as in equation (1).

r =
dend − dstart

2b − 1
(1)

3.2.2 Inertial Measurement Unit Data

The IMU data is generated by using the states from the ve-
hicle, namely position and orientation, as well as the tem-
poral first and second order derivatives of these states. The
data are transformed from frame w to the reference frame r
and vehicle frame v depending on the requirements. Using
equation (2) from [2], we calculate the translational accel-
eration as

vr and angular velocity ωs
vr. These measurements
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represent the relative motion from r to v, expressed in the
sensor frame s.[
as
vr

ωs
vr

]
=

[
Rsv(Rvr(ẗrvr − gr) + ([ωv

vr]×[ωv
vr]× + [ω̇v

vr]×)tvsv)
Rsvωv

vr

]
(2)

Rsv is the rotation matrix from v to s, and Rvr is from r to
v. ẗrvr is the acceleration from r to v expressed in frame r,
and tvsv is the position offset of the IMU with respect to the
vehicle. ωv

vr is the angular velocity from r to v expressed in
v, and ω̇v

vr is the corresponding angular acceleration. Cross
products with a leading vector w are expressed in matrix
form as the skew-symmetric matrix parametrization is de-
noted as [ωv

vr]×.
Frame v is chosen to coincide with s, such that Rsv =

I3×3 and tvsv = 0.

3.2.3 Depth Gauge Data

Most underwater vehicles are equipped with a depth gauge
that measures water pressure and computes the depth. We
chose to position our underwater environment at a depth of
80m. This depth is represented as a 64bit float and is gener-
ated at 200Hz.

3.3. Pose Sequence Generation

The generation of physically realistic pose sequences is
the third major building block of the VAROS system. To
generate these pose sequences, a user-defined series of way-
points containing the key poses of the vehicle poses is used.
A weighted reference based using vehicles current pose,
current and next waypoint is then used as a reference to the
vehicle control system (VCS).

3.3.1 Way Point Generation

The waypoints are generated in the interactive Blender
environment; Blender allows for placing any object, here
our vehicle with an attached camera, at a desired posi-
tion and orientation in the environment of the keyframe
animation system.

3.3.2 Motion Model

The motion of the vehicle is generated and represented as
a sequence of poses (location and orientation). In order to
be able to generate simulated IMU measurements, the sam-
pling rate must be significantly higher than the video sam-
pling rate. The poses are generated by virtually steering the
simulated underwater vehicle to follow the waypoints se-
quentially. For maximum realism of the resulting motion,
a handover scheme has been developed that softly dissolves
between waypoints such that waypoint N+1 is already con-
sidered before being done with waypoint N ; this leads to
the result that the waypoints are not exactly reached, but the

simulated vehicle course only passes by closely, yielding a
smooth motion without jerk and without discontinuities in
the acceleration. This point is often disregarded in motion
simulators (and also in early animated movies). When a
waypoint has a strict pose requirement, two waypoints are
placed close together which constrains the motion.

For the vehicle, we use a dynamic model that assumes
the vehicle to be a spherical body with mass M (cf. figure 4)
which is moving as the result of translational thrusts Fu,i

and rotational moments τi, where i refers to the x, y or z-
axis.

In our simplified model, the rotation and translation are
not coupled, but since the way-points contain both a loca-
tion as well as a desired orientation, the vehicle is steered
in the desired way. Inertial and drag forces, both of them
translational and rotational, act on the vehicle and the actual
translational and rotational motion results from the interac-
tion of thrust forces and moments with inertia and drag. The
resulting motion is realistic despite the very simple model.

M

y

x

zv

v

v

mass

Figure 4. Vehicle model used in the simulations, where τx/τy/τz
and ux/uy/uz are the torques and input forces around each of the
x−, y− and z-axes.

3.3.3 Vehicle Control System

The vehicle is controlled by a linear quadratic regulator
(LQR) [19]. This allows for easy tuning of the regulator
parameters which control the inputs for translation and ro-
tation to get the desired motion characteristics. Using an
LQR allows us to control the cost of the error in each state
or input directly through weighting matrices, which gives
us more control in fine tuning the vehicles behavior.

