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Figure 1: Two depth estimation results on four frames and the comparisons. Existing video based methods using structure-
from-motion (DeepV2D [41]) or sequential model (CLSTM [55]) has limitation in scenes they can apply and their depth
estimations are not satisfactory on these two general scenes. The state-of-the-art single image depth prediction method
MiDaS [32] is a general one but it generates flickering depth maps as the two sequences are processed in a per-frame manner.
Our method is built on single image depth methods but with temporal consistency enforced. We can achieve temporal stable
depth estimation by simple frame by frame processing while maintaining high depth quality.

Abstract

Most existing monocular depth estimation methods are
trained on single images and have unsatisfactory temporal
stability in video prediction. They may rely on post pro-
cessing to solve this issue. A few video based depth estima-
tion methods use reconstruction framework like structure-
from-motion or sequential modeling. These methods have
assumptions in the scenarios that they can apply thus limits
their real applications. In this work, we present a simple ap-
proach for improving temporal consistency in video depth
estimation. Specifically, we learn a prior from video data
and this prior can be imposed directly into any single im-
age monocular depth method. During testing, our method
just performs end-to-end forward inference frame by frame
without any sequential module or multi-frame module. In
the meanwhile, we propose an evaluation metric that quan-
titatively measures temporal consistency of video depth pre-
dictions. It does not require labelled depth ground truths
and only assesses flickering between consecutive frames.
Experiments show our method can achieve improved tem-
poral consistency in both standard benchmark and general

cases without any post processing and extra computational
cost. A subjective study indicates that our proposed met-
ric is consistent with the visual perception of users, and our
results with higher consistency scores are indeed preferred.
These features make our method a practical video depth es-
timator to predict dense depth of real scenes and enable
several video depth based applications.

1. Introduction

Recovering 3D information from 2D images and videos
is always one of the most fundamental tasks in computer vi-
sion and has been studied for long. While direct 3D percep-
tion is difficult, depth provides an intermediate (2.5D) rep-
resentation to measure the physical world. Depth percep-
tion enables application in a wide variety of scenarios, such
as augmented reality (AR) [42], face recognition [31], and
autonomous driving [49]. Prevailing way for depth sens-
ing is to use specific range sensing equipment, e.g., binoc-
ular stereo cameras [18, 22, 34], time of flight (ToF) cam-
eras [60], and structured light sensors [36]. Direct depth es-
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timation from 2D images / videos is highly desired, but this
monocular depth estimation is well known for its ill-posed
nature due to scale ambiguities in the estimation.

Some early works explore different priors in solving this
problem, such as shading and texture [40], object sizes and
locations, as well as occlusion and perspective cues [47].
Some data driven methods are also proposed, which trans-
fer known depth map to an unseen scene by matching its se-
mantic features [11, 20]. With the advance of deep learning,
many convolution neural network (CNN) based method has
made remarkable achievements in this area [3, 8, 15, 32].

The aforementioned methods are mostly trained on sin-
gle image datasets. When applying it to video, it usu-
ally causes unsatisfactory temporal stability, visually per-
ceived as flickering over time. Several video-based meth-
ods address this problem by exploiting the power of re-
current structure. A typical example is the use of convo-
lutional LSTM [29, 55]. Those methods do not explicitly
enforce temporal consistency, hence they rely heavily on
stable dense ground truths which are expensive to obtain.
Another type of methods adopt multi-view constraints and
reconstruct the scene from motion [44, 52, 59]. However,
such reconstruction relies on accurate matching features in
temporal space, which are commonly downgraded by dif-
ficulties including less textural area and motion blur in dy-
namic scenes.

In this paper, we introduce a simple yet effective ap-
proach to enforce temporal consistency of video depth es-
timation. A basic assumption behind it is that flickering
comes out if corresponding pixels in consecutive frames
drift a lot. By restricting and aligning the predictions under
such correspondence, the model is guided to produce depth
estimation with strong consistency under single frame in-
ference. At the same time, we define a metric that fairly
evaluate the stability of depth estimation results over time,
and it does not require labelled ground truth for processing.
By conducting experiments on public benchmarks, we show
that our method improves stability in term of our defined
temporal consistency, while does not impair original depth
estimation quality. With a model of good generalization
ability, we are easy to extent it to common real world scenes
which are lack of depth ground truth by imposing geometric
constraints and fine-tuning the network using videos only.

