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Abstract

We propose a learning-based calibration method for
trigonometric function models that represent distortion with
over 180◦ projection of field of views. Unlike perspective
projection for less than 180◦ projection of field of views,
fisheye projection such as equisolid angle projection is valid
for whole world coordinates. To calibrate fisheye camera
models, we define a new loss function based on camera
projection effectively to optimize fisheye camera extrinsic
(tilt and roll angles) and intrinsic (focal length) parame-
ters. Our loss achieves small prediction errors throughout
the ranges of parameters. Our results show that our method
predicts precise fisheye camera parameters compared with
conventional polynomial function models for radial distor-
tion. This work is the first to calibrate a fisheye camera
model including extrinsic and intrinsic parameters for over
180◦ projection of field of views from a single image to our
knowledge.

1. Introduction

Fisheye cameras are widely used as a surveillance cam-
era, a sensor for vehicles, advanced driver assistance sys-
tems, and robots. We focus on sensing applications such as
surveillance and object detection with below steps; 1) users
put cameras anywhere, 2) calibration without specific ob-
jects from a single image, 3) visualization or recognition
using rectified images. Note that capturing images with-
out calibration objects is substantially a single image of
the background in calibration. The procedure is one of the
typical settings independent on the application details. Al-
though the application cameras need calibrating by users,
these steps enable us to employ the sensing applications for
wide usage indoors and outdoors. Further, these steps are
used for cameras fixed to buildings or poles, i.e., these cam-
eras are hard to detach.

To remove the distortion or to measure distance using
stereo cameras, it is essential to calibrate cameras. In
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Figure 1: Concept illustration of our work. Our network predicts
fisheye camera parameters using the trigonometric function model
for over 180◦ of field of views to obtain rectified images by remap-
ping. Cyan lines indicate the vertical and horizontal lines in each
of the images.

fisheye cameras, captured images have large distortion es-
pecially near the edge of images. This distortion leads
to degrading calibration accuracy. Geometric-based cali-
bration methods require calibration objects such as chess
boards and sequential images for motion-based methods.
Further, we need to carry out a lot of calibration steps.
This geometric-based calibration method requires strong
constraint extracted using geometric information such as
vanishing points and lines based on the calibration ob-
ject. Although we must control calibration environment,
the geometric-based methods have been well-established.
In contrast, learning-based calibration methods achieve to
calibrate several camera models from a single image. This
learning-based method has an advantage of robustness on
image illumination condition and scene. However, it is dif-
ficult to calibrate fisheye cameras regarding both extrinsic
and intrinsic parameters due to large distortion including
over 180◦ projection of field of views (FOV). In addition,
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high dimension polynomial function is unstable in opti-
mization of learning-based methods. Despite the advantage
of large FOV, the learning-based calibration method using a
single image for fisheye cameras has been less discussed in
the literature.

In this work, we propose a fisheye camera calibration
method to predict extrinsic parameters (tilt and roll angles)
and focal length in a trigonometric function model on the
basis of a feature extractor composed of convolutional neu-
ral networks and regressors for individual parameters from
a single image. We consider extrinsic parameters based on
horizontal lines and do not recover full rotation matrix and
translation vector, so-called place recognition.

The major contributions of this paper are two-fold. First,
we propose a learning-based calibration method for fisheye
cameras considering over 180◦ projection of FOV instead
of perspective projection. Second, we demonstrate that a
new loss function based on camera projection effectively to
optimize fisheye camera extrinsic and intrinsic parameters.

This work is the first to calibrate fisheye camera mod-
els including extrinsic and intrinsic parameters considering
over 180◦ projection of FOV from a single image to the best
of our knowledge.

2. Related works
Camera calibration has been of interest because cali-

brated cameras are commonly adopted in various applica-
tions including surveillance and robotics. It has been well
understood that calibration methods use given correspon-
dences in world coordinates and image coordinates from
calibration objects of a cubic [26] or planes [32]. Moreover,
learning-based methods have been developed using single
or multiple images in the wild, and these methods are based
on convolutional neural networks. Camera parameters are
composed of two elements: extrinsic parameters (rotation
and translation) and intrinsic parameters (sensor and distor-
tion parameters). In this paper, we focus on the learning-
based calibration methods.

