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Abstract

Many hyperspectral imaging systems resort to computa-
tional photography technique for capturing spectral infor-
mation of the dynamic world in recent decades of years.
Therein, Coded aperture snapshot spectral imaging en-
codes the 3D hyperspectral image as a 2D compressive im-
age (snapshot) and then employs an inverse optimization al-
gorithm embedded in the imaging system to reconstruct the
underlying HSI. This study proposes a novel HyperMixNet
to reconstruct an underlying HSI from the single snapshot
image. Specifically, to reduce the size of the reconstruction
model for being handy embedded in the real imaging sys-
tem, we integrate the MixConv block instead of the conven-
tional convolutional layers in our proposed HyperMixNet,
which can not only greatly decrease the network parameter
amount but also learn multi-level context for more repre-
sentative feature extraction. Simultaneously, we employ a
mixed spatial and spectral convolutional module to effec-
tively learn the spatial structure and spectral attribute for
more robust HSI reconstruction. We further design a mixed
loss function for network training, which incorporates not
only spatial fidelity but also spectral fidelity aiming at re-
covering the hyperspectral signature with small spectral
distortion. Experimental results on three benchmark HSI
datasets validate that our proposed method outperforms the
state-of-the-art methods in quantitative values, visual effect,
and reconstruction model scale.

1. Introduction

Hyperspectral imaging captures the detail spectral distri-
bution of a scene as a three-dimensional cubic image, and
can describe spectral intensities at decades or hundreds of
wavelength bands of each pixel location. The rich spectral
information in the hyperspectral image (HSI) greatly bene-
fits the characterization of the imaged scene and has been
widely used to various fields ranging from remote sensing
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Figure 1: HSI reconstruction performance and model size
comparison of deep learning based methods. Our method
exploits multiple MixSS modules for hierarchically recon-
structing spatial and spectral residual components, the Mix-
Conv inside MixSS for exploring multi-level spatial con-
texts and parameter reduction, and the mixed loss for restor-
ing reliable spectral information, achieving the best spatial
and spectral restoring performances according to the PSNR
and Sam while requiring much less parameters. Larger
PSNR means better spatial fidelity index while smaller Sam
denotes better spectral fidelity measurement.

[13, 5], medical diagnosis [4, 18], vision inspection to dig-
ital forensics, to name a few. For obtaining the 3D cubic
data, hyperspectral imaging systems have to measure expo-
sures at multiple times for different wavelength bands us-
ing 1D or 2D sensors, and thus it would take a long time
for the imaging procedure of the scene. This limits its uti-
lization for imaging dynamics objects and scenes or cap-
turing video with high-speed rates [3, 21]. Therefore, sev-
eral computational spectral imaging prototypes have been
evolved to capture the spectral signatures of the dynamics
world [9, 17, 11, 6], and inspired by the fundamental com-
pressive sensing theory, coded aperture snapshot spectral
imaging (CASSI) [24, 2, 12] has made significant progress
for being prospected to capture high spatial and temporal
resolution HSIs. CASSI systems are generally divided into
two phases: the exposure measure phase for encoding the
3D HSI into a single 2D compressive (a snapshot) image,
and the computational reconstruction phase for recovering
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the underlying HSI from the snapshot measurement via em-
ploying an inverse optimization strategy. So far, various ef-
forts have been made on both phases, and the bottleneck of
the existed CASSI system mainly lies in the limited recon-
struction quality of the underlying HSI. In this study, we
concentrate on exploring the computational reconstruction
method from a snapshot measurement in CASSI systems.

Since the reconstruction of the 3D HSI from a single
snapshot image is an ill-posed problem in nature, existing
methods generally leverage hand-crafted priors to regular-
ize the inverse model for robust reconstruction. Many pri-
ors have been investigated, including total variation (TV)
[15, 27], sparsity representation [28, 24], non-local simi-
larity [10, 29] for modeling different specific characteriza-
tion of the underlying HSIs, and show some improvements
regard to the reconstruction performance. The widely ex-
plored priors are designed empirically and often insufficient
to handle the wide variety of spectra of natural hyperspec-
tral images, which unavoidably results in poor spectral re-
construction. With the great success of the deep learning
in computer vision applications, deep convolutional neural
network (DCNN) [32, 8, 19, 30, 25] has been employed for
HSI reconstruction via automatically learning the underly-
ing priors of the latent HSI, and been proven to provide
much better reconstruction performance and faster recon-
struction in test phase than the conventional optimization-
based methods. However, researchers are making efforts to
design more complicated and deeper network for boosting
reconstruction performance, which would result in large-
scale reconstruction model and be difficult to be implanted
into the real hyperspectral imaging systems. Moreover, the
current DCNN based methods usually explore the recon-
struction errors such as the mean squared error of the pre-
diction and the ground-truth HSI as the loss function for
network training, which mainly measure the spatial fidelity
of the reconstruction. However, in HSI reconstruction sce-
nario, the spectral characteristic preservation is more essen-
tial than the spatial detail maintenance. Further, there are
still some rooms for performance improvement in the HSI
reconstruction field.