We summarize our contributions as follows:

• We introduce a novel evaluation metric that measures
the stability of video depth estimation results. We
show that the metric is well defined and is positively
correlated to human visual judgement towards depth
consistency.

• We propose an effective method to impose temporal
constraints during training. The model is then learned
to generate stable depth predictions with only single-

frame inputs. Experiments on public benchmarks in-
dicate that our method improve temporal consistency
without harming depth accuracy.

• We extend the method to dynamic video without depth
ground truths. We show that we can easily enforce
constraints and regularize the model using unlabelled
videos. Subjective study illustrates that our method
provides results with better consistency values as well
as perceptible less flickering.

2. Related Work
Mono-depth Estimation There exists extensive liter-

ature studying the recovery of depth from single image.
Early stage methods predicted the structure by exploiting
cues from shading [40], occlusion [47] or semantic la-
bels [20]. Saxena et al. [35] is the first to adopt a learning-
base method to regress depth from local feature with MRF
post-processing. With the boosting of deep learning, dif-
ferent convolutional architects have been designed and ap-
plied on this problem. [3, 15, 16, 21]. Besides employing
an improved network structure, several works have formu-
lated well-designed loss such as ordinal loss [4] and multi-
scale gradient loss [45] to obtain refined estimation. Xian
et al. [51] addresses the ranking loss around object edges
in order to promote sharpness.

Directly regressing single image to depth result is pos-
sible but it requires a large amount of dense labelled data.
Collecting depth maps in varying scenarios with high qual-
ity still remains as a big challenge in our community. Dif-
ferent solutions have been introduced to alleviate the de-
mand of data. One way is to manually produce depths from
source images. Ground truth are collected in the form of
annotated relative depth [1] or disparity [45, 50]. Structure-
from-motion (SfM) is also employed to extract depth from
multi-view reconstruction [17, 19]. Recent work [32] shows
that generalization capacity of the model can be substan-
tially improved by mixing diverse data source with the help
of a scale- and shift-invariant loss. Self-supervised manner
is also explored to get rid of limited depth maps. Those
methods [5, 6, 7, 53] fall into the same category that applies
a photometric loss to minimize the explicit reconstruction
error. Thus estimate depth is implicitly optimized as an in-
termediate result. Luo et al. [24] separate monocular depth
estimation into a view synthesis problem along with a stereo
matching problem, which are accessible by including extra
synthetic training data. Mahdi et al. [25] propose to refine
a pre-trained depth estimation network by merging depth
estimations in different resolution patches.

However, all above methods do not include temporal ,
which limits their performance on video sequences. It leads
to inevitable visual flickering when we directly apply the
model frame by frame.
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Figure 2: Our pipeline for imposing temporal consistency into the depth estimation. We use a network to directly predict
depth maps on each frame independently. Beside this, we calculate the optical flow between two consecutive frames and use
the flow vectors to warp one frame to align to another. After this alignment and occlusion handling, we try to minimize the
depth difference loss between the two in our training. By this we can enforce the temporal consistency in our depth estimation
network. During inference time, our depth estimation network can directly estimate the depth maps frame by frame which is
computationally efficient.

Depth Estimation from Videos Multiple frames in se-
quential manner provide additional information for depth
estimation. Considerable works [39, 41, 46, 52, 58, 59]
have shown that multi-view constraints are helpful to solve
the geometry on every target frames. Those methods do
not rely on labelled data and do produce more stable re-
sults . However, SfM-based methods suffers severe degra-
dation when applied to fast-changing scenes with dynamic
objects as it is challenging to find corresponding relations
because of motion blur and poor texture. At the same time,
those approaches are computationally very extensive and
not efficient in video-related tasks. Recurrent networks like
LSTM [28, 55] have been used to capture temporal infor-
mation and encourage consistency. It is simple to deploy
such models, though their generalization performance is
build upon sufficient depth data supply in varied scenarios.
Luo et al. [23] combines advantages of neural network and
multi-view constraints. It refines the network at test time to-
wards geometrical consistency by aligning correspondences
in 3D space. Kopf et al. [13] jointly estimate camera pose
and depth alignment to remove the limitation of SfM for
video, and using a geometry-aware filter to improve high-
frequency details. Our method adopts a similar idea but
instead restricts alignments in pixel level which forbids the
error brought by 3D reconstruction.

