
Efficient light transport acquisition by coded illumination and
robust photometric stereo by dual photography using deep neural network

Takafumi Iwaguchi and Hiroshi Kawasaki
Kyushu University

Fukuoka, Japan
iwaguchi@ait.kyushu-u.ac.jp, kawasaki@ait.kyushu-u.ac.jp

Abstract

We present an efficient and robust photometric stereo
(PS) measurement by a setup with an optical diffuser. The
setup which includes a single projector that places point
light sources on the diffuser, extends the possibility of flex-
ible measurement without the limitation from employing
physical light sources, i.e. a number and illumination shape.
By taking advantage of the setup, we design an illumina-
tion for effective and robust surface normal estimation. Un-
like the previous techniques, we utilize deep neural network
consists of a renderer and a PS module to find multiplexed
illumination patterns, which are suitable for PS measure-
ment. Another challenging problem is to measure objects
with micro-structures which reflect the light randomly ac-
cording to lighting and viewing directions. To overcome the
problem, we propose a novel PS measurement using a dual-
photography setup, which allows us to analyze the angular
distribution of reflection by capturing reflection pattern on
the diffuser. We show a smooth surface normal can be esti-
mated by simply applying a low-pass filter on the captured
images. Moreover, we also propose an effective sampling to
deal with time-consuming measurement of dual photogra-
phy setup. We show that by utilization of the trained sam-
pling codes by DNN considering light transport in the setup,
the number of the measurement is drastically reduced.

1. Introduction

Light transport (LT) is fundamental information to de-
scribe both photometric and geometric information of a
scene, however, to obtain the full LT, it is required to cap-
ture the entire scene by turning on every single pixel of the
video projector one by one. It is problematic not only with
time consuming for data acquisition, but also extremely low
SNR, since only single pixel is projected at each capture.
Hadamard coding has been proposed for solving SNR prob-
lem [20], however, the same number of measurements is
still needed. A compressive sensing has been proposed to
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Figure 1. (a) Glitter paper exhibits unpredictable strong reflec-
tion due to micro-flakes locate randomly inside. (b) Illustration
of specular robe.

reduce the measurement time [24, 23], however, still a large
number is required to obtain a sufficiently accurate LT. In
this paper, we propose a method to drastically reduce the
number of measurements by designing the projecting pat-
tern specialized for PS using DNN. To efficiently capture
the surface reflectance, we use a single fixed video projec-
tor as the light source, a single fixed camera and an optical
diffuser which is placed between the camera and the target
object. A two-dimensional distribution of intensity on the
diffuser plane in the captured image can be interpret as an
angular distribution of the reflected light.

By using LT, the scene lit by an arbitrary lighting con-
dition can be synthesized, which will be utilized for vari-
ous purposes. Among them, photometric stereo (PS) is one
important application, which requires multiple images cap-
tured under different lighting positions. Common photo-
metric stereo techniques assume Lambert model on object
surfaces and infinitely distant light sources. The surface
normal is efficiently recovered by a linear system if im-
ages are captured by a camera with at least three different
light source positions. For non-Lambertian object which
can be approximated by a simple model, such as specular
reflection, a non-linear method can be applied [11], how-
ever, for more complex BRDF, it is rarely solved by PS. One
such material is a glitter paper, which has a complex micro-
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structure on its surface, as shown in Fig. 1(a). A typical
glitter paper consists of micro-flakes with strong reflection,
which are distributed randomly, resulting in unpredictable
anisotropic reflection with respect to the light and view di-
rection. Especially, when a single pixel of a captured image
contains more than one reflection probes towards various di-
rections, it cannot be assumed as diffuse surface (Fig. 1(b))
and the luminance of neighboring pixels changes almost in-
dependently of each other. In the paper, we exploit this an-
gular distribution to extract reflections that contributes to
surface estimation by using dual photography, which can
swap the role of the camera and the projector and to synthe-
size dual views, by using LT. Since the lighting of the dual
views is defined by the area in the captured image, the scene
can be relit with arbitrary illumination.

