
Multi-Level Adaptive Separable Convolution
for Large-Motion Video Frame Interpolation

Ruth Wijma
University of Amsterdam

rlwijma@gmail.com

Shaodi You
University of Amsterdam

s.you@uva.nl

Yu Li
Applied Research Center (ARC),

Tencent PCG
ianyli@tencent.com

Abstract

Current state-of-the-art methods within Video Frame In-
terpolation (VI) fail at synthesizing interpolated frames in
certain problem areas, such as when the video contains
large motion. This work aims at improving performance
on frame sequences containing large displacements by ex-
tending the Adaptive Separable Convolution model in two
ways. First of all, we increase the receptive field of the
model by utilizing spatial pyramids, which efficiently in-
crease the interpolation kernel size. We additionally adapt
the network to accommodate for four frames, as opposed
to just two, which should give it the ability to learn more
complex motion patterns. This work also introduces the
Large-Motion Video Interpolation Dataset (LMD), which
contains extracted frames from videos containing large dis-
placements and highly non-linear movements. Our analy-
sis shows that applying the model changes, together with
the use of our new dataset, does indeed result in improved
performance on large displacement videos. We also show
that the increase in performance generalizes to frame se-
quences of all sorts by outperforming other models in our
benchmark on most tasks, and almost setting the new state-
of-the-art on the Vimeo-90K dataset.

1. Introduction

Video Frame Interpolation (VI) is one of the prominent
fields within computer vision, one that has been the focus of
many researchers. The process of VI is the insertion of gen-
erated frames in between existing frames within a video,
with the goal of improving its fluency and visual appeal.
These methods are helpful in cases where we have a video
with a frame rate that is too low to be used in practice.
For example, movies are often shot in 24 frames per sec-
ond (FPS), but the FPS needs to be up-scaled to 60FPS be-
fore the video can be shown on a modern TV. Another field
that uses VI methods is the medical sector [14]. Computed

Tomography (CT) scans generally have a very low frame
rate, because of the high radiation emitted per scan. Medi-
cal practitioners would however benefit from having more
frames to make more informed decisions [4].

However, many of the state-of-the-art approaches suf-
fer from artifacts in the synthesized images as a result of
large frame-to-frame pixel-wise motion being present in the
frame sequence, meaning that objects within the video ei-
ther move fast in space, the video resolution is large or that
the frame rate is relatively low. We either see the same ob-
ject in different places, or the resulting frame contains a
large amount of blur, i.e. a lack of detail. In movies, the oc-
currence of these artifacts even has a specific name, called
the Soap Opera effect.

In summary, this work will address these problems by
extending the Adaptive Separable Convolution model [11]
to work with more input frames and increase the receptive
field by utilizing spatial pyramids to efficiently make use of
the interpolation kernels. We also introduce a method that
specifies a notion of displacement of a frame sequence by
measuring the frame-to-frame flow vectors. This allows us
to test model performance as a function of the estimated
displacement.

This work also introduces the Large-Motion Video In-
terpolation Dataset (LMD) consisting of many frame se-
quences extracted from videos of extreme sports, there-
fore consisting of many large displacements and non-linear
movements. The usage of this dataset is twofold, we first
of all include the train fold of the LMD as a subset of our
training dataset, while we utilize another subset of the LMD
as validation data.

We will conclude by comparing several recent methods
on multiple datasets and metrics to show that the incorpo-
ration of the aforementioned changes leads to improved in-
terpolated results. Additionally, we do a qualitative analy-
sis by showing the synthesized images on some hard frame
sequences. Our experiments show that we are able to im-
prove upon the problem areas mentioned above. We also
see a significant improvement in general performance, as

1127

measured on the Vimeo-90K test set. Code can be found at
https://github.com/rwq/MSC_AI_Thesis_FI

We make the following contributions:
• We introduce our extension of the Adaptive Separa-

ble Convolution network, named Multi-Level Adap-
tive Separable Convolution.

• We introduce our dataset containing mostly frame se-
quences having larger displacements, The Large Mo-
tion VI Dataset.