Temporal Consistency Flickering occurs when single-
frame based method is applied to video clips. Depth value
at the same pixel is not stable across frame and it endures

radical drifts which causes notable visual incoherence. Var-
ious works have been undertaken to enforce temporal con-
sistency in the field of video-to-video synthesis [48], video
enhancement [54], style-transfer [33] and semantic segmen-
tation [26]. Though attempts have been made to evaluate
stability in video segmentation [43] and video object detec-
tion [57], there is an absence of a clear definition of tem-
poral consistency in the scope of video depth estimation.
Instability is introduced in [23] where it declares instability
of reliable tracks as the real discrepancy in 3D space. This
is fundamentally correct but does not straightforwardly re-
flect the visual flickering in pixel space. In this work, we
use optical flow [9] as well to develop a novel consistency
metric that is closely related to 2D perception. In the mean-
while, we propose an practical method to enforce temporal
consistency in video depth estimation.

3. Our Definition and Method
In this section, we present the definition of our temporal

consistency metric, and illustrate how we can enforce tem-
poral consistency during training and improve model capac-
ity of producing stable depth estimation results.

3.1. Metric of Temporal Consistency

A consistency-enforced model should produce a se-
quence of depth estimation results which do not contain no-
table flickering over the whole period. Variations between
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two consecutive depth maps generally come up from several
aspects: movement of objects in the scene, shift and rotation
of camera, and unexpected frequent drifts in the same area.
Considering a video of high frame rate, the change between
frames is minor, and depth value between two consecutive
frames should be almost identical in the corresponding pix-
els. Single-image based methods commonly do not impose
any constraints on such variations across frames, thus flick-
ering occurs such that depth value of pixels belonging to
the same identity in 3D coordinate go through frequent and
random drifts in temporal axis.

In order to measure the stability of a sequential depth
results, we need to identify corresponding pixels in each
pair of consecutive frames, and determine how those pixels
fluctuate across the whole video. Following the previous
work which focuses on evaluating consistency in semantic
segmentation [43], it is easy to come up with the idea of
searching corresponding pixels by optical flow.

Denote Xi(i = 1, ..., n) as the original video of length
n. Processed by a depth estimation model, no matter
it uses single-frame or multi-frame structure, we can get
a sequence of depth predictions Di(i = 1, ..., n) of the
same resolution. Considering any two consecutive frames
Xi,Xi+1 and their estimated depth maps Di,Di+1, the vari-
ation in depth space for all pixels should be minor. Directly
calculating the difference between Di and Di+1 does not
fairly reflect the flickering coming from undesirable fluc-
tuation of depth value, since all the pixels are not aligned
due to movement of objects and camera. By employing
the optical flow estimator, e.g., [2, 10, 38], we compute
the dense flow map from Xi+1 to Xi as fi+1→i, such
that we can use warping operation w(·) to warp Di+1 as
D̂i+1 = w(Di+1, fi+1→i), which is now spatially aligned
with Di. Similarly, we also warp the color frame Xi+1 as
X̂i+1 = w(Xi+1, fi+1→i), so that we obtain a valid mask
by comparing the color difference. The mask Mi is created
by thresholding color differences as ||Xi− X̂i+1|| < δ, and
we only compare the depth fluctuation on valid pixels.

It comes to a simple idea of calculating the absolute dif-
ference between those aligned and valid depth pixels. By
this means, the temporal consistency (TC) metric at frame i
is formulated as:

aTCi =
1∑

(Mi == 1)
Mi · ||Di − D̂i+1||. (1)

Two adjacent depth maps are considered consistent, if
the temporal metric aTC has a small value. However, it
does not take the range of depth value into consideration.
During visualization, we generally normalize depth results
and view them in relative version. If a model tends to pro-
duce depth results that is small in certain region after nor-
malization, the above proposed formulation is not correct
since it reflects the absolute variation that is highly corre-
lated to the scale. Even though flickering appears radically,

the video could be recognized as stable since aTC metric is
small.

The accuracy threshold used in monocular depth estima-
tion benchmark [3] inspires us to consider the relative fluc-
tuation of depth value across frames. Ratio of change is
more reasonable than absolute difference and it is more as-
sociated with visual flickering. Therefore, we modify pre-
vious metric defined in Eqn. 1 to use relative difference as:

rTCi =
1∑

(Mi == 1)
Mi·

[
Max

(
Di

D̂i+1

,
D̂i+1

Di

)
< thr

]
.