Learning-based methods for only extrinsic parameters
were proposed for narrow-view cameras, i.e., non-fisheye
cameras, [8, 18, 24, 28, 29] and panoramic 360◦ images [2].
Image distortion is not negligible in fisheye cameras, and
these methods using narrow-view cameras are not applied
for fisheye cameras. In addition, Davidson’s method [2]
does not deal with non-panoramic fisheye images.

In addition to extrinsic parameters, calibration methods
including focal length for narrow-view cameras were pro-
posed using depth estimation [1, 4] or room layout [21]. It is
useful for cameras based on perspective projection less than
180◦ projection of FOV because these methods calibrate pa-
rameters with focal length. However, these methods are not
effective for fisheye cameras with over 180◦ projection of
FOV.
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Figure 2: Illustration of camera parameters for projection from a
blue incident ray.

Precisely to estimate distortion, calibration methods ex-
cluding extrinsic parameters were proposed using segmen-
tation information [31], straight lines [30], or ordinal dis-
tortion of part of images [13]. Although these calibration
methods have achieved precisely to calibrate intrinsic pa-
rameters including principal points, these methods cannot
predict extrinsic parameters and are suit for only image
undistortion.

A pioneer calibration method for extrinsic and intrin-
sic parameters including distortion was proposed by López-
Antequera et al. [15]. This method used a polynomial func-
tion model based on perspective projection with a trainable
distortion parameter k1 and a distortion parameter k2 calcu-
lated using a quadratic function depending on the parameter
k1. The method can address only less than 180◦ projection
of FOV because the camera model is based on the perspec-
tive projection. Therefore, it is not adapted for fisheye cam-
eras considering over 180◦ of FOV.

As mentioned above, conventional learning-based cali-
bration methods do not consider over 180◦ of FOV because
these methods are based on the perspective projection.

3. Proposed method
This section begins with describing camera projection

models for clarifying our setting and notations of mathe-
matical symbols. We then depict our deep neural network
architecture. Finally, we explain our loss for the learning
approach.

3.1. Camera models

Camera models express the mapping from the world co-
ordinates to image coordinates in Fig. 2. The projection first
converts the world coordinates to the camera coordinates by
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a 3× 3 rotation matrix R ∈ SO(3) and a translation vector
t ∈ R3, as a whole called extrinsics [ R | t ].

For a nonlinear projection model, the mapping can
be written in a general form using a nonlinear function
Γ : R4 → R3 as

ũ = Γ ([ R | t ] p̃) , (1)

in which u ∈ R2 and p ∈ R3 represents a point in the
image and world coordinates, respectively, and a tilde over
the vectors denotes the corresponding homogeneous coor-
dinates.

For radial distortion [19] and fisheye lens distortion [25],
the projector Γ can be expressed by a matrix that contains a
nonlinear function, whose argument is [ R | t ] p̃, as

ũ =

 γf/du 0 cu
0 γf/dv cv
0 0 1

 [ R | t ] p̃, (2)

with focal length f [mm], image sensor pitch (length per
pixel) (du, dv) [mm/pixel], and the principal point (cu, cv).
The subscripts of u and v represent the horizontal and ver-
tical direction of image coordinates, respectively.

Tsai’s polynomial function [26] is an example of a poly-
nomial function for the distortion represented as

γ = 1 + κ1r
2 + κ2r

4 + · · · , (3)

where r denotes the distance from the principal point, and
κ1, κ2, . . . are the polynomial coefficients. Note that the
polynomial function is applied after perspective projection.
Therefore, only less than 180◦ projection of FOV is valid.

Trigonometric function models γ for fisheye lenses [11,
20] are:

γ =


2 tan(η/2) stereographic projection
η equidistance projection
2 sin(η/2) equisolid angle projection
sin η orthogonal projection

, (4)

where the argument η = arctan
(
z−1
√
x2 + y2

)
and

[x, y, z, 1]> = [ R | t ] p̃. Over 90◦-incident angle η, i.e.,
over 180◦ of FOV, is valid except for the orthogonal projec-
tion in Eq. (4).

Although there is a generalized camera model [3] includ-
ing fisheye camera models instead of trigonometric function
in Eq. (4), this generalized camera model requires several
parameters to represent distortion. Therefore, we use the
trigonometric function models in Eq. (4) for fisheye camera
calibration efficiently to train deep neural networks.

