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Abstract

Hyperspectral images (HSIs) contain the response of
each pixel in different spectral bands, which can be used
to effectively distinguish various objects in complex scenes.
While HSI cameras have become low cost, algorithms based
on it have not been well exploited. In this paper, we focus
on a novel topic, weakly-supervised semantic segmentation
in cityscape via HSIs. It is based on the idea that high-
resolution HSIs in city scenes contain rich spectral infor-
mation, which can be easily associated to semantics with-
out manual labeling. Therefore, it enables low cost, highly
reliable semantic segmentation in complex scenes. Specif-
ically, in this paper, we theoretically analyze the HSIs and
introduce a weakly-supervised HSI semantic segmentation
framework, which utilizes spectral information to improve
the coarse labels to a finer degree. The experimental results
show that our method can obtain highly competitive labels
and even have higher edge fineness than artificial fine labels
in some classes. At the same time, the results also show that
the refined labels can effectively improve the performance
of existing semantic segmentation algorithms. The combi-
nation of HSIs and semantic segmentation proves that HSIs
have great potential in high-level visual tasks for automatic
driving.

1. Introduction

Semantic segmentation in cityscape scenes using
RGB images has been well exploited (e.g., FCN [28],
DeepLabV3 [13] and HRNet [40]). A various of datasets
enable such research. (e.g., Cityscapes [15], CamVid [7] ,
BDD100K [45] and KITTI [21]). We notice that most of
the RGB based methods relying on large scale and high
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(a) An example of image and metamerism phenomenon.

(b) Coarse label (c) HSI result (d) RGB result
Figure 1: (a) Metamerism: pixels of similar [R,G,B] val-
ues may actually have significantly different spectrum. (b)
Coarse label. (c, d) An example of spectral classification
result based on RGB image and HSI respectively. Based on
RGB information, pixels in (a) are all classified as car, but
spectrum can distinguish them well.

quality datasets, large and complex networks and fragile
training strategies. This is because, RGB images have in-
herent limitation on metamerism [10, 9]. As illustrated in
Figure 1(a), different objects may have similar RGB value.
Metamerism is particularly challenging in cityscape scenes
because they contain too many classes, complex lighting
and spacial structures. As shown in Figure 1, while RGB
based semantic segmentation easily lead to mistakes when
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using shallow network, HSI based methods does not have
such problem over the same setting.

In this paper, we propose to introduce HSI into the
pipeline of semantic segmentation of cityscape scenes, to
break the inherent limitation of RGB images. Firstly, the-
oretically analysis using t-SNE is executed to show that
HSIs are inherently more distinctive than RGB images in
cityscape scenes. Based on such advantages, a weakly-
supervised semantic segmentation framework is designed to
exploiting the advantage of HSI when retain the RGB based
semantic segmentation network. Specifically, the coarse la-
bel provided by the dataset is refined by learning the prior
relationship between hyperspectral information and seman-
tic categories. Then, the refined label is applied to supervise
the well-known semantic segmentation network on RGB
images (i.e.,HRNet network [40] and DeepLabV3+ [14]).
Notice that our proposed framework can generally adopt
any RGB segmentation network, and achieve reliable se-
mantic segmentation with coarse label.

Experimental results on Hyperspectral City dataset [44]
demonstrated that adopting HSI into cityscape scenes can
effectively improve the annotation accuracy. Furthermore,
finetuning HRNet [40] with the refined labels can improve
10.10% mIoU over that pre-trained on Cityscapes, and
2.16% mIoU over that fine-tuning with coarse label.

Our main contributions are summarized as follows:
• To the best of our knowledge, our proposed framework

is the first paper to apply HSIs into semantic segmen-
tation in cityscape scenes.

• We theoretically analyze the necessity of HSI in
cityscape scenes.

• We propose a novel weakly-supervised semantic seg-
mentation framework via HSI only works on coarse
labels, which is applicable to any RGB semantic seg-
mentation network.

• We demonstrate the significant performance improved
by adopting HSI to label refinement and semantic seg-
mentation in cityscape scenes, which will likely enable
a new research area.