To handle the above mentioned limitations, this study
proposes a novel deep mixed neural network for hyperspec-
tral image reconstruction (HyperMixNet). The proposed
HyperMixNet employs mixed spatial and spectral convo-
lutional modules (MixSS modules) to effectively learn the
spatial structure and spectral attribute for more robust HSI
reconstruction. In each MixSS module, we leverage the
MixConv block inside a single layer, which consists of dif-
ferent groups of Depthwise convolutional layers with var-
ious kernel sizes, for spatial structure reconstruction and
follow a spectral block for spectral correlation exploration
and spectral attribute recovering. Specifically, the exploited
MixConv block can not only greatly reduce the network

parameters but also simultaneously learn the representative
features with multiple contexts for adaptively context mix-
ture. Moreover, to reconstruct more reliable spectral signa-
ture, we combine spectral and spatial fidelity measure to-
gether to formulate the mixed loss function for the Hyper-
MixNet training. Our proposed HyperMixNet is verified
on three representative hyperspectral image datasets, i.e.,
CAVE [34], Harvard [7] and ICVL [1], and outperforms
the state-of-the-art methods in quantitative values, visual ef-
fect, and reconstruction model scale. Figure 1 manifests the
performance and model size comparisons with the state-of-
the-art deep learning based methods. In summary, our main
contributions are three-fold:

1. We present a novel HyperMixNet for HSI reconstruc-
tion from a single snapshot measurement, which em-
ploys multiple mixed spatial and spectral convolu-
tional modules for reliable spatial structure and spec-
tral characteristic reconstruction.

2. We leverage the MixConv block inside a single layer
for both model parameter reduction and multiple con-
text fusion.

3. We exploit spectral and spatial fidelity measure to con-
struct mixed loss function for network training.

2. Related Work

Recently, the hyperspectral reconstruction models in
the computational spectral imaging have been actively re-
searched, which are mainly divided into two directions:
optimization-based methods and deep learning-based meth-
ods, and substantial improvements have been witnessed. In
this section, we briefly survey the related work.

2.1. Optimization-based methods

Due to the ill-posed nature of the HSI reconstruction
inverse problem from a snapshot measurement, previous
methods have striven to explore different hand-crafted pri-
ors for modeling the spatial structure and spectral charac-
teristics of the latent HSI, and then regularize the inverse
model for robust optimization. Via considering the high
dimensionality of spectral signatures, many previous ap-
proaches usually exploit the image local priors for charac-
terizing the spectral image structure within a local region.
Wang et al. [27] proposed to impose the first-order smooth-
ness prior via regularizing the image gradients and resulted
in the Total Variation (TV) regularized model to spectral im-
age reconstruction. Further Yuan et. al. [35] employed gen-
eralized alternating projection (GAP-TV) while Kittle et.
al. [15] explored two-step iterative shrinkage/thresholding
method (TwIST). Utilizing TV prior for the HSI recon-
struction generally benefits both boundary preservation and
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smooth region recovery but may lead to the detail struc-
ture lost. Recently motivated by blind compressed sensing
(BCS) [20], sparse representation methods have been ap-
plied for solving the CASSI reconstruction problem, which
learns dictionary to model the sparsity prior to image patch
[17]. Later, Yuan et. al. employed the compressibility con-
straint rather than sparse representation prior and proposed
to learn the dictionary via leveraging global-local shrinkage
prior [36] while Wang et. al. [29] investigated 3D non-local
sparse representation model via integrating non-local sim-
ilarity for boosting reconstruction performance. However,
the hand-crafted image priors are not always sufficient to
capture the characteristics in various spectral images, and
to discover a proper prior for a specific scene is still hard
task in the real scenario.