In a real system, the LQR would control the voltage to a
motor. A voltage change influences the thrust by changing
the revolutions per minute (RPM) of the motor with a very
small time delay. This effect is modeled through the use of a
fast second-order system placed in between the LQR output
and the acceleration input for the vehicle model. In a real
UW drive system, the thrusters are themselves dynamical
systems with inertial moments; for that reason, a second-
order low-pass was added to the dynamic model.
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3.4. Simulation Limitations

3.4.1 Rendering

The raytracing renderer Cycles has several limitations. The
camera and light models do not account for refraction ef-
fects between air in the internal casing, glass and the water.
Furthermore, Cycles uses only the HG phase function (see
section 3.2.1) to calculate light scattering in the water vol-
ume, with no separate functions for forward and backward
scattering, limiting the customizability of the turbidity in
the water volume. In addition, small-angle forward scatter-
ing resulting in image blur is not modeled; this could be
approximated by applying image blur in post processing.

3.4.2 Vehicle model

The used vehicle model is relatively simple and assumes a
spherical vehicle body with independent translation and ro-
tation. However, since the way-points consist of locations
and vehicle orientations, this limitation is of minor impor-
tance. So far, the control loop operates on the assumption
that there are no random disturbances on the vehicle mo-
tion, thus external forces such (e.g. currents) are currently
not considered. Both these limitations can be addressed in
further versions.

4. The VAROS Dataset: Structure and Usage
The VAROS dataset utilizes the described underwa-

ter simulation environment complete with both simple and
complex 3D models with physically realistic textures, the
possibility to place cameras and lights where needed, and
most importantly, physically realistic path-traced images.

In the following we describe the main structure elements
of the VAROS dataset: data structure, data formats, and
naming conventions.

4.1. Data Format

Pose data for the vehicle pose for every sensor sample
(camera, IMU, depth) is provided in the world frame w.
Each sensor type comes with a file with ground truth pose
information in the corresponding sensor folder. If the
stream file format, discussed later in this section, is used,
the ground truth information will also be integrated.

RGB images: Lossless RGB images are exported from
the simulation as 16-bit OpenEXR files. After post-
processing, the images are exported as lossless 8bit standard
RGB PNG files for the benchmark sequence, corresponding
to the standards used by KITTI [13], and LiU [21] datasets.
These images can easily converted to monochromatic 8bit
PNG images that are used by datasets such as the underwa-
ter dataset AQUALOC [12] and the aerial dataset EuRoC
[7]. The color management settings for the export of RGB

images are shown in table 3, and information for the RGB
images included in the dataset is shown in table 4.

Table 3. The different filetypes exported from Blender prior to
post-processing.

Image type Filetype Channel depth View transform Sequencer
RGB OpenEXR 16bit Not used Not used
Normal PNG 8bit Raw Linear
Depth PNG 16bit Raw Linear

Table 4. The images contained in VAROS dataset version 1 and
their corresponding filetypes, channel bit depth and number of
channels per image.

Image type Filetype Channel depth Num. channels
RGB, underwater PNG 8bit 3, RGB
RGB, uniform lighting PNG 8bit 3, RGB
Normal PNG 8bit 3, RGB
Depth PNG 16bit 1, Grayscale

Surface normal vector images: Surface normal vectors
are stored in PNG files with 8bit channel depth (already dis-
cussed in section 3.2.1).

Depth images: The depth images are given as 16bit PNG
files. Due to the limited visibility in the underwater scene
we set dend = 25m, resulting in a resolution of 0.381mm
from equation (1).

Pose data: The pose data consists of the vehicle states ob-
tained by driving the vehicle dynamic model with the con-
trol output of the VCS. The data can be transformed into the
reference frame r if needed. The poses of sensors or cam-
eras attached to the vehicle can be derived from these mea-
surements using the transformation matrices for each sen-
sor. The position along the x-axis of the vehicle frame v in
the world frame w is given as swx,vw. Likewise, θwx,vw is the
x-component of the vehicles orientation in the world frame
w expressed in w. This data is stored in a comma separated
value (CSV) file, where each row contains 7 columns:

timestamp[ns], swx,vw, s
w
y,vw, s

w
z,vw,

θwx,vw, θ
w
y,vw, θ

w
z,vw.

IMU measurements: IMU measurements are computed
at the overall systems clock rate of 200Hz. This includes
acceleration and angular velocity of the vehicle frame v rel-
ative to the reference frame r expressed in the sensor frame
s, as

vr and ωs
vr respectively. These vectors consists of the

following components:

as
vr = [asx,vr, a

s
y,vr, a

s
z,vr]

⊤,

ωs
vr = [ωs

x,vr, ω
s
y,vr, ω

s
z,vr]

⊤.