Contribution of our paper are summarized as follows:

• The number of required projection pattern to acquire
LT can be drastically reduced by generating patterns
optimized by DNN.

• PS can be applied to a single fixed video projector by
using dual photography technique and a optical dif-
fuser in front of the camera.

• PS can be applied to the surface with complicated
BRDF, such as glitter papers, by applying low-pass fil-
ter on the reflected light received on the diffuser as a
post-process so that specular reflections from micro-
flakes are removed.

2. Related work
2.1. Light transport and dual photography

Sen et al. proposed dual photography (DP), an imaging
technique to interchange light and camera in a scene [21].
The authors demonstrated that relighting using any pixel of
an image captured by a camera as a light source. For relight-
ing, LT matrix between each pixel of the projector and each
pixel of the camera is sampled. One of the difficulties with
DP is that the LT is huge due to the resolution of the camera
and projector. When the most of the objects in a scene have
a diffuse surface, LT is sparse, i.e., light ray starts from a
light source falls in a single pixel of a camera. In this case,
hierarchical sampling has been proposed in the original pa-
per and a sampling method using compressive sensing has
also been proposed [22, 17] for efficient sampling. Since
the LT are dense in our setup with diffuser, our goal is to
efficiently sample the dense LT.

In recent years, by combining high-speed digital spatial
light modulators with various sensors, DP has been applied
to new imaging methods. For example, DP has been used
in photography using photodetectors [1, 6], hyper spectral
imaging using spectrometers [7], and depth measurement

using time-resolved sensors [25]. These are special cases of
DP where the camera has a single pixel.

There have been studies on PS with multiple photodetec-
tors [24, 30], and on PS when the diffuser is between the ob-
ject and the photodetectors [23]. While these methods are in
principle the same as measurements using a small number
of isolated light sources, we achieve a dense arrangement
of many light sources, which makes it possible to filter the
light rays as shown in the experiments.

2.2. Light multiplexing and optimal coding for effi-
cient measurement

Light multiplexing is a common technique in active mea-
surement to improve energy efficiency. To improve SNR
when the energy of the light source is small, as in the case of
LT measurements, multiplexing using Hadamard code has
been shown to be optimal for the number of the measure-
ment [20]. In the paper, the authors projected Hadamard
code to diffuse wall and successfully performed PS using
the weak reflected light, by taking a full advantage of high
SNR. On the other hand, we directly use optical diffuser
which is advantageous on energy efficiency compared to re-
flection by wall; note that it greatly helps to decrease the
number of projected patterns, which is optimized by DNN.

In terms of decreasing the number of measurement, com-
pressed sensing has been intensively researched, such as
for triangulation purpose [5], and imaging techniques based
on primal dual coding where illumination and exposure are
coded simultaneously [16, 15]. Kang et al. [10] used mul-
tiplexing to reduce the number of measurements when ac-
quiring BRDF using a device with a high-density LED ar-
ray. DNN is utilized to learn how to efficiently multiplex
light and decode BRDFs from observed images when the
number of measurements is limited. Although the concept
of measuring LT by optimizing lighting pattern by DNN is
similar to [10], since the measured image through the dif-
fuser is blurred, new technique is required. In the paper, we
propose new network architecture as well as binary codes
to increase the difference in observations under blur.

2.3. Photometric stereo for non-Lambertian sur-
faces

One of major problems on PS is reconstruction of non-
Lambertian surfaces. Specular reflections have been dealt
with by decomposing reflection components [13], by using
more than four light directions [2], or by applying a median
filter [12]. PS for materials represented by a BRDF model
has also been proposed [11, 4]. Since a direction of reflec-
tion of glitter materials changes randomly depending on the
direction of the flakes, it is difficult to represent it by using
a general BRDF model.