2. Related Work
Hyperspectral Image. Hyperspectral images (HSIs) cap-
ture the spectral behavior of every pixel within observed
scenes at hundreds of continuous and narrow bands, which
provides greater information about the captured scenes and
objects. HSIs can overcome adverse environmental con-
ditions (e.g., nighttime, foggy, snowy) and reduce the in-
terference of metamerism phenomenon. Several studies
[49, 29, 46, 42] have shown the great potential of spectra
in cityscape scenes.

In the past, spectra images are usually acquired by scan-
ning or interferometry in remote sensing (RS)(e.g., Indian

Pines [4], Pavia University [1] and Houston [17]). But
these approaches can only be applied in practice on static
or slow-moving scenes. With the advances in compressive
sensing theory, snapshot multispectral cameras (e.g., CTIS
[18], PMVIS [10] and SPCS [3]) can measure data in a sin-
gle exposure on sensor. At present, the acquisition technol-
ogy has been able to capture high-resolution spectral video
[11], which greatly expands the application field of spectral
imaging.
Semantic Segmentation in Cityscape Scenes. Seman-
tic segmentation is a task of predicting unique seman-
tic label for each pixel of the input image. It has
achieved great progress with the works such as FCN [28],
UNet [37], SegNet [5], PSPNet [47], DeepLabv3 [13] and
HRNet [40]. Fully-supervised Semantic Segmentation de-
pending on huge datasets with pixel-wise annotation (e.g.,
Cityscapes [15], KITTI [21] and CamVid [7]) is expensive
and labor-consuming.

To solve this problem, numerous papers focus on semi-
and weakly-supervised semantic segmentation. The semi-
supervised methods, such as video label propagation [12,
35, 8], consistency regularization [19, 33], self-training
[30, 51, 26, 25, 50] have made great effect, but still rely
on the fine annotations. Weakly-supervised methods usu-
ally employ bounding boxes [16], scribbles [27], points [6]
and image-level labels [36]. For image-level labels, most of
methods [2, 23, 41] refine the class activation map (CAM)
[48] generated by the classification network to approxi-
mate the segmentation mask. Besides, the network also
be trained with bounding boxes [24, 36], scribbles [27], or
videos [39]. But comes to complex cityscape scenes, it is
difficult to utilize these labels for one image contains almost
all classes. For cityscape scenes, annotating coarsely only
requires each polygon must only include pixels belonging
to a single class, which is a low cost weakly-supervised la-
bels [15]. But due to the sparse supervision, using coarse
label directly can not achieve competitive results.
Annotation Refinement. There are rare methods focus-
ing on the refinement of coarse labels. In [43], a fully
convolution encoder-decoder network with the dense con-
ditional random field (CRF) is proposed for contour detec-
tion in order to refine imperfect annotations. However, the
large computational cost and sensitivity to parameter selec-
tion restrict its practicability. [31] proposes a coarse-to-fine
annotation enrichment strategy which expends coarse anno-
tations to a finer scale. But coding and iterating also make
it too complex. Fundamentally, in the absence of the prior
between spatial information and semantics in coarse labels,
it is difficult to refine coarse labels directly.

3. Theoretical Analysis
To enable our research in HSIs for low cost and reliable

semantic segmentation in cityscape, we adopt a new dataset
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(a) Hyperspectral City V1.0

(b) Cityscapes

(c) KITTI

Hyperspectral Image

(cityscape scene)

RGB Image

(cityscape scene)

Remote Sensing Image

(aerial scene)

Resolution & Information

(d) Comparison of RGB and hyperspectral datasets

Figure 2: Comparisons of Hyperspectral City dataset with
other datasets: Examples from (a) Hyperspectral City [44],
(b) Cityscapes [15], (c) KITTI [21]. (d) Comparison of
RGB images, HSIs and remote sensing images. The orange
and green bars represent roughly the spectral and spatial res-
olution of the image, as well as the corresponding amount
of information.

called the Hyperspectral City Dataset [44]. Based on this
dataset, we will introduce the great advantages HSIs present
over RGB images in the cityscape scenes.