Every IMU measurement is then exported as one line in the
CSV file such that each row reads:

t, asx,vr, a
s
y,vr, a

s
z,vr, ω

s
x,vr, ω

s
y,vr, ω

s
z,vr

3728



where t denotes the system clock timestamp in nanoseconds
for a given measurement.

Depth gauge data: Depth gauge measurements are given
at the same sample frequency as the IMU at 200Hz. The
depth of the vehicle frame v in the scene expressed in the
fixed world-frame w, d̃wv , and it is exported as a CSV file of
the following form:

timestamp[ns], d̃wv .

4.1.1 Image Naming Convention

For enumeration in the dataset file names, ASCII encod-
ing using [0 → 9, a → z, A → Z] is used, allowing for
62 different values for a single character slot. The image
naming convention is as follows:

seq[SeqNumber] veh[VehicleNumber] cam[CameraType]
[CameraNumber] [ImageType]-########.[Ext]

where each ID placeholder, in brackets [], is explained in
table 5. The folders containing the images follows the same
ASCII enumeration convention, where one character is as-
signed per folder with the encoding in table 6. This conven-
tion and the overall folder structure is shown in fig. 5.

Table 5. The encoding scheme used for generating the VAROS
dataset filenames.

Number ID Description ASCII chars
SeqNumber Unique sequence ID 2
VehicleNumber Vehicle ID for multi-vehicle support 1
CameraType Mono, stereo left, stereo right and more 1
CameraNumber Enumeration of a specific CameraType 1
ImageType Datatype stored in the image 1
######## Image number 8 digits
Ext Image file extension -

Table 6. Image folders encoded with an ASCII character and what
the respective folder contains.

Folder ASCII code Contents
A RGB image with water
B RGB image without water
C World space normal image
D Depth map with distance to each pixel

4.1.2 Folder Structure

The data structure of the dataset is made with inspiration
primarily from the LiU [21] and EuRoC [7] datasets. KITTI
[13] and AQUALOC [12] as standard were used addition-
ally for the format of the dataset data to ensure maximum
compatibility with already existing datasets. This folder
structure is shown in figure 5.

Planned future file organization: The Linköping Uni-
versity (LiU) stream format [21] was proposed in 2013 as a
framework for storing larger datasets in an efficient manner

seq02/
vehicle0/

camM0/

imu0/

A/ // rgb with water
seq02_veh0_camM0_A-00000000.png

B/ // rgb without water
seq02_veh0_camM0_B-00000000.png

C/ // normal maps
seq02_veh0_camM0_C-00000000.png

D/ // depth maps
seq02_veh0_camM0_D-00000000.png

camM0_poses.csv

camM0.yaml // Transformation matrix,
camera intrinsics

imu0.yaml // Transformation matrix

imu0_data.csv

depth0/

depth0.yaml // Transformation matrix

depth0_data.csv

Figure 5. Folder structure of the included data in the VAROS
dataset version 1.

in sequential stream files. We are currently preparing a tran-
sition to a variant of this stream format which, given a corre-
sponding stream file reader software, will simplify the read-
ing of the multi-sensor data in the correct temporal order.
The envisaged stream format is a simplification of the LiU
stream file format, consisting of a binary stream file with
the structure in table 7. The ’payloads’ of this stream file
consists of time-stamped pointers to externally stored im-
ages, and internally stored time-stamped sensor data from
the IMU, depth sensor and ground truth pose data.

Table 7. A single message in the LiU stream file format [21].
Messagestart ID Length of Payload Payload
4x uint8 ’$BST’ uint32 uint32 Dependent on message

5. Conclusion

We have created VAROS, a framework for generat-
ing synthetic underwater datasets with physically realis-
tic images, auxiliary sensor data, and ground truth pose
data. Hence we provide a complete set of synthetic data
which enables systematic testing of underwater computer
vision methods. At the moment of submitting this pa-
per (August 2021), the dataset consists of one sequence,
VAROS dataset version 1 with 4713 images at 10fps. Fur-
ther sequences are in preparation. The data is available at
the following web location https://www.ntnu.edu/
arosvisiongroup/varos.
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