In recent years, learning-based PS algorithms have been
proposed [29, 28, 19, 3]. In particular, DNN-based methods
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can be trained on synthetic data to perform PS on a variety
of materials with data augmentation. However, as the num-
ber of parameters for material increases, the number of data
required to achieve sufficient accuracy increases rapidly. In
addition, since synthesis of glitter surfaces with sharp spec-
ularity requires long rendering time, we propose a technique
to directly apply filtering on light rays to mitigate the effect
of glitter surfaces for PS in the paper; note that filtering
of light rays instead of RGB image is usually difficult and
it is not obvious. Using a light filed camera is one solu-
tion for such purpose [27] and PS is conducted for glossy
objects [26] or under ambient lighting condition [14]. In
our method, we use a common camera as well as inexpen-
sive diffuser and apply dual photography to apply filtering
to light rays.

3. Overview of the technique
3.1. System configuration

We use the setup consists of a camera, projector and op-
tical diffuser as shown in Fig. 2. When the diffuser can
be assumed an ideal diffuse transmitter which takes in light
from all direction, and emit light equally to all direction of
opposite side, a point where radiated by impulse beam from
the projector can be considered as a point light source. We
call such a setup “primal” as shown in Fig. 2(a) and it can
be applied to PS measurement by simply projecting impulse
beam to anywhere on the diffuser and by capturing shading
images for each illumination. A surface normal is estimated
by any reconstruction algorithm considering a light direc-
tion from each point of radiation.

For dual photography, as shown in Fig. 2(b), this setup
consists of the same components as primal setup, however,
a camera and projector are swapped. A target object is di-
rectly illuminated by the projector, reflected light is cast on
the diffuser, and it is captured by the camera. As described
in [21], scene light transport of primal setup is written as

c′ = Tl′, (1)

where c′ denotes the image captured by the camera, l′ de-
notes the projected pattern, and T denotes the light transport
matrix. Observations from the viewpoint of the projector
are generated according to Helmholtz reciprocity:

l′′ = Tᵀc′′, (2)

where l′′ denotes reconstructed observation from the view-
point of the projector, and c′′ denotes a projection pattern
from the camera. Here, we can relight the scene with virtual
projection pattern c′. If we turn on a single pixel of c′ in our
setup, we can observe a scene relit with a virtual point light
on the diffuser. The PS measurement can be performed for
both primal and dual setup by putting a virtual point light
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(a) Primal setup.
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(b) Dual setup.

Figure 2. Primal and dual setups.

source at an arbitrary position after the measurement. One
advantage of the dual setup is that a typical camera has a
wider FOV than a projector, and each virtual light source
can be placed father away from others.

3.2. Algorithm

Light multiplexing

for measurement

Synthetic LT
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surface normal

PS 

Network

LT Auto-

encoder

Encoder

Decoder

Estimated LT

Weight

Capture

Pre-process

(Filtering)

LT Decoder

PS 

Network

Estimated LT

Estimated
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Figure 3. An algorithm overview.

An overview of our algorithm is shown in Fig. 3. In the
training, since preparation of a large amount of real data
of objects and their surface normal information with light
source calibration data is not easy, we synthesize the scene
using computer graphics and use synthetic data for train-
ing. To learn light multiplexing and decoding of LT from
the measurement, we train LT auto-encoder by using light
multiplexing information as a weight of network as shown
in the left-hand side of the figure (detail will be explained
in Sec. 3.3). PS Network is also trained with the synthetic
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LT with ground-truth surface normal in parallel (detail will
be explained in Sec. 3.4).

In the measurement, the scene is projected by special
patterns, which are the weights of the encoder in the training
process, using a video projector and captured by a camera.
If a post-process for light rays is required, such as smooth-
ing lights, it can be applied here. Then, shading images are
reconstructed using LT decoder. Note that, in our method,
instead of reconstructing the entire LT, each shading im-
age under arbitrary lighting condition and view position is
reconstructed in our method. The decoder network is pre-
trained by synthetic data followed by fine-tuning using real
data to compensate global illumination or other complicated
effects. Finally the surface normal is estimated by using PS
Network.

3.3. Learning light multiplexing for LT measure-
ment

To improve SNR of LT measurement and to reduce num-
ber of captures, we employ light multiplexing. Typical mea-
surement with light multiplexing is illustrated in Fig. 4.
Multiple patterns are projected onto the scene and corre-
sponding images are captured by the camera. When the
scene is observed through an optical diffuser, it integrates
the diffuse reflections from all the directions. Therefore,
the captured image is usually blurred, and it results in dense
LT; it is a major difference from LT in the scene without
diffuser where the LT matrix is almost sparse.