To best exploit the feasibility of modern semantic seg-
mentation, the dataset focuses particularly on complex
cityscape scenes as well as complex lighting conditions.
As Figure 2 shows, compared with other cityscape scenes
datasets (e.g., Cityscapes [15] and KITTI [21]), the scenes
and weather conditions in this dataset are more complicated.
HSI Acquisition. While HSI have been exploited in remote
sensing, it cannot be directly used in cityscapes. Remote
sensing images are acquired based on scanning or interfer-
ometry methods [20, 34], which limit the use of spectra.
The Hyperspectral City Dataset was captured by PMVIS
[10], which can capture both high-resolution spectral and
RGB videos in real time. Specifically, as shown in Figure
2, the PMVIS camera works well in highly dynamic and
complex scenes such as cityscape.
HSI in natural scenes and difference from remote sens-
ing. As shown in Figure 2 (d), We compare three kinds of
data. The middle cube represents the HSI in Hyperspectral
City, which has high spatial and spectral resolution. The left

(a) Hyperspectral image (b) RGB image
car huamn road tlight tsign tree building sky object unlabel

Figure 3: Visualizing data using t-SNE. We performed t-
SNE visualization of RGB images and HSIs respectively
under the same experimental conditions. Compared with
RGB images, HSIs have stronger category prior.

cube represents the RGB image, which is the result of the
integration of the spectral image over the spectral channel.
RGB image mainly contains spatial information. The right
cube represents the aerial remote sensing image, which has
high spectral resolution and low spatial resolution. The dif-
ferent imaging scenes and acquisition methods make a great
difference between cityscape HSI and remote sensing im-
age.
Hyperspectral information as semantic feature. Hyper-
spectral images have higher spectral resolution, so they have
better discrimination of semantic features. We use t-SNE
[32] to visualize HSI and RGB image. We select the HSI
and RGB image in the same frame, which have the same
fine label. Due to computational limitations, we use the
nearest interpolation to sample the HSI, the RGB image
and the fine label to a same low resolution, which keeps
each pixel corresponding. We use HSI and RGB image re-
spectively to create a t-SNE visualization. As shown in Fig-
ure 3, the result of HSI has a continuous distribution and
a clear boundary between each category. On the contrary,
for RGB image, the confusion of spectra is more serious.
Figure 1(a) plots the spectral curves of different substances
with the similar color. HSI can reduce the interference of
metamerism phenomenon and provide more powerful in-
formation support for cityscape scene analysis.

4. Weakly-supervised HSI Semantic Segmen-
tation Framework

4.1. Overview

Although HSI has inherit advantages, applying it in our
task in not trivial. A hyperspectral image requires more than
1G memory. It is problematic that the naive extension of ex-
isting network structure by just increasing the channels with
research in memory overflow. From the perspective of la-
bel, our method avoids the limitation of memory, effectively
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Figure 4: The proposed framework. In the blue dashed box, we train HSI classification module with coarse label as super-
vision, and then input HSI to generate spectral prior result. In the orange dashed box, we combine the coarse label and the
spectral prior through the mask to generate the refined label. In the purple dashed box, we fine-tune the HRNet pre-trained
model with the refined label as the supervision.
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Figure 5: The illustration of HSI classification module.
ResNet50 is used to classify the HSI cubes and obtain the
label of the pixel. For each pixel of the HSI is classified and
finally generate a spectral prior result.

reduces the cost of labeling and improves the performance
of segmentation.

As illustrated in Figure 4, there are 3 modules of our
method. First, coarse label is used to supervise HSI classi-
fication to generate a spectral prior result. This step gets a
prior relationship between HSI and coarse label to generate
high edge precision result. Second, coarse label and spec-
tral prior are fused to generate more detailed and accurate
label, which is called refined label. Third, the refined label
is utilized as a supervision to improve the migration effect
of the mature semantic segmentation pre-trained model.