3.2. Network architecture

We use DenseNet-161 [7] pretrained by ImageNet [22]
for the image feature extractor of our network and details as
follows.

FC: 2208

FC: 256

𝑓𝑓

DenseNet GAP

FC: 2208

FC: 256

𝜓𝜓

FC: 2208

FC: 256

𝜃𝜃

Input image

Camera 
model Ω

Network output

Figure 3: Our network architecture composed of a DenseNet fea-
ture extractor and regressors to predict camera parameters.

First, DenseNet extracts image features with 2208 chan-
nels from a single image with 224 × 224 pixels. These
image features are employed using global average pool-
ing (GAP) [14] to obtain a feature vector of 2208 dimen-
sion. Second, Normalized parameters of θ, ψ, and f are
predicted using three individual regressors composed of a
2208-channel fully-connected (FC) layer with ReLU acti-
vation [12] and a 256-channel FC layer with sigmoid ac-
tivation to predict the individual parameters in Fig. 3. In
addition, batch normalization [10] is applied for each FC
layer initialized using He’s method [5]. Finally, predicted
denormalized parameters are used for the predicted camera
model Ω.

Previous works showed that scaling to 224× 224 pixels
for input images is appropriate transformation even though
original images are not square [6, 15]. As follows this trans-
formation, we scale input images.

3.3. Non-grid bearing loss

We define the non-grid bearing loss for training our net-
work to calibrate fisheye cameras in Fig. 4. The bearing
loss was proposed by López-Antequera et al. [15], and the
loss was defined using the distance in the unit sphere of
the world coordinates from standard-grid image coordinates
projected by camera parameters. These standard-grid points
outer the image circle are invalid for projection in fisheye
cameras. Further, the grid points are not balanced for fish-
eye images because fisheye images have large distortion in
image coordinates. Therefore, we define the non-grid bear-
ing loss without standard-grid image coordinates described
below.
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Figure 4: Non-grid bearing loss definition based on the camera
projection using predicted and ground-truth parameters.

First, uniform world coordinates p̂ of n points (n =
32, 400 for experiments) on the unit hemisphere within 90◦-
incident angles are projected to the image coordinates û us-
ing ground-truth (GT) camera parameters. Second, these
n points of image coordinates are projected to the unit
sphere as the world coordinates p using predicted camera
parameters. Finally, we evaluate Euclidean distance be-
tween p and p̂.

We show the equation of the non-grid bearing loss L as,

L(Ω, Ω̂) =
1

n

n∑
i=1

Huber(||pi − p̂i||2), (5)

where Ω and Ω̂ are predicted and ground-truth camera pa-
rameters, respectively. Additionally, p and p̂ are the world
coordinates projected by Ω and Ω̂, respectively. The Hu-
ber (•) denotes Huber loss function with δ = 1, so-called
smooth L1 loss [9].

We define the total network loss Ltotal for training our
network shown in,

Ltotal = wθLθ + wψLψ + wfLf ,

where


Lθ = L(Ω(θ, ψ̂, f̂), Ω̂)

Lψ = L(Ω(θ̂, ψ, f̂), Ω̂)

Lf = L(Ω(θ̂, ψ̂, f), Ω̂)

, (6)

wθ, wψ , and wf are joint weights of θ, ψ and f , respec-
tively, and ˆ{•} indicates the ground truth values. Since the
camera projection sensitively depends on camera parame-
ters, we use the joint loss Ltotal consisting a predicted pa-
rameter and ground truth parameters for the rest.

4. Experiments
For evaluating our method calibrating fisheye cameras,

we conduct training and evaluating our network compared
with conventional calibration methods. First, we describe

Parameters Distribution Range or values

Pan φ Uniform [0, 2π)
Tilt θ Mix 7/9 Normal, 2/9 Uniform

Normal µ = 0, σ = π/6
Uniform [−π/2, π/2]

Roll ψ Mix 7/9 Normal, 2/9 Uniform
Normal µ = 0, σ = π/6
Uniform [−π/2, π/2]

Aspect ratio Varying {1/1 9%, 5/4 1%, 4/3 66%,
3/2 20%, 16/9 4%}

Focal length f Uniform [8.5, 15]

Table 1: Distribution of the camera parameters to make our train
and validation sets. Units: f [mm]; φ, θ, and ψ [rad].

b c d

a

0° 180°−180°

−90°

0°

90°

𝑓𝑓 = 8.5 mm 𝑓𝑓 = 12 mm 𝑓𝑓 = 15 mm

Figure 5: Example of rendered images. (a) An input panorama
image [17] with grid lines every 20◦. Rendered fisheye images
in (b), (c), and (d) using focal length set to 8.5mm, 12mm, and
15mm, respectively, and the aspect ratio of these images is 3/2.

experiment settings of dataset and parameters, and then we
show experimental results.