• We show that our model is able to improve upon frame
sequences containing large displacements, as well as
improve upon general performance, as measured on
the Vimeo-90K test set.

2. Related Work
Most Video Frame Interpolation methods can be cate-

gorized as being either flow-based or kernel-based. While
the former first estimates the flow vectors between the input
frames as an intermediate step, and uses this to synthesize
the output, models of the latter category do this directly.

Xue et al. proposed Task-Oriented FLow (TOFlow) [19],
an approach that first estimates optical flow between frames,
and then uses this flow in conjunction with the two frames to
generate intermediate frames. It gets its name from the fact
that they train a network based on of three tasks: Temporal
frame interpolation, Video denoising/deblocking and Video
super-resolution. A later work from Bao et al. also noticed
that occlusion is a problem with regards to increasing the in-
terpolation performance [1]. They proposed Depth-Aware
video frame INterpolation (DAIN), in which they use the
fact that objects that are closer to the camera tend to have a
larger motion (larger flow vectors), and should thus be paid
more attention to. In reconstructing the intermediate flow
vectors, pixels that are closer are weighted more heavily,
thereby decreasing the chance of sampling a pixel that is
occluded in the intermediate frame. Xu et al. [18] proposed
the first deep-learning method to make use of more than two
frames during interpolation. Instead, they use four frames,
i.e. two before and two after the interpolated image. The au-
thors hypothesize that using more frames enables the model
to learn motion more complex than linear motion, which is
not possible from using just two frames. They report that
their method outperforms other high-scoring methods.

Niklaus et al. were one of the first to successfully use
a convolutional neural network (CNN) in solving the video
interpolation problem [10]. In contrast to other methods that
also use an encoder-decoder architecture [7], they do not di-
rectly output the predicted interpolated frame, but instead
predict 41 × 41 kernels which are used to synthesize each
pixel based on nearby pixels. These locally adaptive con-
volutional kernels are then convoluted with the two input
frames to produce the predicted interpolated frame. Specif-
ically, given two input frames, the network produces two

kernels for each pixel in the output. These interpolation ker-
nels are then convolved with the input frames to produce the
interpolated frame Î.

The same group of researchers made use of an interesting
property of 2D kernels in a follow-up paper a few months
later, where they used the fact that a 2D kernel can be ap-
proximated by using two 1D kernels [11]. This is true be-
cause the outer product of two 1D kernels is a 2D kernel.
This allowed them to drastically lower the number of pixels
per output interpolation kernel from n2 to 2n, with n being
the kernel size. They mention that this approach is over 20
times faster on Full HD video. The memory needed to hold
the output of a 1080p video in memory dropped to 1.27 GB.
Since the complexity is now linear, it allowed them to in-
crease the kernel size to 51× 51, without a significant drop
in performance.

3. Problem Statement
The problem of video frame interpolation can be de-

scribed as follows: given some video sequence having n
frames, (It)nt=1, we want to create a new frame t, where
t ∈ (1, n). Each frame is represented as a 3D tensor of size
3×H×W , where H and W are the height and the width of
the frame in pixels respectively. Each pixel is represented by
three integer intensity values in [0, 255], one for each of its
three channels, which are red, green and blue. Generally, to
interpolate a frame at time t′, VI methods use nearby frames
{It : t′ ̸= t} to synthesize the intermediary frame It′ .

Before we continue, we introduce our measure of dis-
placement. This measure is based on the optical flow-
vectors estimated by PWC-net [17]. Given an image pair
(Ia, Ib), represented by two of 3 × H × W tensors, this
method estimates the flow vectors F−→ from Ia to Ib. These
vectors are then represented by a tensor of shape 2×H×W ,
where the first dimension is used to store the flow-vector di-
rection, i.e. the vertical or horizontal dimension.