Formally, given a set of M training data Xh, Xr, Y =
{Ii}Mi=1, let Xh ∈ RH×W×Dh and Xr ∈ RH×W×Dr de-
note a pair of hyperspectral image data and RGB image
data, where H and W are the spatial dimensions of the in-
put tensor, height and width, and Dh, Dr is the number of
spectral channels. Every Xh, Xr has a pixel at location x, y
contains a same one-hot label Yx,y = (y1, y2, ..., yk) ∈
R1×1×k where k represents the number of classes.

4.2. Hyperspectral Semantic Prior Module

In this section, we use HSI classification module to gen-
erate semantic prior. We hope to use the prior relationship
between coarse label and hyperspectral information to ob-
tain label with high fineness, and at the same time, to pre-
vent the influence of coarse spatial information of coarse
label.

As shown in Figure 5, we first generate HSI cube C ∈
RS×S×Dh with the size S × S from Xh, whose center at
the space position is (x, y) where x ∈ [(S − 1)/2+ 1, H −
(S − 1)/2], y ∈ [(S − 1)/2 + 1,W − (S − 1)/2]. Thus, a
HSI cube at the position (x, y) is denoted by Cx,y . The HSI
cube covers the height from x−(S−1)/2 to x+(S−1)/2,
the width from y−(S−1)/2 to y+(S−1)/2 and the whole
spectral dim Dh. The number of HSI cubes generated from
Xh is (H − S + 1)× (W − S + 1). The label of the Cx,y

is the one-hot label Yx,y of the pixel at the position (x, y).
After we generate HSI cubes from the dataset, we use

ResNet-50 [22] as the hyperspectral classification network.
We change the input dims of ResNet50 from Dr to Dh to
adapt HSI cube. During training, we learn the label under
the supervision from the ground-truth Yx,y(c) = 1c ∈ [0, k]
using the cross-entropy loss and f(Cx,y) = Zx,y the output
of ResNet50, as the following equation shows:

L(Zx,y, c) = − log

(
exp(Zx,y[c])∑
k exp(Zx,y[k])

)
= −Zx,y[c] + log

(∑
k

exp(Zx,y[k])

)
.

(1)
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After training, we use the hyperspectral classification net-
work to compute the result for each pixel of HSIXh to gen-
erate spectral prior Z. Sparse random selection of pixels
and the use of shallow network prevent overfitting in exper-
iments.

4.3. Semantic Fusion module

In this section, we combine coarse labels and spectral
prior to generate refined labels. Although spectral prior Z
have higher edge fineness, manual coarse labels have higher
confidence in the central region. So a label fusion algorithm
is proposed to fuse the advantages of two kinds of labels.
First, we remove the low confidence pixels in the spectral
prior. Then, we use a class-based erosion strategy to com-
bine spectral prior Z and coarse label Y to generate refined
label.
Noise control. For each pixel Zx,y in spectral prior, We use
the softmax function to calculate the confidence, where the
softmax function is defined as:

fsoftmax(Zx,y) =
exp(Zx,y[k

′])∑
k exp(Zx,y[k])

(2)

where k′ = argmax(Zx,y) ∈ [1, k]. For pixel Zx,y , if the
confidence is below the threshold α, the pixel will be set to
the label of ’background’; otherwise it is assigned the label
class-k′. It plays an important role in controlling spectral
prior quality.
Class-wise erosion fusion. Due to the edge of manual
coarse label will have some errors beyond the boundary of
the classes. At the same time, in the internal area of some
classes (e.g., car, building), spectral prior has misclassifica-
tion. So we propose a class-wise erosion kernel size selec-
tion method to obtain the optimal mask, and then fuse two
labels.

Coarse label Y ∈ R1×1×k is a one-hot label. For each
class ks, the coarse label Yk is eroded by each category. We
choose a square E with size l × l as the kernel of erosion.
For class i ∈ [1, k], the erosion operation as the following
equation shows:
ferode(Yi(x, y)) = min

x′, y′∈(−l, l), l 6=0
Yi(x+x

′, y+y′) . (3)

After eroding each class, the regions eroded by each class
are added together to form a mask. The mask Ymask after
the erosion operation retains the area near the center of each
class. Then we use a mask Ymask to fuse the spectral prior
Z with the coarse label Y to generate refined label Yrefined,
as the following equation shows:

Yrefined = Y ×
k∑

i=1

ferode(Yi)+Z×(1−
k∑

i=1

ferode(Yi)) .