4.1. Dataset

We use a large-scale dataset of outdoor panoramas
named StreetLearn dataset (Manhattan 2019 subset) [17] ar-
tificially to make images using arbitrary camera parameters
in Fig. 5. We render train, validation, and test images using
these panorama images whose size is 1664 × 832 pixels as
described below. First, StreetLearn dataset is divided into
train (including validation) and test sets of 55, 599 and 161
images, respectively. We render 9 and 100 image patches
for train and test sets, respectively. Train, validation, and
test sets have 488, 883, 11, 508, and 16, 100 images, re-
spectively because we use validation rate 0.023 for train
and validation division. Second, we generate parameters
with random distribution shown in Tab. 1. The dataset di-
vision and aspect ratio distribution are based on the previ-
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ous work [15]. Since the zero-centered normal distribution
rarely generates large values, we mix the normal distribu-
tion and uniform distribution to obtain large rotation for tilt
and roll angles. Only uniform distribution is used for non-
trainable pan angles.

In test set, we use uniform distribution to evaluate param-
eters considering large rotation and varying aspect ratios de-
scribed below. We use uniform distribution [−π/2, π/2] for
tilt angle θ and roll angle ψ. In addition, the aspect ratios
have varying {1/1 20%, 5/4 20%, 4/3 20%, 3/2 20%, 16/9
20%}. The test distribution of pan angle φ and f is the same
to train distribution.

The dataset division and aspect ratio distribution are
based on the previous work [15]. Additionally, we use the
wide-range distribution of focal length for diagonal fish-
eye cameras and circumferential fisheye cameras capturing
images with non-projection areas, i.e., outer image circles
in Fig. 5. In the circumferential fisheye images, we fill the
outer image circle pixels with the mean value of the overall
dataset.

4.2. Parameter and network settings

We use the camera model in Eq. (1) with the equisolid
angle projection in Eq. (4). Since the translation vector t
is arbitrary, we fix t as zero-vector. Additionally, we fix
the principal points (cu, cv) set to the center of image to
simplify the camera model. We assume that the image sen-
sor height is 24 mm mimicking the full size image sensor
because the scale factor depends on not only focal length
but image sensor size. Note that this image sensor size is
arbitrary for rectification, and the focal length is scaled by
the sensor size. Image sensor pitch dv in Eq. (1) is calcu-
lated using the image sensor height [mm] and image height
[pixel]. Further, du is set to dv on assumption of square
pixels.

The pan angles are given for training and evaluation be-
cause the origin of pan angles is arbitrary in panorama im-
ages. Therefore, we focus on three trainable parameters of
tilt angle θ, roll angle ψ, and focal length f in our method.

Our network is optimized by Adam optimizer using de-
coupled weight decay regularization [16] whose weight de-
cay is 0.01. The initial learning rate is set to 1× 10−5, and
this learning rate is multiplied by 0.1 at 11 epoch in Fig. 6.
We use early stopping appropriately to finish training at 13
epoch. In addition, the batch size is 32, and all joint weights
of wθ, wψ , and wf are set to 1/3 for the non-grid bearing
loss in Eq. (6).

4.3. Experimental results

There is no common evaluation way for single image
camera calibration due to lack of consensus. Although there
are several metrics for evaluation of camera models, it is dif-
ficult to evaluate fairly because the precision of camera cal-
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Figure 6: Non-grid bearing train loss. All joint weights of wθ ,
wψ , and wf are set to 1/3.

ibration depends on application, i.e., an image undistortion
task requires small errors in image coordinates but a stereo
measurement task requires small incident angle errors for
stereo measurement. We follows previous works [6, 15]
reporting error distribution. In addition, there is no con-
ventional methods appropriately to compare our method be-
cause only our network can predict extrinsic parameters of
camera rotation and intrinsic parameters in fisheye cameras
for over 180◦ of FOV from a single image. Therefore, we
first describe error distribution compared with ground truth
parameters to show calibration accuracy. Second, we par-
tially compare our method and conventional methods due
to the difference of network output, i.e., some conventional
methods predict only intrinsic parameters.