We first of all estimate the flow from IT−1 towards IT+1,
denoted by F−→, and we similarly estimate the flow in the
opposite direction, denoted by F←−. We then take the mean
over all dimensions after summing the L1-norms of both
tensors. The displacement D for a frame sequence is then
given by

D =
||F−→||1 + ||F←−||1

4HW
. (1)

The reason for measuring distance using the mean ab-
solute value, and not using Euclidean distance, is that the
absolute value is more representative as a measure of dis-
placement. This reasoning is graphically illustrated in Fig-
ure 1. Whether a displacement of a particular magnitude is
visible within a square perceptual field is only dependent on
the absolute displacement along the vertical and horizontal
dimension. A movement of a particular Euclidean distance

1128

Figure 1: This figure shows the perceptual field of a VI
model, as visualized by the squares. The frame-to-frame
movement is visualized by the arrow. While both move-
ments, left and right, have the same Euclidean distance, only
the one on the left is within the field-of-view.

might be visible if it is placed diagonally on the perceptual
field, but not if it perfectly follows the horizontal or verti-
cal axis. In contrast, a movement measured using the mean
absolute value will be visible irrespective of its orientation,
given a constant length.

As stated earlier, the methods that are considered state-
of-the-art suffer from some drawbacks, and one of these
is large motion. Often, when large motion is present, the
resulting synthesized interpolated frames contain artifacts.
These artifacts are a result of the model not knowing how
to make sense of the input, and as a result, the objects con-
tained in the scene are either presented multiple times, or
are simply blurred heavily.

We belief there are a variety of reasons for the occurrence
of this problem. First of all, many of the methods specified
in Section 2 are trained mostly on frame sequences con-
taining small movements. For example, some of the large-
scale datasets in VI, such as the Vimeo-90K dataset [19],
only contain frame sequences with a mean flow lower than
8 pixels. When a model is trained on such a dataset, it is
clear that it won’t learn large displacements. Another possi-
ble explanation is that the models are simply not expressive
enough. In order to model large displacement correctly, the
interpolation mechanism needs to have the ability to find the
pixel correspondence across the input frames. E.g. [10] and
[11] use interpolation kernels of sizes 41× 41 and 51× 51
respectively. This means that every pixel in the synthesized
frame is modeled as a function of the neighboring 20 and 25
pixels in either direction. It is then obvious that movements
larger than this perceptive field cannot be learned by these
models.

These are not the only areas in which current VI meth-
ods lack in performance. Additionally, many of the meth-
ods presented in Section 2 lack detail around edges, such
as text and certain patterns or textures. We belief that this
is a problem related to an overall lower performance of the
model and not necessarily due to the network not being as

expressive enough, or a lack of training data. All VI meth-
ods estimate optical flow, either implicitly, or explicitly as
an intermediary step towards frame synthesis using a sep-
arate module. These optical flow mechanisms suffer when
they cannot decide on the location of certain key points in
the frames. The result is that the repeating pattern cannot be
followed as there are too many matches. We belief this is
is the reason for the occurrence of the artifacts when these
patterns are present.

4. Large-Motion VI Dataset
One of the main contributions of this work is our newly

created Large-Motion Video Interpolation Dataset (LMD).
As the name suggests, this dataset mainly consists of videos
that contain large frame-to-frame motion. The dataset con-
tains videos on BMXing, football, wingsuit flying, skate-
boarding and other extreme sports. We also included sev-
eral car and bike rides through cities such as California and
Tokio, as their 4K resolution combined with a downsam-
pled frame rate allowed us to collect high quality frame se-
quences containing large frame-to-frame movements. The
variety in the scenes, the fast moving environment and the
variety within the scenes all make for a complex and useful
data source.

The problem with datasets in the VI literature is that they
are insufficient, because the sequences they contain are too
simple and/or not diverse enough. They are either of low
quality and/or have small frame-to-frame displacement, im-
plying that these datasets are not useful when modeling
larger motion.

4.1. Dataset Creation

This dataset was created by selecting a set of 40 videos
from YouTube and ensuring that there was enough diversity
between them. We only selected videos with a minimum
resolution of 1280 × 720. The videos were selected on the
perceived degree of motion present in them. We split all
40 videos into a train, validation and test fold, containing
8.737, 1.435 and 1.509 sequences respectively, and made
sure that each fold contains a similar set of videos.