(4)
Next we use class-wise intersection over union (IoU) as

the evaluation index to calculate the IoU scores of each class

under different erosion kernel sizes l ∈ (1, n). We select
the erosion kernel size li with the highest IoU score for each
class. By this method, we obtained the final optimal erosion
kernel size li for each class i ∈ [1, k]. Finally, we generate
mask with kernel size l.

Obviously, refined label combines the high internal con-
fidence of coarse label and the high edge fineness of spectral
prior. Using hyperspectral information, we get high quality
label only based on coarse label.

4.4. Finetuning Module

The network structure of semantic segmentation has
been relatively mature. To make use of the existing seman-
tic segmentation mature network and prove that our method
is useful to semantic segmentation, we fine-tune the HRNet
and DeeplabV3+ pre-trained model with our refined labels.
More details can be found in supplementary material.

5. Experiments
5.1. Implementation detail

Hyperspectral City dataset. The Hyperspectral City
dataset [44] has 367 frames with coarse labels and 55
frames with fine labels. Coarsely and finely annotated im-
ages are used for training and testing respectively. There
are 6 images have both fine and coarse annotations, which
are used for validating. Spectral camera (PMVIS [10]) can
capture RGB and spectral images of the same spatial region
at the same time. Therefore, each frame captures both the
RGB image and the HSI, which have the same spatial res-
olution 1379 by 1773 and same label. The HSI has 129
spectral channels. The spectrum range is 450 to 950 nm
(visible and near-infrared bands) and spectral resolution is
4nm.
Spectral prior. ResNet50 is adopted as the hyperspectral
image classification network. Verified by experiment, we
set the initial learning rate as 0.01, weight decay as 0.0005
and epoch as 30.

Because HSIs consume a lot of memory, we prepare the
data in two steps to balance memory and network train-
ing. First, we choose images from training dataset with
the batch size 6. Second, we randomly select 10,000 pix-
els from one HSI, excluding whose corresponding coarse
label is ”0”(background). Each pixel generates a HSI cube,
totally 60,000. Then we randomly choice cubes from these
HSI cubes for training with the batch size 256. This method
allows us to maximize the use of memory and prevents over-
fitting at one HSI. The number of HSI cubes used in each
image is a small fraction of the total. The spectral informa-
tion of the same substance has high similarity, which can
ensure that sufficient prior information can be learned by
using few HSI cubes. We set the spatial resolution of the
HSI cube is 11× 11.
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(a) Raw RGB (b) Ground-truth (c) Coarse label (d) Spectral prior
(HSI)

(e) Spectral prior
(RGB image)

(f) Coarse-to-
fine(0.7)

(g) Ours(refined
label)

car huamn road tlight tsign tree building sky object unlabel

Figure 6: Visualization results on Hyperspectral City validation set. First we show the results of spectral semantic prior
module based on RGB image and HSI respectively. Then we compare the results of semantic fusion module with coarse-to-
fine annotation enrichment method.

Table 1: Comparisons of the results of hyperspectral semantic prior module and semantic fusion module with coarse-to-fine
annotation enrichment [31] on Hyperspectral City validation set w.r.t mIoU, mean Acc. and IoU of each class.

mIoU Acc. car human road light sign tree building sky object
Coarse label 66.3 77.3 80.17 58.47 86.52 26.05 67.98 80.41 80.53 73.11 43.77

Coarse-to-fine(0.3) 63.6 80.8 80.17 46.91 87.72 23.45 62.34 82.05 81.27 75.03 33.56
Coarse-to-fine(0.7) 64.4 80.3 80.85 48.60 87.57 24.13 66.27 81.96 81.43 74.66 34.16