2.2. Deep learning-based methods

Deep learning-based methods can effectively learn the
complex and high-representative features containing differ-
ent contexts and have been widely applied in HSI process-
ing. In HSI reconstruction scenario, instead of carefully de-
signing priors for modeling the spatial and spectral char-
acteristics of the latent HSI, deep learning-based methods
aim at implicitly learning the prior from the previously pre-
pared training samples, and then constructing the mapping
model between the compressive image and the desirable
HSI. Xiong et al [32] initially exploited a CNN-based hy-
perspectral image recovering method (HSCNN) from spec-
trally under-sampled projections and evaluated the feasibil-
ity for HSI reconstruction from a common RGB image or a
compressive sensing (CS) measurement. Wang et al. [30]
explored a joint coded aperture optimization and image re-
construction from compressive HS imaging for automati-
cally learning the optimal sensing matrix and reconstruct-
ing the latent HSI under the learned coded aperture in an
end-to-end manner. Moreover, Miao et al. [19] developed
a dual-stage generative model, dubbed as λ-net, for hierar-
chically reconstructing the HIS while Wang et al. [25] pro-
posed an end-to-end CNN network to learn multi-stage deep
spatial-spectral priors (DSSP) for modeling both local co-
herence and dynamic characteristics of the underlying HSI.
Although promising performance has been achieved with
the deep network, the recent research line mainly focuses
on more complicated and deeper network architecture for
performance boosting, which generally leads to large-scale
reconstruction model. However, the large scale of the of-
fline learned model would limit wide applicability for being
implanted in real hyperspectral imaging systems.

Recently, to increase the flexibility of deep reconstruc-
tion model, several works integrated deep learned priors
into iterative optimization procedure and developed some
deep unrolling based optimization methods in natural com-
pressive sensing, e.g., LISTA [14] ADMMNet [19, 33] and

ISTA-Net [37]. Choi et al. [8] proposed to learn spectral
prior via employing the convolutional auto-encoder and in-
tegrated the learned deep image priors in pretraining step
into the optimization procedure as a regularizer. Wang et
al. [26] further exploited both spectral and non-local (NLS)
prior learning, and integrated the NLS-based regularization
into the model-based optimization method for robust HSI
reconstruction in spectral compressive sensing. However,
the deep unrolled method still requires to conduct the math-
ematical optimization under the regularization by the deep
learned priors, which would be time-consuming in the HSI
reconstruction phase. Moreover, all existing methods for
HSI reconstruction including optimization-based and deep
learning-based methods explore the reconstruction errors
such as the mean squared error of the prediction and the
ground-truth HSI as criteria for optimization or network
training, which mainly measure the spatial fidelity of the
reconstruction. In HSI reconstruction scenario, the spectral
characteristic preservation is more essential than the spa-
tial detail maintenance, and thereby spectral fidelity criteria
should be exploited to facilitate the reliable spectral recon-
struction of the latent HSI.

3. The Proposed HyperMixNet for HSI Recon-
struction

CASSI [24, 2, 12] encodes the 3D hyperspectral infor-
mation into a 2D compressive image. The incident light for
a spectral scene: X(h,w, λ), where h and w are the spatial
index (1 ≦ h ≦ H , 1 ≦ w ≦ W ) and λ is the spectral
index (1 ≦ λ ≦ Λ), is collected by the objective lens, and
spatially modulated with a transmission function T (h,w)
created in coded aperture coded. Then the modulated scene
is spectrally dispersed with a wavelength-dependent disper-
sion function ψ(λ) by the disperser, and follows the charge-
coupled device (CCD) for detecting the spatial and spectral
coded scene as a snapshot image. The observation model
for the 2D snapshot image can be formulated as:

Y (h,w) =
∑

T (h− ψ(λ))X(h− ψ(λ), w, λ). (1)

The goal of the HSI reconstruction in the CASSI is to
reconstruct the underlying 3D spectral image X from the
compressed measurement Y. This study proposes a novel
HyperMixNet for effective and efficiently HSI Reconstruc-
tion.

3.1. Overview

The schematic concept of the proposed HyperMixNet is
shown in Figure 2, which includes the reconstruction mod-
uole and multiple mixed spatial and spectral convolutional
modules (MixSS) for hierarchically reconstructing the un-
recovered residual spatial and spectral components. The
MixSS module consists of reciprocal spatial convolutional
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block for exploiting the spatial correlation in local regions
and spectral convolutional blocks for exploring correlation
among all spectral channels, which is also dubbed as inter-
mixing (InterMix) among convolutional layers. Moreover,
due to the large variety of objects in the imaged scene,
the spectra of different spatial positions should have vari-
ous sizes of correlated regions, and thus the spatial correla-
tion exploration in a fixed size of regions would not achieve
adaptive reconstruction for all spatial positions. We advo-
cate to employ a MixConv spatial block, which includes
several groups of Depthwise convolutional layers with var-
ious kernel sizes inside one layer, and also dubbed as intra-
mixing (IntraMix). The integration of the IntraMix block
not only significantly decreases the network parameters for
easily being implanted in the HS imaging system but also
simultaneously explores the spatial correlation of different
sizes of regions inside one layer. Then the following spec-
tral block concurrently exploit spectral correlation and con-
duct deep mixture of different feature maps for the multi-
ple spatial contexts. Furthermore, we combine spectral and
spatial fidelity measure together to formulate loss function,
and propose a mix loss function (MixLoss) for the Hyper-
MixNet training. Next, we describe in detail the backbone
architecture of the proposed HyperMixNet, different mod-
ules in it and the proposed MixLoss.