We design light multiplexing to measure LT, or to visual-
ize the scene behind the diffuser by capturing reflections on
the diffuser. The reconstruction of full LT requires the same
number as the light sources, and it can be reduced with com-
pressive sensing techniques, however, it is not applicable for
dense LT, such as our case. Instead, we find efficient multi-
plexing by learning a relationship among a scene, lighting,
and measured intensity on the diffuser. A key idea here is
that the capture can be regarded as a physical encoding, i.e.
measured intensity on the diffuser is an encoded feature of
the reflectance under a specific lighting, and the reconstruc-
tion of the scene from the captured images can be regarded
as a computational decoding. We train a LT auto-encoder
shown in Fig. 3, which combines the physical encoder and
a computational decoder so that the light multiplexing and
decoding are learnt jointly. The decoder is implemented us-
ing DNN as described in Sec. 4.1.

3.4. Learning PS reconstruction with dual photog-
raphy setup

For PS reconstruction, we use DNN in the paper. Since
we can generate all the shading images under different light-
ing conditions, the surface normal can also be estimated by
using PS solver based on linear algebra, however, DNN-
based method still has several important advantages. First,

Diffuser

Light 

multiplexing
Captured

images

Figure 4. LT measurement with the multiplexed lighting.

since the diffuser is placed close to the object, the light
source cannot be regarded as infinite, and it is difficult to
estimate the correct normal by linear method. Second, we
can also learn normal estimation consistently with the LT
estimation by using the same geometry and setup when LT
auto-encoder and light multiplexing are learnt.

Note that we also implemented end-to-end network
where LT auto-encoder and PS Network are combined to
learn the light multiplexing and direct PS reconstruction
from the measurement simultaneously. The network is used
for comparison in the experiment to verify that our separate
network using each loss is better than such simple end-to-
end network.

4. Implementation
4.1. Efficient measurement of LT for dual photog-

raphy

The proposed DNN structure for LT measurement is
shown in Fig. 5. The encoding part of LT auto-encoder can
be considered as generating a view from the camera when
the scene is relit by the projector using light multiplexing.
Denoting patterns for light multiplexing patterns pi, Eq. (1)
is rewritten as

ci = T (pi ◦ 1) , (3)

where ◦ represents Hadamard product and 1 is a vector of 1,
whose length is the number of projector pixels. Therefore,
encoding layer is implemented as a matrix product with pi

as a parameter. We learn each light intensity pi as a binary
value to limit each light intensity to a positive and finite
value, and to make light multiplexing robust. Gumbel soft-
max trick [8] is employed for this purpose while keeping
the network differentiable.

The decoding layers is composed of a fully connected
layer, and series of up-sampling layers. In each up-sampling
layer, up-sampling by bilinear interpolation, convolution,
batch normalization and activation (ReLU) are repeated
twice.

4.2. Training LT encoder using synthetic data

To avoid preparation of a huge amount of ground truth
dataset of LT, we prepare a dataset of synthetic LT for the
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Figure 5. The structure of (a) LT auto-encoder, (b) PS network, and (c) end-to-end network. To realize PS from using multiplexed
illumination, two independent network (a) + (b) or single network (c) for comparison in Sec. 5.4 are utilized.

training of the network. There are two rendering methods to
synthesize LT, i.e., rendering primal views from the camera,
or dual views from the projector. Since rendering primal
views requires computationally expensive rendering cost
because of using optical diffuser, we synthesize dual views
from the projector. In a synthetic scene, diffuser is approxi-
mated by a set of point light sources on a plane. The scene
is rendered using a simple rasterizer which considers only
direct diffuse reflections on the object’s surface. For synthe-
sis, we use 3d models from Blobby Shape Dataset [9] as 3D
shapes and augment them into various positions, poses, and
scales. L-1 norm between input and predicted LT is used
for training.