Coarse-to-fine + HSI 65.0 80.5 80.64 49.94 87.43 23.94 64.58 82.23 81.92 74.67 39.59
Spectral prior (RGB) 28.2 43.3 18.80 2.31 40.45 4.05 18.03 62.98 19.47 75.51 11.93
Spectral prior (HSI) 54.2 77.0 47.93 46.62 81.07 14.74 47.99 72.83 58.48 90.96 27.33

Refined label 69.4 82.1 81.90 56.50 88.33 24.83 70.97 83.81 82.63 88.75 46.85

Refined label. After generating spectral prior. We use the
method at section 4.3 to generate fusion label. We generate
the mask by eroding each class of coarse label. Ablation
experiments are performed on selecting the optimal erosion
kernel size and noise control threshold. Then we generate
the refined labels on training dataset for finetuning module.
Finetune network. After getting refined label, we use re-
fined label to fine-tune segmentation pre-trained model. For
fine-tuning network, we fix the parameters of feature ex-
traction layers, and only fine-tune the last two 1 × 1 con-
volution layers. We set the initial learning rate as 0.001,
weight decay as 0.0005, crop size as 1773 × 1379, epoch
as 200 and batch size as 3 on four GPUs (GTX 1080Ti).
We perform the polynomial learning rate policy with factor
1 − ( iter

itermax
)0.9. We use InP lace − ABNsync [38] to

synchronize the mean and standard-deviation of BN across
multiple GPUs. For the data augmentation, we perform ran-
dom flipping horizontally and random brightness. For eval-
uation, we use class-wise intersection over union (IoU) and
pixel-wise accuracy (Acc.) metrics.

5.2. Quantitative Results

Spectral prior. In Table 1, we compare the spectral prior
with coarse label at validation set. First, the spectral prior
based on the HSIs is much better than that based on the
RGB images. HSIs have stronger semantic prior than RGB
images. Second, because the spectral prior has misclassifi-
cation within some classes, spectral prior is almost equal to
coarse labels in Acc. and lower in mIoU. Third, Figure 6
and Figure 7 are the comparisons of some spectral prior and
coarse labels on the validation set and training set, which
show that spectral prior can effectively improve the edge
fineness and correct the wrong or missing annotation in the
coarse labels.

Refined label. We compare the best refined labels with the
original coarse labels, spectral prior and the result of coarse-
to-fine annotation enrichment method [31]. IoU and Acc.
are applied to measure the percentage of correctly labeled
pixels. Noise control and class-wise erosion fusion are ap-
plied to generate refined labels. The parameters selection
will be described in the ablation study.
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(a) Raw RGB (b) Coarse label (c) Spectral prior (d) Raw RGB (e) Coarse label (f) Spectral prior

Figure 7: Comparisons of spectral prior based on HSI on Hyperspectral City training set. The first 3 columns are the full
image and label, and the last 3 columns are area zooms. Spectral prior improves accuracy and corrects errors compared to
coarse labels.

(a) RGB im-
age

(b) Ground-
truth

(c)
Pre-trained

model

(d) Coarse
label

(e) Refined
label

car huamn road tlight tsign tree building sky object unlabel

Figure 8: Semantic segmentation results of fine-tuning HR-
Net pre-trained model under different supervision on Hy-
perspectral City testing set.

As Table 1 shows, the refined label has the highest
Acc.(82.1%) and mIoU (69.4%) which brings 4.8% and
3.1% improvement than coarse label. Compare with coarse-
to-fine annotation enrichment method [31], our refined la-
bel achieves 5.0% mIoU and 1.8% Acc. absolute gains.
As Figure 6 shows, due to the coarse-to-fine method relies
heavily on the coarse labeled region and does not fit well

Table 2: Results of fine-tuning HRNet pre-trained on
Cityscapes with different supervision for semantic segmen-
tation on Hyperspectral City testing set.