(2)
This metric reflects the percentage of matching pixels

that go through modest variation at frame i. When a video
of depth maps is stability, the metric should have small
value at every time i. The temporal consistency of a video
can be written as:

TC =
1

n

n∑
i=1

rTCi (3)

which is the average ratio of intolerant variation over the en-
tire sequence. In our experiments, we conduct a user study
to demonstrate that our proposed temporal consistency met-
rics in video depth estimation is consistent with human per-
ception, whose details can be found in Sec. 4.3.

3.2. Enforcing Temporal Consistency for Video
Depth Estimation

Figure 2 shows the overview of our pipeline to enforce
temporal stability in video depth estimation. Our pipeline is
built on single image depth estimation and intend to impose
learning temporal consistency onto the original depth net-
work. In the training stage, we take two consecutive frames
Xi and Xi+1, and feed the two frames into the depth net-
work to generate the corresponding depth predictions re-
spectively. The network outputs are denoted as Di and
Di+1.
Depth loss Following the single image depth estimation
methods, we can measure the distance of the depth predic-
tions to the ground truth depth D∗

i and D∗
i+1. This is just

the conventional loss on depth predicting accuracy that is
being minimized during training. The forward pass, loss
computation, and backward pass apply to the two frames
independently and we denote the loss in this part as depth
loss Ld:

LD
i =

∑
t=i,i+1

Ldepth(Dt, D
∗
t ), (4)

where Ldepth(·) is the single image depth estimation loss,
e.g., L1, L2, and SIloss [32]. In our experiments, we use
SIloss as our training loss.
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Figure 3: Visual comparison with other state-of-the-art methods on NYU validation set. The First Row: The input frames
from NYU. The Second Row: The generated depth estimation maps using CLSTM. The Third Row: The generated depth
estimation maps using DeepV2D. The Last Row: The generated depth estimation maps using our method. In order to better
visualize the video stability, we zoomed-in and concatenated the same regions from different frames and depth estimation on
the last column.

Temporal consistency loss Besides the conventional depth
prediction loss, we additionally impose temporal consis-
tency loss which measures the difference between the depth
estimations from the two frames. Our intention is to pe-
nalize large depth shift between two consecutive frames.
As there are motions between the two frames, we need
to compensate for it before measuring the distance. This
is achieved by estimating the optical flow from the frame
Xi+1 to the frame Xi using an off-the-shelf optical flow
estimator [38] with which We can warp the depth predic-
tion Di+1 to align with Di and denote the warping result as
D̂i+1. With the same flow vectors, we also warp the color
frame Xi+1 as X̂i+1. After this alignment, we can impose
our temporal stability loss as the L1 distance between the
two depth maps as:

LTC
i = Mi · ||Di − D̂i+1||, (5)

where Mi is the occlusion mask. Unlike the Mi defined
in Eqn. 1 and Eqn. 2 that uses hard thresholding, we use
soft occlusion mask in Eqn. 5 as Mi = exp(−σ · (||Xi −
X̂i+1||22).
Overall loss The overall loss function for training depth es-

timation with temporal consistency is defined as:

L =
∑
i

(
LD
i + λLTC

i

)
, (6)

where λ controls the weight of the temporal consistency
term in the total loss.
Training general video depth While the depth estimation
loss defined in Eqn. 4 require depth ground truth, it is hard
to capture large scale and diverse video depth dataset. To
solve this issue, we propose to use supervision distilled
from the state-of-the-art monocular depth methods. Specif-
ically, we use the MiDaS network [32] as the teacher, which
pre-trained on large variety of data from multiple datasets.
MiDaS has proven to have decent generalization ability is
potentially suited to our aim of general depth estimation. In
this setting our pipeline described earlier still applies but we
just treat the output from MiDaS network as the supervision
signal D∗

t .

4. Experiments
To demonstrate that our method can provide a more sta-

ble video depth prediction, we run extensive experiments on
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Figure 4: Visual comparison with other state-of-the-art methods on NYU validation set. The First Row: The input frames
from NYU. The Second Row: The generated depth estimation maps using BTS. The Third Row: The generated depth
estimation maps using CLSTM. The Last Row: The generated depth estimation maps using our method. In order to better
visualize the video stability, we zoomed-in and concatenated the same regions from different frames and depth estimation on
the last column.