Since the synthetic data generated by rasterization does
not take into account the effects of global illumination nor
ambient light in the real environment. To prevent artifacts
during restoration, after training multiplexing pattern with
the LT-auto-encoder on the synthetic data, we fine-tuned the
weights of the LT-decoder using a few real measurements of
real environment.

Since LT encoder is trained for specific configuration of
a projector and a camera, if the configuration has changed,
shape of LT also changes and retraining is required. There-
fore, once setup is fixed, synthetic data are automatically
generated based on calibration parameters for the setup, and
the networks are retrained. Note that only manual task is
taking a few images using the actual system for fine-tuning
and it is not a heavy task.

4.3. Network architecture for robust PS

The PS network takes the shading images as input and
estimates a surface normal. Since the shading images
depends strongly on pixel coordinates under close light
sources, UNet structure [18] is utilized to preserves the
global position of a feature in the image. The network
structure is shown in Fig. 5(b). It consists of three down-
sampling layers and three up-sampling layers, which are
connected by skip connections. In each layer, batch nor-

malization (BN), convolution, and activation (ReLU) are
performed twice in each layer. The loss function is defined
as

L = ‖n− n̂‖22, (4)

where n denotes the ground-truth (GT) normal and n̂ de-
notes estimated normal.

Additionally, a structure of end-to-end network is shown
in Fig. 5(c). This network is a slight modification of auto-
encoder, where the number of channels in the output layer is
changed for normal estimation. It takes sparse sample of LT
as input and estimates a surface normal. In this network, the
only loss is normal loss (Eq. (4)) for training, but shading
images under arbitrary lighting conditions are not used.

4.4. Filtering angular distribution of reflected light

To handle complicated BRDF for PS, one solution is to
apply filtering to light rays. When a single ray is reflected at
a glitter surface, outgoing rays travel toward varying direc-
tions according to the surface’s BRDF as shown in Fig. 6(a).
These reflected rays form a unique pattern on the diffuser,
where several strong intensity points are depicted as an an-
gular distribution of reflected light. For example, we con-
sider a BRDF which is represented by the combination of
diffuse and sharp specular reflections as shown in Fig. 1(a).
A corresponding observation should be a combination of a
low-frequency component from the diffuse reflection and
bright spots by glitter rays as shown in Fig. 6(b).

To estimate the surface normal, a component of dif-
fuse reflection is extracted by applying a low-pass filter
on the captured images, then, pixels are sampled for dual
views. Note that since we assume dual photography for our
PS, such simple process is effective for filtering light rays,
which is not obvious for usual PS setups. We refer to this
process as ray filtering. It can be implemented as Gaussian
filtering on the imaging, or can be implemented in an optics,
such like capturing in the out-of-focus setting.
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Figure 6. (a) Schematic illustration of light ray filtering for primal and dual view. (b) Example of an actually captured image. It is confirmed
that glitter surface makes complicated reflection on captured image.

Normal Shading images

Figure 7. Example of rendered surface normals and shading im-
ages using Blobby Shape Dataset [9].

5. Experiments

5.1. Evaluation with synthesized data

In the synthetic scene, the diffuser and camera are placed
at the same location at a distance of 5 from the center of the
target object, and the projection is made on a 5x5 square
area on the diffuser. The dataset consists of 8 blobs, each of
which is randomly augmented with the object center posi-
tion in a sphere of radius 1, free orientation, and size rang-
ing from 50% to 150%, and the number of data is multiplied
by 500. 90 % of the dataset is used for training and 10% for
validation. Examples of synthesized data is shown in Fig. 7.
The resolution of the camera is 32x32 and the resolution
of the projector is 32x32. In the brute-force method, 1024
measurements are required to sample the entire LT.

Fig. 8(a) shows a dual view and normals of one of the
LTs reconstructed using 16 multiplexed patterns. From the
results, we can confirm that the LT auto-encoder success-
fully reconstructed the contours and the overall unevenness
of the real view, although the high-frequency components
were lost. However, when the normals are estimated from
these dual views by PSN, low frequency normals are ob-
tained. The results of qualitative evaluation are shown in
table 1. This suggests that the multiplexing pattern is one
of the reasons for the low frequency normals. The same can
be said for the end-to-end network explained in Fig. 5(c).