The process of gathering videos for- and preparing the
dataset involved several steps. First, we extracted all frames
from the videos and randomly downsample the video from
the original resolution to either 720p, 1080p or 1440p. This
is another way to ensure that we get a wide range of dis-
placements, since changing the resolution of a video will
change the magnitude of all frame-to-frame displacements.
We sample a frame sequence of 7 frames every 90 frames to
prevent near-duplicates within the dataset. We then remove
the second and sixth frame, since they are not needed dur-
ing training, as stated in Section 3, resulting in 5 frames per
sequence. In order to prevent scene-boundaries from being
present in the frame sequences, we measure the SSIM be-

1129

IT 1 IT IT + 1 T

0

2

4

6

8
1e 6

CT 2 CT 1 CT CT + 1 CT + 2

Figure 2: (a) A visual illustration of the weighted sam-
pling procedure used during cropping. From left to right:
the frame before the ground truth, IT−1, the ground truth,
IT , and the frame after, IT+1. The fourth figure shows the
normalized sampling weights ∆T , a lighter color indicat-
ing a higher sampling probability. (b) The cropped frame
sequence resulting from the weighted sampling procedure,
denoted by Ci.

tween all 5 frames and discard the sequence when one of the
corresponding values falls below a certain threshold. Em-
pirically, a value of 0.35 worked well, as it removed most
scene boundaries, without resulting in any false positives.
A small number of sequences containing scene boundaries
were removed manually.

We additionally created a cropped version of the train
and validation set, with a crop size of 256 × 256. To make
sure that the cropped area is interesting, we use a weight
matrix ∆T , which is obtained by summing the squared L2-
norms of the image time derivatives, as specified by

∆T = ||IT − IT−1||22 + ||IT − IT+1||22, (2)

where IT is the ground truth frame intensity, and IT−1

and IT+1 are the preceding and succeeding frame intensi-
ties respectively. These intensities are computed by sum-
ming over the channels for each frame. We then use ∆T as
sampling weights for the center pixel of the crop. To ensure
that the crop will be completely within the image, we set all
weights within 128 pixels from the image borders to 0. We
then use a Multinomial distribution to select the pixel, and
crop the area around it. A graphical illustration is given in
Figure 2, showing that this simple method is able to localize
the motion present within the frame sequence.

4.2. Dataset Statistics

In order to quantitatively show the difference between
the LMD and existing datasets, we compared the displace-
ment and non-linearity with the Adobe240 and Vimeo-90K
datasets, as shown in Figure 4. Both the displacement and
non-linearity are much larger for our dataset, meaning that
it is indeed useful for both training or validating a VI model
with a focus on more complicated frame sequences. Figure
3 shows a few examples from the LMD and illustrates the
non-linearity present within them.

5. Proposed Solution
This section will cover all the aspects of our proposed

solution. We will start by introducing our extension to the
Adaptive Separable Convolution (SepConv) model, which
was originally proposed by Niklaus et al. [11]. We will then
detail the procedures we utilize during training and specify
the data augmentations steps we take.

5.1. Multi-Level Adaptive Separable Convolution

First of all, we chose to use the SepConv model to be
the basis for our method, because of its favorable computa-
tional complexity compared to other methods, e.g. it is over
10 times faster than DAIN [1] during training and evalua-
tion, while still having comparable performance. The com-
putational efficiency allows us to do many experiments and
simultaneously gives us the reassurance that any extension
of our method would still be within the limitations of the
GPUs we are using to train our models.

We extend the original SepConv architecture in two
ways. We first of all increase the models ability to model
larger motion in an efficient way by introducing a spatial
pyramid. Secondly, we feed four frames into the model, in-
stead of two, to make the model more expressive towards
frame sequences containing non-linear movements.

We implement these changes as follows: we let each sub-
network produce both the interpolation kernel at the original
size and the displacement kernel. We do this by duplicating
the sub-network structure after the first two convolutional
and ReLU pairs. This means that we split the structure of
the sub-network into two identical paths, each containing
a separate convolutional layer with ReLU activation, fol-
lowed by the upsampling and convolutional layer. The input
for both paths is the output of the second ReLU layer and
is thus identical. We chose not to predict all interpolation
kernels using a separate sub-network to keep the increase in
computational complexity to a minimum. Secondly, we also
double the number of sub-networks from 4 to 8, to accom-
modate for the increase in the number of input frames.