Supervision mIoU(%) Acc(%)

HRNet
Pre-trained model 59.30 78.57

Coarse label 67.24 87.21
Refined label 69.40 89.12

DeepLabV3+
Pre-trained model 55.66 79.04

Coarse label 61.90 85.23
Refined label 63.36 85.71

on large background region, the mIoU score is even lower
than coarse label. To further compare with coarse-to-fine
method, we add spectral information to the coarse-to-fine
method. As Table 1 shows, HSIs can bring 0.6% mIoU im-
provement. But the results are still weaker than ours. Com-
pared with existing methods, our method has lower require-
ments on the quality of coarse labels and achieves better
results.
Finetune network analysis. As shown in Table 2, first we
use HRNet (HRNetV2-W48) pertrained on Cityscapes as
the baseline, whose mIoU is 81.1% on Cityscapes. We di-
vided 19 categories of Cityscapes into 10 categories in the
Hyperspectral City by class affiliation. HRNet per-trained
model achieves 59.30% mIoU. Although the pre-trained
model based on the Cityscapes dataset with fine annotation
has high segmentation accuracy, the results of the direct
migration pretrained model are poor. We use coarse label
to train the network. Coarse label gives network some se-
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Table 3: Comparisons of refined label with erosion kernel size l on Hyperspectral City validation set w.r.t mIoU. The
threshold of noise control is 0.7. For each class, we select the kernel size li with the highest mIoU from 1 to n.

kernel size l mIoU(%) car human road light sign tree building sky object
Baseline(n=1) 69.20 1 1 1 1 1 1 1 1 1

n=5 69.33 1 1 5 1 5 5 3 5 5
n=9 69.37 1 1 7 1 9 5 3 9 9

n=11 69.41 1 1 7 1 11 5 3 11 11
n=15 69.39 1 1 7 1 13 5 3 13 13

Table 4: Comparison of spectral prior generated from dif-
ferent HSI cube sizes on Hyperspectral City validation set.

HSI cube size mIoU(%) Acc(%)
5× 5 42.04 75.43

11× 11 54.21 76.95
25× 25 42.30 74.95

mantic supervision, but it will weaken the precision of pre-
trained model. As shown in Table 2, we use refined label to
fine-tune HRNet and achieve the best mIoU (69.40%) and
Acc. (89.12%). We also use DeepLabV3+ (MobileNetV2
as backbone) for fine-tuning module in Table 2. Although
our fine-tuning fixed most of the parameters of network, the
results also show that our method can bring great segmen-
tation performance improvement.

5.3. Further Ablation Study

Spectral prior. Smaller hyperspectral cubes contain too lit-
tle spectral information, while larger hyperspectral cubes
contain too much coarse spatial information, which all will
affect the classification accuracy. Two kinds of information
should be taken into account in the selection of hyperspec-
tral cube size. As shown in Table 4, three spectral cube
sizes (5, 11 and 25) are compared. The HSI cubes of size
11 achieve the highest mIoU and Acc. on the validation set.
Noise control and Class-wise erosion. In this ablation
study, we give comparisons of the noise control and class-
wise erosion fusion. Since noise control will introduce few
unlabeled area, mIoU is more suitable as an evaluation in-
dex of label quality.

First, we test the threshold α of noise control. The spec-
tral prior is directly fused with the coarse label after the
noise control operation. After generating the refined la-
bel, the mIoU scores under different thresholds are tested
on the ground truth of the validation set. As shown in Fig-
ure 9, we test α from 0.1 to 0.9, and find that refined la-
bel with α = 0.7 achieves the best result. Then, we test
the erosion kernel size l of class-wise erosion. Firstly The
spectral prior for fusion is subjected to noise control with
α = 0.7. Then we use the class-wise erosion fusion men-
tioned in section 4.3 to fuse spectral prior and coarse la-
bel. As shown in Table 3, the refined label achieves highest
mIoU (69.41%) with n=11. Class-wise erosion selects the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

68.4

68.6

68.8

69

69.2

m
Io
U

%

α

Figure 9: Ablation study of threshold α in noise control.

Table 5: Comparisons of semantic fusion module methods
(CE: class-wise erosion(n=11), NS: noise control(α = 0.7))
with fine label of Hyperspectral City validation set w.r.t
mIoU.