Method Lower is better ↓ Higher is better ↑
Speed(s) RMSE Abs Rel Sq Rel σ < 1.25 σ < 1.252 σ < 1.253 TC

BTS[16] 0.0846 0.3271 0.0889 0.0473 0.9268 0.9845 0.9958 0.9420
CLSTM [56] 0.0829 0.4437 0.1432 0.0941 0.8318 0.9631 0.9898 0.8783
DeepV2D [41] 1.1619 0.3211 0.0952 0.0541 0.9146 0.9834 0.9949 0.9607
Ours 0.0585 0.3460 0.1024 0.0556 0.9061 0.9808 0.9954 0.9615

Table 1: The quantitative comparison on our NYU test set. The top scores in each category are highlighted in bold. TC:
temporal consistency metrics in Eqn. 3. The resolution of input frame is 320 × 420. All the inference experiments are
conducted on a NVIDIA Tesla P40 GPU.

one standard benchmark dataset [37]. In addition, we con-
duct several human subjective studies to validate the effec-
tiveness of our temporal consistency metric and our method
to impose temporal consistency.

We implement our approach based on the public deep
learning library PyTorch [27]. For all experiments, our net-
work use the same network structure as in MiDaS [32]. We
initiate the network with its official parameters pre-trained
on mixing datasets, and fine-tune on different datasets. Our
data augmentation includes random horizontal flip and ran-
dom temporal flip of video sequences.

4.1. NYU Depth v2

Dataset We perform experiments on NYU Depth v2 dataset
[37]. The NYU dataset records 464 video sequences with
both RGB and depth camera. These video sequences cover
a variety of indoor scenes, including living rooms, kitchen,
bathrooms. For all sequences, we preserve one image for
every five images to prevent the time interval from being too
short. Following the official train split, our experiment use
249 scenes for training. We separate the test images from
the densely labeled pairs, which come from the rest 215
scenes. For each test image, we find its 4 adjacent frames
from the corresponding video sequence to construct a test
video clip. A total of 630 clips are used to construct our
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Figure 5: Visual comparisons of video depth estimations and the stripes in the figures are cropped from consecutive frames.
The state-of-the-art single image based method MiDaS [32] can produce frame-wise high quality depth maps but with notice-
able flickering over time. After imposing the temporal consistency into the depth estimation model, our method can predict
temporally more stable depth predictions.

testset. The raw RGB and depth images are synchronized
and aligned using the official toolbox.
Implementation Details For NYU dataset, the input im-
ages are resized from 427 × 561 to 320 × 448 resolution to
speed up training. Our model are trained with random crops
of size 224 × 320. The model is trained 20 epochs with a
batch size of 16, and optimized by Adam [12] method. The
initial leaning rate is set to be 0.001 and decay to 0.0001
after 10 epochs. Regions without depth information are
masked out during our training and evaluation process.
Benchmark Performance Table 1 describes the quantita-
tive comparison between our method with other learning
based methods [16, 41, 56] on the NYU dataset. Among
them, BTS [16] is a single frame based method, CLSTM
[56] and DeepV2D [41] are multi-frames based methods.
All these models are trained on the NYU dataset and re-
leased by their original author. To reduce the inference time,
the iteration number of DeepV2D is set to be 1.

Except the traditional metrics used in previous arts
[16, 41, 56], we additionally evaluate the stability of the
generated depth videos based on our temporal consistency
metric in Eqn. 3. However, our approach is far superior than
them on speed and the temporal consistency metric, and ob-

tains competitive results on other metrics.
Figure 3 and 4 show some visual comparison examples

on NYU testset. CLSTM flickers on the first frame in both
Figure 3 and 4. DeepV2D also flickers on the first frame at
the same region in Figure 3. BTS has a small flickering in
the lower half of the third frame region as Figure 4 shows.
Compared with others, Our method can produce better tem-
poral consistency depth estimation.

4.2. Real Scenes

Dataset To explore the generalizability of our approach,
we extent experiments on DAVIS [30] and Videvo [14]
datasets. These sequences are more challenging since they
are recorded from various outdoor real scenes, and the ob-
jects recorded are not all rigid and static.