Our method then estimates the interpolated frame Î first
by computing the 2D interpolation kernels from their 1D
counterparts, k·,h and k·,v , using the matrix outer prod-
uct. We then simply apply a local convolution, on each in-
put frame with their respective interpolation kernels at the
original scale and then sum this output with the interpo-
lation result of our model on the downsampled version of
the frame sequence, after upsampling it back to the original
size. Downsampling with a factor s, denoted by Ds(·), and
upsampling with a factor s, denoted by Us(·), are imple-
mented using 2D average pooling and bilinear upsampling
respectively. We require s to be a non-negative power of 2
due to the padding strategy we use. See Equation 3, where ∗̇
and ⊗ denote the local convolution and outer product oper-
ators respectively. A graphical illustration of our proposed

1130

It 3 It 1 It It + 1 It + 3

Figure 3: Example frame sequences extracted from the Large Motion Dataset (one sequence per row). Each frame sequence is
accompanied by a tracked feature as shown in red, showing for each sequence the highly rigid and non-linear motion present
in the videos. The trajectory across the sequence is shown in blue. The second sequence shows the tracking of the shoe of
the football player wearing the blue jersey. Using only frames It−1 and It+1, i.e. using a linear model, would result in a poor
approximation, given the quadratic curvature of this movement. Similar non-linear movements are ubiquitous in the LMD.

0 50 100 150 200
Mean Displacement

100

101

102

103

104

Fr
eq

ue
nc

y

LMD
Adobe240
Vimeo-90K

0 500 1000 1500 2000 2500
Non-Linearity

101

102

103

104

Fr
eq

ue
nc

y

LMD
Adobe240
Vimeo-90K

Figure 4: Two log-scale histograms showing the difference
in the occurrence of harder to model frame sequences. We
see that when we measure this by the mean displacement
and non-linearity of a frame sequence, the LMD is much
more complex when compared to both the Adobe240 and
Vimeo-90K dataset. These measurements were taken over
all folds. Non-linearity is measured as the mean squared
normalized distance between the key-points in the frame
and their linear approximation.

model architecture can be seen in Figure 5.

Î =

4∑
i=1

Ii ∗̇ (ki,h ⊗ ki,v) + Usi

[
Dsi (Ii) ∗̇ (kdi,h ⊗ kdi,v)

]
(3)

5.2. Training Procedure

We will be doing all our experiments using either the
Adaptive Separable Convolution model (SepConv) [11] or
the extension we introduced in Section 5.1. We will make

use of the publicly available L1- or Lf -weights, depending
on whether we are training a model for quantitative or qual-
itative analysis. We will only load the pretrained weights to
the encoder part of the network, i.e. the first four convolu-
tional blocks up until the bottleneck, see Figure 5. This is
done to reduce training time, while still preventing the in-
troduction of any bias regarding the size of the interpolation
kernels, which we will be changing. We will adjust the first
convolutional layer to accommodate for the extra 2 input
frames, and randomly initialize these extra weights.

We use the train fold of the Vimeo-90K dataset from
which we use 90% and 10% to create our train and vali-
dation folds respectively. We additionally use the train fold
of the LMD and remove all frame sequences having a mean
displacement, as defined by Equation 1, lower than 6 pix-
els. We found that this value removed most sequences hav-
ing nearly no movements. We combine both datasets and
utilize a sampling strategy that uses the normalized mean
displacement as sampling weight. Each epoch we sample
50K samples without replacement from a total of approxi-
mately 64K samples. We randomly shuffle the training data
and sample mini-batches with a batch size of 8.