4.3.1 Error distribution of our network

We show the error distribution of our network using the
test set. The distribution is mainly plotted on the diago-
nal lines in tilt angle θ, roll angle ψ, and focal length f
in Fig. 7. This trend means that predicted parameters are
corresponded to ground truth parameters throughout x-axis
of parameter ranges. Additionally, we show the absolute
errors between ground-truth and predicted values among
these parameters in Fig. 8. This distribution of these abso-
lute errors represents that there are small errors throughout
parameter ranges. Unlike previous work [15], tilt angle θ
and roll angle ψ errors are not increased in large rotation
angles because of our loss and our mixed distribution using
not only normal distribution but uniform distribution.

Figure 6 shows each non-grid bearing loss in tilt angle
θ, roll angle ψ, focal length f , and Ltotal. At the begin-
ning of training, the non-grid bearing loss of roll angle Lφ
has the largest loss compared with tilt angle Lθ and focal
length Lf . However, training using our joint loss Ltotal op-
timizes parameters, and each parameter has the same mag-
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Figure 7: Error distribution on the test set of 16, 100 images. The horizontal axis indicates ground truth values of parameters. The vertical
axis indicates predicted parameters. The diagonal red lines indicate the perfect prediction. The bottom images are examples of rendered
images using notated camera parameters.
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Figure 8: Errors on the test set of 16, 100 images. The horizontal axis denotes ground truth values while the vertical axis denotes the
absolute error between ground-truth and predicted values.

nitude of loss after convergence. Therefore, our joint loss
Ltotal works effectively to optimize fisheye camera param-
eters and leads to achieving precise calibration for extrinsic
and intrinsic parameters.

For predicting tilt angle θ, roll angle ψ, and polyno-
mial distortion coefficient in perspective projection, López-
Antequera et al. [13] proposed a learning-based method.
Although the intrinsic parameters of López-Antequera’s
method are different from our method, extrinsic param-

eter representation is equivalent. Therefore, we com-
pare the extrinsic parameters in López-Antequera’s method
and our methods as shown below. First, we train the
network of López-Antequera’s method using StreetLearn
dataset [17] divided into train, validation, and test set fol-
lowed in Sec. 4.1. Although we train López-Antequera’s
network using the distribution of train set provided in the
corresponding paper, the distribution of test set is the same
distribution in Sec. 4.1 for evaluation.
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In our method, the absolute errors between ground-truth
and predicted parameters in tilt angle θ, roll angle ψ, and fo-
cal length f are 6.62±13.21 [deg], 9.34±19.89 [deg], and
0.276±0.257 [mm] (Mean± S.D.), respectively. In López-
Antequera’s method, the absolute errors in tilt angle θ and
roll angle φ are 31.78±30.03 [deg] and 45.25±25.91 [deg],
respectively. Although we train the network of López-
Antequera’s method in the corresponding paper except for
using StreetLearn dataset [17] consisting of various street
scene, it seems that it is difficult for López-Antequera’s
method to train the networks using StreetLearn dataset even
if the training is converged. Therefore, our method achieves
small errors in rotation parameters compared with López-
Antequera’s method throughout angle ranges. Note that in-
trinsic parameter evaluation is described later in Sec. 4.3.3.

4.3.2 Reprojection error

It is well-known to evaluate camera parameters using re-
projection errors in geometric-based calibration methods.
The reprojection errors represent the calibration accuracy
of both extrinsic and intrinsic parameters. In learning-based
calibration method using a single image, there is no explicit
ground-truth points in the world coordinate. For learning-
based methods, we evaluate extrinsic and intrinsic param-
eters using reprojection errors described below. First, uni-
form world coordinates p̂ of n (= 32, 400) points on the
unit hemisphere within 90◦-incident angles are projected to
the image coordinates û using the ground-truth camera pa-
rameter Ω̂. Similarly, the world coordinates p̂ are projected
to the image coordinates u using predicted camera parame-
ter Ω. We show the reprojection error ε as,