LT Estimation Normal estimation
PSNR SSIM LT A.E.+PSN End-to-end
22.68 0.674 0.062 0.784

Table 1. Quantitative evaluation.

Fig. 8(b) shows some of the multiplexed patterns learned
by each network. It can be seen that the LT auto-encoder
and the end-to-end network learn independent sets of binary
patterns to extract the features of the scene. We also esti-
mated the patterns with real-values without using the gam-
bel softmax trick for comparison. In the generated patterns,
we can observe lower contrast than the binary patterns and
they are prone to be more sensitive to noise.

5.2. Setup of real data experiments

We validate the proposed method using real-world exper-
iments. The prototype is shown in Fig. 9, where it consists
of a LCD projector, a camera (Basler acA1920-155uc) and
an optical diffuser (plastic), which is placed in front of the
camera. The resolution of the projector is 1024 × 768 px
and 1920× 1080 px for the camera.

5.3. Glitter surface measurement with dual photog-
raphy

First, we validate the effect of light ray filtering in the an-
gular domain. A cube with a diffuse surface, the left half of
which is covered with glitter paper (Fig. 9(b)) is measured.
The LT is measured by brute-force manner, i.e., turning on
one pixel at a time out of 32×32 pattern. In the actual mea-
surement, Hadamard code is used to compensate low SNR
cause by low light intensity of the projector’s single pixel
illumination.

Figure 10 shows the effect of applying the filter ex-
plained in Sec. 4.4 to synthesize dual view that is relit by
a virtual point light source from the center of the diffuser.
The image is cropped so that the right half is the diffuse sur-
face and the left half is the glitter material. Glitter is widely
distributed in the left half of the image when no filter is ap-
plied. By applying a filter of larger size kf , it weakens the
glitter effect and makes the appearance closer to the diffuse
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Figure 8. Verification of deep networks. (a) Result of dual view synthesis using LT encoder network and surface normal estimation using
PSN. (b) Optimized patterns for multiplex lighting using the proposed networks.

Diffuser

Target
Projector

Camera
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Figure 9. (a) Prototype for real-world measurement. (b) Target
object. A cube with a diffuse surface, the left half of which is
covered with glitter paper.

w/o filter 𝑘𝑓 = 31 51 121

Figure 10. Result of ray filtering (contrast enhanced). Each Dual
view is smoothed by a filter of a different size. Note that as the
filter size increases, the glitter in the left half becomes weaker.

surface. It can also be confirmed that the diffuse surface is
not affected by filtering.

Next, PS is applied to the dual view images with the fil-
tering. To generate a shading image for PS, we sample four
pixels from the captured image to synthesize dual views.
Dual views are smoothed by ray filtering to reduce the ef-
fect of glitter pixels, then, the surface normals are estimated
by PS using the calibrated light source positions. For com-
parison, surface normals are also estimated by using primal
setup, i.e., the optical diffuser is placed in front of the pro-
jector and illuminated by the single pixel projection, which
makes a virtual point light source. After the captured im-
ages are smoothed by filtering (Gaussian kernel is used in

the experiments), the surface normal is estimated. The ob-
ject orientation is adjusted so that the primal and dual setups
have the same viewpoint.

The results are shown in Fig. 11. The filter sizes are ad-
justed so that the standard deviation of the normals are the
same for ray filter and spatial filter after smoothing (spatial:
8.13◦, proposed: 8.08◦). In the case of the primal setup, the
edge of the two faces is blurred in surface normal image af-
ter the filtering, while it keeps sharp edge in the dual setup.
In addition, high frequency errors are effectively decreased
in dual setup, whereas low frequency artifacts appear in pri-
mal setup. Fig. 12 shows horizontal profiles of the surface
normal (only y direction) of Fig. 11 with/without filtering
in blue and red colors. From the results, it is confirmed
that the proposed method preserves high-frequency shapes,
whereas sharp edge is blurred out with primal setup.