We randomly flip the image sequence across its dimen-
sions, i.e. horizontal, vertical and temporal, all with proba-
bility 0.5. This ensures that the model does not learn any
biases with respect to the direction of movement in the
training data. We also incorporate some augmentations that
change the color schemes or brightness of the image. We
apply Contrast Limited Adaptive Histogram Equalization
(CLAHE), which is a method that reduces the differences

1131

I1 I2 I3 I4
32

50
0

64
128

256
512 512 256

128
64

k
d
4,v

k4,v

k
d
3,v

k3,v

k
d
2,v

k2,v

k
d
1,v

k1,v

k
d
4,h

k4,h

k
d
3,h

k3,h

k
d
2,h

k2,h

k
d
1,h

k1,h

Sub-networks

2D Conv +ReLU 2DAverage Pooling Bilinear Upsampling

Figure 5: Our proposed extension of SepConv. Skip-connections are represented by purple lines. We extend the first layer to
handle four input frames and change each sub-network so they output two 1D kernels, as opposed to just one. We additionally
double the number of sub-networks to handle the doubling in the number of input frames. As can be seen from the figure, each
column produces two 1D kernels, which can be combined to produce a 2D kernel via the application of the outer product.

in contrast across an image. We pair this with a method that
randomly changes the brightness and contrast. This trans-
formation makes sure that the model learns to interpolate
frame sequences for any kind of lighting. We also use a
method that changes the hue of the image. This ensures
that we make the learning more uniform with respect to ob-
jects of different color. We finally add some Gaussian noise.
These transformations are done with probability 0.2.

To speed up training, we randomly crop a section of the
original frame sequence. This additionally acts as a way
to combat overfitting, since it is less likely that the model
learns the precise movements in the training data as it gets
to see only a part of the frame each time it is sampled.

As stated above, we use two different loss functions to
obtain our two models. We first of all train our model archi-
tecture by minimizing L1-loss to obtain our L1-model. This
loss function is defined as

L1(Î, I) =
∑
c,x,y

| Îc,x,y − Ic,x,y | = ||̂I− I||1. (4)

We similarly train our model on perceptual loss to obtain
our Lf -model. This loss function is defined by

Lf = L1(Î, I) + ||ϕ(̂I)− ϕ(I)||22, (5)

where ϕ is the output of the relu4 4 layer of the VGG-
19 network [15], similar to [11], and I and Î are the ground
truth and synthesized interpolated frames respectively.

We utilize hyper-parameter tuning using the Tree-
Structured Parzen Estimator [3] implemented in HyperOpt

[2]. We optimize the crop size, the main kernel size and the
choice of optimizer, where we evaluated both the Rectified
Adam [6] and Ranger [12] optimizers.

5.3. Learning Rate Scheduling

We use two separate learning rates for the decoder and
encoder part of the network, since they differ in their level of
optimality as one is pre-trained and the other contains ran-
domly initialized weights. We do this since we only want
to fine-tune the encoder using the training data, while we
still need to learn good parameter values for the decoder
and the sub-networks. We set the learning rate of the en-
coder to 0.0001, while we use 0.001 for the other parts of
the model. These values were high enough to elicit train-
ing, while preventing the introduction a large variance in
the weight updates.

We noticed that using a flat learning rate was insufficient
when training our models. Instead, we found that using a flat
learning rate of 10 epochs, followed by a Cosine Annealing
learning rate schedule [8] worked well to further improve
our results. We slightly reduce both learning rates after 10
epochs towards 1e−5. We additionally found that restarting
the training procedure helped to further improve our perfor-
mance, therefore, we reset the learning rates back to their
original values every 50 epochs.

5.4. Implementation Details

PyTorch [13] was used in combination with CUDA to
speed up the training process by utilizing several Nvidia
GPUs. We either used a GTX 1070 Ti, GTX TitanX or GTX
1080 Ti, depending on which GPU cluster we used, or if

1132

Vimeo-90K - D90 [19] Vimeo-90K - Q90 [19]

Method PSNR IE SSIM PSNR IE SSIM

DAIN [1] 31.235 8.054 0.915 32.558 7.119 0.934
QVI-lin [18] 29.572 9.463 0.889 29.232 9.832 0.891
QVI-quad [18] 32.221 7.117 0.923 32.332 6.997 0.933
SepConv-L1 [10] 30.349 8.788 0.901 31.671 7.684 0.924
Ours-L1 31.374 7.882 0.907 32.749 6.868 0.930