CE NS mIoU(%)
Coarse label 66.3

Refined label

% % 68.3
! % 68.4
% ! 69.2
! ! 69.4

most appropriate annotation area for different class, which
better combines the advantages of the two kinds of labels.
The results show that class-wise erosion fusion can further
improve the performance of refined label. Finally, we give
the qualitative comparisons on Table 5, which demonstrates
that operations in semantic fusion module can improve the
performance of the refined label respectively.

6. Conclusion
In this paper, we present a weakly-supervised seman-

tic segmentation framework via HSI based on hyperspectral
cityscape scenes. Specifically, first, we introduce a new hy-
perspectral dataset. The comparisons between hyperspec-
tral images (HSIs) and RGB images prove that richer spec-
tral information of HSIs is important to semantic prior. Sec-
ond, we use the character that spectral information is inde-
pendent of fine annotation to optimize the semantic segmen-
tation coarse annotation. The label with higher precision is
obtained in the case of lower annotation cost. Third, we use
the refined label to finetune the semantic segmentation pre-
trained model, which significantly improves the segmenta-
tion accuracy. In future, we hope to continue to explore the
application value of spectra in more scenes.

1124



References
[1] Aviris salinas valley and rosis pavia university hyperspectral

datasets. http://www.ehu.es/ccwintco/index.
php/Hyperspectral_Remote_Sensing_Scenes.
2

[2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic
affinity with image-level supervision for weakly supervised
semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4981–4990, 2018. 2

[3] Yitzhak August, Chaim Vachman, Yair Rivenson, and
Adrian Stern. Compressive hyperspectral imaging by ran-
dom separable projections in both the spatial and the spectral
domains. Applied optics, 52(10):D46–D54, 2013. 2

[4] NW Aviris. Indiana’s indian pines 1992 data set.
http://cobweb.ecn.purdue.edu/biehl/
MultiSpec/documentation.html. 2

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(12):2481–2495, 2017. 2

[6] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li
Fei-Fei. What’s the point: Semantic segmentation with point
supervision. In European conference on computer vision,
pages 549–565. Springer, 2016. 2

[7] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla.
Semantic object classes in video: A high-definition ground
truth database. Pattern Recognition Letters, 30(2):88–97,
2009. 1, 2

[8] Ignas Budvytis, Patrick Sauer, Thomas Roddick, Kesar
Breen, and Roberto Cipolla. Large scale labelled video data
augmentation for semantic segmentation in driving scenar-
ios. In Proceedings of the IEEE International Conference on
Computer Vision Workshops, pages 230–237, 2017. 2

[9] Xun Cao, Hao Du, Xin Tong, Qionghai Dai, and Stephen
Lin. A prism-mask system for multispectral video acqui-
sition. IEEE transactions on pattern analysis and machine
intelligence, 33(12):2423–2435, 2011. 1

[10] Xun Cao, Xin Tong, Qionghai Dai, and Stephen Lin. High
resolution multispectral video capture with a hybrid camera
system. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 297–304. IEEE, 2011.
1, 2, 3, 5

[11] Linsen Chen, Tao Yue, Xun Cao, Zhan Ma, and David J
Brady. High-resolution spectral video acquisition. Journal
of Zhejiang University Science C, 18(9):1250–1260, 2017. 2

[12] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng,
Maxwell D Collins, Ekin D Cubuk, Barret Zoph, Hartwig
Adam, and Jonathon Shlens. Naive-student: Leveraging
semi-supervised learning in video sequences for urban scene
segmentation. arXiv preprint arXiv:2005.10266, 2020. 2

[13] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 1, 2

[14] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 2

[15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 1, 2, 3

[16] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploit-
ing bounding boxes to supervise convolutional networks for
semantic segmentation. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1635–1643,
2015. 2

[17] Christian Debes, Andreas Merentitis, Roel Heremans, Jürgen
Hahn, Nikolaos Frangiadakis, Tim van Kasteren, Wenzhi
Liao, Rik Bellens, Aleksandra Pižurica, Sidharta Gautama,
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