5.4. Multiplexed measurement in real-world envi-
ronment

We performed measurements using multiplexed patterns
in a real environment. For actual projection, the pattern
value is normalized between 0 to 255 accordingly. 16 pat-
terns are utilized for the measurement. Shading images re-
constructed from the multiplexed measurement is shown in
Fig. 13. Although some areas have artifacts, the dual views
are basically restored correctly, which proves that LT is re-
constructed in the network. In the results, (a) and (b) are
reconstructed by using a model trained with only synthe-
sized data, whereas (c) and (d) are fine-tuned by real data.
Since synthetic data cannot deal with noise and complicated
illumination in the real environment, quality of generated
shading images are much worse than those of (c) and (d).

The normal estimated by PSN is shown in Fig. 14. The
reference surface normal is estimated from the LT recon-
structed by brute-force measurements and they are shown in
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Figure 11. Surface normals estimated for glitter (left-half of the
each image) and diffuse (right-half of the each image) surfaces. A
spatial filter is applied to the primal setup (top), and an angular fil-
ter is applied to the dual setup (bottom). The normals are normal-
ized so that each filtered normal has the same standard deviation. It
is confirmed that dual setup decreases high frequency noises, but
keeps sharp boundary edge, whereas primal setup blurred entire
image

(a) Dual setup (b) Primal setup

Figure 12. Profiles of surface normal with and without filtering. It
is shown that dual setup does not change the global shape, whereas
the shapes of profiles are largely modified for primal setup.

Brute-force measurement (GT) Multiplexed lighting

(a)

(b)

(c)

(d)

Figure 13. LT measurement and reconstruction with multiplexed
illumination of four objects. (a) a cone, (b) a single ball, (c)
two balls, and (d) a box with two planes. Each tiled image is
a dual view synthesis result corresponding to four virtual illumi-
nation conditions. (a) and (b) are reconstructed by using models
trained only with synthetic data, and (c) and (d) are reconstructed
by model with fine-tuning using real data. It is clearly shown that
the fine-tune significantly improves the results.

the second column. There are two balls in the ball scene (top
row) and a two faces box in the board scene (bottom row).
Since PS is trained using a synthesized dataset whose light-

Brute-force LT PSN

Reconstructed LT

Fig. 5 (a) + (b)

End-to-end

Brute-force LT

Fig. 5 (b)

B
a

lls
B

o
a

rd

Fig. 5 (c)
(center view)

Figure 14. Surface normal estimation results by photometric stereo
network with multiplexed measurement. It is shown that our joint
network of LT auto-encoder and PSN (the 3rd column) is better
than the end-to-end network (the 4th column). Please see the main
text for more detail.

ing condition is as same as the real environment, estimated
surface normals are expected to be same as the reference.
When LT is estimated by multiplexed measurement (third
column), the shape of the object is consistently estimated in
most places, except left ball in the ball scene. Since the left
ball has strong specularity, we think that the error is caused
by such an unexpected BRDF.

The results of the end-to-end network (shown in
Fig. 5(c)) are shown in 4th row for comparison. As shown
in the figure, the spheres and the boards are reconstructed
globally correct, however, some areas, such as the top of
the board and right ball are mis-estimated. From the re-
sults, although some artifacts are observed, it is confirmed
that the multiplexed measurement effectively worked.

6. Conclusion
We have tackled the PS measurement using the setup

with a diffuser. We have proposed joint learning of the mul-
tiplexed lightings and reconstruction algorithm using DNN
consists of a simple differentiable renderer and PS recon-
struction modules. We have shown the multiplexed lighting
can effectively reduce the number of measurement of LT
acquisition. Also we have learned lighting pattern can deal
with materials with complicated BRDF, such as glitter sur-
faces. We also proposed a photometric stereo method using
diffuser and dual photography. Using our dual setup, we
can estimate the normal of the glitter surface, where unpre-
dictable reflections occur, by filtering the light rays in the
angular domain. This effectiveness of the proposed method
was verified in both synthetic and real-world experiments.
In the future, conditional VAE is planned to generalize the
configuration of the setup.
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