Table 1: Quantitative comparison on the complex subsets of
the Vimeo-90K dataset.

we trained locally. Random seeds were used throughout all
code to ensure reproducibility. Since the original implemen-
tation of SepConv does not include the backward pass of the
custom CUDA layer, we resorted to using a different im-
plementation, which can be found at https://github.
com/HyeongminLEE/pytorch-sepconv, and use
this to make our extended version of SepConv. We verified
that both implementations produce the same output.

6. Experiments
6.1. Quantitative Analysis

Performance on Complex Frame Sequences We first
test whether we solved the problem of the lower perfor-
mance on frame sequences containing either large displace-
ments and/or non-linear movements. We hypothesized that
the implementation of the displacement interpolation ker-
nels will increase the effective perceptual field of the model,
and hence, give the model the ability to learn these larger
displacements. We similarly hypothesized that using four
frames, as opposed to two, will aid in improving perfor-
mance on non-linear movements, similar to how a quadratic
function can estimate a curve and a linear function cannot.
We use our fully trained L1-model, and compare the results
by measuring PSNR, IE and SSIM [5] on the two subsets of
the Vimeo-90K test set containing the top 10% largest dis-
placement and non-linear movements, called D90 and Q90

respectively. The results can be seen in Table 1.

Benchmarking General Performance In order to com-
pare our model to others, we used several datasets cover-
ing a wide range of use cases. We first of all evaluate our
model on our Large-Motion Dataset, since our main goal is
to improve upon complex frame sequences. We additionally
test our model on the Adobe240 and Vimeo-90K datasets,
since these are regarded as the most prominent benchmark-
ing datasets in the VI literature. We used the publicly avail-
able implementations and model weights for DAIN, both
the pre-trained linear and quadratic models for QVI as pub-
licized in [18], and the SepConv-L1 model. We wanted to
include the current State-of-the-art, Softmax Splatting [9],
but since this model is only partly released, we were not

Adobe240 [16] Vimeo-90K [19]

Method PSNR IE SSIM PSNR IE SSIM

DAIN [1] 31.93 7.67 0.921 34.60 5.67 0.953
QVI-lin [18] 27.07 12.05 0.861 29.68 9.22 0.904
QVI-quad [18] 31.29 7.73 0.922 33.10 6.31 0.945
SepConv-L1 [11] 31.62 8.16 0.917 33.74 6.15 0.945
Ours-L1 32.67 7.21 0.926 35.25 5.24 0.954

Table 2: Quantitative comparison of our method with other
state-of-the-art methods. We see that our method is able
to reach the highest performance on all metrics on the
Adobe240 and Vimeo-90K datasets.

LMD Vimeo-90K [19]

Method PSNR IE SSIM PSNR IE SSIM

Ours w/o Model Extension 28.42 14.74 0.859 34.25 5.85 0.949
Ours w/o Data Augmentations 27.75 15.14 0.852 33.98 5.95 0.945
Ours w/o Training on LMD 27.58 15.59 0.846 34.14 5.86 0.946
Ours w/o LR Scheduling 27.24 15.67 0.846 33.24 6.42 0.938
Ours 30.21 14.23 0.861 35.25 5.24 0.954

Table 3: The quantitative results of our ablation study. Best
values highlighted in bold.

able to do this.

Ablation Study We also conducted an ablation study to
individually measure the importance of some key aspects
regarding model architecture and training procedure. We
first of all measure the effect of the extra kernels and in-
put frames by retraining the original SepConv-L1 model
using our procedure, which also includes training on the
Large-Motion Dataset. Since we are using the original ker-
nel size, we load the complete set of L1-weights, as op-
posed to only loading the weights for the encoder. We also
test the benefit of all our data augmentation steps and see
how they affect performance. We measure the performance
when we omit all data augmentations, including flipping,
but leave the cropping in place. We additionally test per-
formance when we omit training on the LMD. Lastly, we
measure model performance when we do not use any learn-
ing rate scheduling, i.e. when we use a flat learning rate
throughout training.