ε(Ω, Ω̂) =
1

n

n∑
i=1

||ui − ûi||22. (7)

In the test set, the reprojection errors of our method
and López-Antequera’s method described in Sec. 4.3.1 are
17.99± 15.44 and 42.14± 48.02 pixels, respectively. Note
that we clamp distance between u and û using half im-
age height (112 pixels) because reprojection errors may
cause quite large values. In addition to rotation errors, our
method has small reprojection errors compared with López-
Antequera’s method that has large reprojection errors due to
large errors of roll angle ψ.

4.3.3 Comparison using PSNR and SSIM

We use the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [27] for intrinsic parameter evaluation.
In image rectification task, extrinsic parameters are ignored
because the image rectification is employed using only in-
trinsic parameters such as focal length and distortion coef-
ficients. In general, the image rectification is used for eval-
uation of non-fisheye cameras because large incident angle

cannot be projected to rectified images due to over 180◦ of
FOV in fisheye cameras.

In methods predicting only intrinsic parameters for rec-
tification, Yin et al. [31] proposed a learning-based method
regarding image context of segmentation, and Liao et
al. [13] proposed a learning-based method using ordinal
distortion in parts of images to use alternative representa-
tion compared with Yin’s method. In addition, the state-of-
the-art geometric-based calibration method was proposed
by Santana-Cedrés et al. [23] for rectification using lines.
These baseline models described above are realized accord-
ing to the implementation details provided in corresponding
papers.

For fisheye evaluation, we render images using the test
set described below. First, we use a pinhole camera with
120◦ of FOV for remapping to obtain rectified images from
the test set and ground truth parameters. In Yin’s method
and Liao’s methods, we employ center cropping for the in-
put images before feeding them to networks because these
methods require square input images. Second, we calculate
PSNR and SSIM using rectified images of the ground truth
and prediction.

Table 2 shows comparison of PSNR and SSIM in our
test set. Our method outperforms conventional methods in
both PSNR and SSIM. Our method and López-Antequera’s
method have higher accuracy compared with methods pre-
dicting only intrinsic parameters. Therefore, training using
extrinsics and intrinsics parameters simultaneously proba-
bly leads to improving accuracy. Note that we exclude
Santana-Cedrés’s method for quantitative evaluation be-
cause it does not work in many images because the line
detector fails to extract lines.

The qualitative rectification results on our test dataset
generated by our method and the others are shown in Fig. 9.
Our method obtains overall the most similar to the ground
truth images even if cameras are rotated with large angles.

As described above, our method precisely calibrates both
extrinsic and intrinsic parameters for fisheye cameras with
over 180◦ of FOV.

5. Conclusion
We have described our learning-based calibration

method using the trigonometric function model for extrinsic
and intrinsic parameters in fisheye cameras. Effectively to
calibrate fisheye camera, we proposed the non-grid bearing
loss to represent distance errors on unit sphere projected by
camera parameters. The main result of this paper is that our
method calibrates not only intrinsic parameters but extrin-
sic parameters from a single image for over 180◦ of FOV. In
addition, our method precisely calibrates parameters com-
pared with both conventional geometric-based and learning-
based methods. Evaluation using various camera models is
our future works.

1180



Method Learning Extrinsics Intrinsics Projection Over 180◦ FOV PSNR ↑ SSIM ↑

Santana-Cedrés [23]1 X Perspective – –
Yin [31] X X Fisheye 2 X 15.29± 1.78 0.3344± 0.1213
Liao [13] X X Perspective 15.52± 1.98 0.3859± 0.1173

López-Antequera [15] X X X Perspective 16.92± 3.87 0.4555± 0.1769
Ours X X X Fisheye X 21.72± 5.56 0.6124± 0.2078

1 Exclusion for evaluation due to failure of line detection in many images.
2 Using generalized fisheye camera models.

Table 2: Comparison of conventional methods and our method using the test set.

Input GT Yin Liao López-Antequera OursSantana-Cedrés

Figure 9: Qualitative results on our test images. We show the input image, the ground truth image, and the results of compared methods:
Santana-Cedrés [23], Yin [31], Liao [13], López-Antequera [15], and our method from left to right.
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