Our training set consists of 60 video sequences from
DAVIS dataset and 99 sequences from Videvo dataset. The
temporal consistency are evaluated on the DAVIS official
testset, which contains 30 video sequences.
Implementation Details For DAVIS and Videvo dataset,
all input images are resized to 384 × 512 resolution. The
model is trained 5 epochs using Adam optimizer with a
fixed learning rate 0.001. Due to the lack of ground truth,
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our model is trained in a distillation way. We use the output
of the official MiDaS model as D∗

i shown in Figure 2.

User Study We have conducted a user study with 20 par-
ticipants to further compare the visual stability of generated
depth videos. For each video sequence in DAVIS testset,
there are 4 generated depth videos (one group) produced by
ours and other methods. Except one group for the tutorial,
all the rest (a total of 29 groups) are displayed to 20 partic-
ipants in a random order. For each group, the participants
are required to pick the most stable depth video.

Results and Analysis Since there are no ground truth in
DAVIS testset, we only evaluate the stability on the gen-
erated video results. Table 2 reports the quantitative com-
parison on our proposed metric and the user study results.
The temporal consistency value of our method significantly
exceeds that of other methods. Surprisingly, none of the
results produced by CLSTM and DeepV2D are selected in
our user study, which indicates that our approach can gen-
erate far more visually stable depth estimations than those
two methods.

Figure 5 displays some visual comparison examples on
DAVIS testset. We only compare with MiDaS since no one
select any results produced by DeepV2D and CLSTM in our
user study. For better visualization, we concatenate adjacent
image patches from different frames of the same video and
so does their corresponding depth patches.

In the top row, MiDaS shows obvious overall flickering
in the third and fifth depth estimations, while our depth ex-
hibits a better stability in all regions.

In the second row, MiDaS wrongly estimate the depth of
the sky in the first four frames and shows a strong flicker-
ing across all frames. And our model separates the sky and
trees in the fifth frame, while MiDaS blends them together.
The second row describes that even in extreme cases where
the sky presents, our approach can maintain the temporal
consistency and estimated the relative depth correctly.

It is commendable that our method can generate stable
depth estimations even in the case of large object motion
and camera displacement as the third row demonstrates,
while MiDaS is unstable in the area outside the railing.

Metrics CLSTM DeepV2D MiDaS Ours
TC ↑ 0.4224 0.4245 0.6025 0.8211

User Pick % ↑ 0 0 26.55 73.45

Table 2: The quantitative comparison and user study results
on the DAVIS validation set. The best scores in each cate-
gory are highlighted in bold. TC: our temporal consistency
metrics in Eqn. 3.

Figure 6: Left: Accuracy of user selection. Right: The
distribution of user’s accuracy on the TC score difference.

4.3. Metric Effectiveness

As stated before, we design a temporal consistency met-
ric 3 to evaluate the stability of the generated depth videos.
In order to prove that our metric is correlated to human per-
ception of visual stability, we carefully design a simple yet
effective user study to reveal this correlation.

We prepare 20 pairs of generated depth videos. Each pair
of depth video are produced from the same video sequence
by different models. Except one pair for the participants’
tutorial, all the rest video pairs are used for our user study
(a total of 19 pairs). We invite 20 participants to compare
and select the more stabled depth video in each pair. To
avoid subjective bias, the high temporal consistency score
videos in each pair are randomly ordered. We control the
score difference of each video pairs to be nearly uniform
distributed in four intervals shown on the abscissa axis on
the left of Figure 6.

The results of our user study are displayed in Figure 6.
As shown in the left of Figure 6, 77.37% of results is con-
sistent with the score generated by our temporal consistency
metric, which strongly indicates that the proposed metric
can sufficiently represent human perception of visual sta-
bility. In the right of Figure 6 , the abscissa axis represents
the metric score difference intervals between video pairs,
while the bar height represents the corresponding percent-
age of correct answers collected in the user study. We can
observe that the percentage of correct answers improves as
the intervals enlarges, which indicates that the variance of
our metric aligns with the human perception visual stability.

5. Conclusion

In this work, we introduce a simple yet effective method
to improve the temporal consistency of video depth estima-
tion under single frame inference. A temporal consistency
metric, which correspond with human perception of video
stability, is proposed as well. Experiments demonstrate that
our approach can exhibit a more stable depth estimation and
can be generalized on dynamic real world videos without
corresponding depth ground truth.
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