The results of our ablation study are shown in Table 3.
We see that the removal of any of the components of our
approach results in a drop in performance. As we can see,
the removal of the learning rate scheduling results in a sig-
nificant drop in performance. We did not expect it to have
a larger impact on our performance than the removal of the
data augmentation procedures.

6.2. Qualitative Analysis

We also did a thorough qualitative analysis using both
test sets from the Vimeo-90K dataset and the LMD. We can

1133

GT Cropped GT SepConv- f Ours- f

Figure 6: Visual comparison of our model on the Vimeo-
90K test set. From left to right: the ground truth frame, an
interesting region of the ground truth (inset in red in the
first image), and the synthesized frames of SepConv-Lf and
ours-Lf respectively.

confirm that we improved upon sequences containing either
large displacements and/or non-linear motion in Figures 6
and 7. The frame sequences displayed contain these par-
ticular movements and we see that we manage to improve
upon the results obtained by the SepConv-Lf model. How-
ever, we do note that while we obtain an improvement, the
synthesized frames still suffer in these areas. We similarly
see that our method is able to improve upon the parts of the
frames containing edges, such as text and logos. The syn-
thesized frames are clearer and contain less blur in these
areas. We think this last improvement can be attributed to
the learning rate scheduling procedure we employ during
training to further fine-tune our weights.

GT Cropped GT SepConv- f Ours- f

Figure 7: Visual evaluation of our model on the Large-
Motion Dataset. All sequences presented here contain large
movements and jittery motion.

7. Conclusion

In this paper, we introduced our approach towards solv-
ing the problems arising in large-displacement VI. Aside
from showing that we are able to improve synthesis quality
upon sequences that contain these problematic movements,
we are also able to improve upon general performance, as
shown by our quantitative benchmark on the Vimeo-90K
dataset. We attribute the increased performance on large-
displacement frame sequences to both the increased expre-
sivity of the network, as well as the use of the LMD. Our
abblation study shows that these steps are also necessary to
achieve our result on the Vimeo-90K dataset.

References
[1] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation, 2019. 2, 4, 7

1134

[2] James Bergstra, Daniel L K Yamins, and David D. Cox. Hy-
peropt: A python library for optimizing the hyperparameters
of machine learning algorithms. 2013. 6

[3] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimization.
In Advances in neural information processing systems, pages
2546–2554, 2011. 6

[4] Yuyu Guo, Lei Bi, Euijoon Ahn, Dagan Feng, Qian Wang,
and Jinman Kim. A spatiotemporal volumetric interpolation
network for 4d dynamic medical image, 2020. 1

[5] Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs.
ssim. pages 2366–2369, 08 2010. 7

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 6

[7] Gucan Long, Laurent Kneip, Jose M. Alvarez, and Hong-
dong Li. Learning image matching by simply watching
video. CoRR, abs/1603.06041, 2016. 2

[8] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with restarts. CoRR, abs/1608.03983, 2016. 6

[9] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 7

[10] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive convolution. CoRR, abs/1703.07514,
2017. 2, 3, 7

[11] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive separable convolution. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 261–270, 2017. 1, 2, 3, 4, 5, 6, 7

[12] Manuel Pariente. Ranger, 2020. 6
[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 6

[14] Jan Rühaak, Thomas Polzin, Stefan Heldmann, Ivor JA
Simpson, Heinz Handels, Jan Modersitzki, and Mattias P
Heinrich. Estimation of large motion in lung ct by inte-
grating regularized keypoint correspondences into dense de-
formable registration. IEEE transactions on medical imag-
ing, 36(8):1746–1757, 2017. 1

[15] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
1409.1556, 09 2014. 6

[16] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1279–1288, 2017. 7

[17] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. CoRR, abs/1709.02371, 2017. 2

[18] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 1645–1654. Curran Associates, Inc.,
2019. 2, 7

[19] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T. Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, Feb 2019. 2, 3, 7

1135