3.2. HyperMixNet

The proposed HyperMixNet mainly comprises two types
of modules: the initial reconstruction module and multiple
MixSS modules for hierarchically refining spatial and spec-
tral reconstruction. Given the observed snapshot image Y,
our goal is to reconstruct the full spectral image X using
the HyperMixNet. Firstly, the initial reconstruction module,
which includes several plain convolutional layers, converts
the 2D compressed image Y into the initial HSI: X(0) via
expanding the dimension in the spectral direction from 1 to
Λ. The initial reconstruction can be formulated as:

X(0) = frecon(Y), (2)

where frecon(·) denotes the transformation in the initial
reconstruction module. In our experiments, we simply
adopt 3 convolutional layers with kernel size 3 × 3 fol-
lowing a RELU activation after each layer. After that,
we stack multiple mixed spatial and spectral convolutional
modules (MixSS) and employ residual connection to con-
struct the backbone architecture for hierarchically recon-
structing more fine-grained spatial structure and spectral
characteristics in the latent HSI. Let X(k) denotes the output
of the k− th MixSS module, the output of the (k+1)− th
MixSS module can be expressed as

X(k+1) = X(k) + fMixSS(X
(k)), (3)

where fMixSS(·) denotes the transformation operators in
the MixSS module. The MixSS module consists of spatial
and spectral reconstruction blocks for exploring the correla-
tion in both directions, and is expected to reconstruct more
reliable structures in both directions. Moreover, we em-
ploy the residual connection in the MixSS module to learn
only the un-recovered components in the previous module
as shown in Figure 2. Next, we would describe the detail
architecture in the MixSS module.

3.3. The MixSS Module

In the HSI reconstruction scenario from a snapshot im-
age, it is needed to simultaneously recover the detail struc-
ture in spatial directions and the specific fine signature in
the spectral directions. It is a challenge task to employ
a plain network architecture for reconstructing the high-
dimensional signal in both directions. In this study, we
propose a mixed spatial and spectral reconstruction mod-
ule (MixSS) to reciprocally exploit the correlation in a lo-
cal spatial region and the spectral correlation in all chan-
nels, and stack multiple MixSS modules for hierarchically
reconstructing the un-recovered residual spatial and spec-
tral components. The architecture of the MixSS module is
shown in Figure 2 which includes the spatial block for local
spatial correlation exploration, an optional spatial context
selection (SCS) block and the spectral block for band corre-
lation probing. Next, we describes the detail operations in
the three blocks.

Spatial conv block: Given the intermediately recon-
structed HSI X(k) ∈ RH×W×Λ at the k − th module, the
MixSS module first employs the spatial convolutional block
to learn high representative features via taking account of
the spatial context, which consists of a vanilla convolutional
layer following a RELU layer and a mixed depth-wise con-
volutional layer (dubbed as MixConv) [23] for parameter
reduction and adaptive spatial correlation exploration in dif-
ferent sizes of local spatial regions. The spatial block is
formulated as:

X
(k)
spatial = fMixConv(fCon−Relu(X

(k))), (4)

where fCon−Relu(·) denotes the transform operations of the
first vanilla convolutional layer with the spatial kernel size
3× 3 to expand the channel dimension from Λ to L and the
followed RELU layer while fMixConv(·) represents the op-
erations of the mixed depth-wise convolutional layer. Let’s
denote the intermediate outputted feature map of the spa-
tial block as X̄(k) = fCon−Relu(X

(k)), and then concretely
formulate the mathematical transformation of the MixConv
block. We partition the intermediate feature map X̄(k) ∈
RH×W×L into M groups: X̄(k) = [X1,X2, · · · ,XM ]
via evenly dividing the channel dimension, where Xm ∈
RH×W×Lm (Lm = L/M ) represents the feature maps in
the m − th group. The MixConv layer is employed to ex-
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Figure 2: The architecture of the proposed HyperMixNet consisting of multiple MixSS modules, and the detail illustration of
the MixSS module.

ploit different spatial contexts for different groups via using
depth-wise convolutional layers. Let’s denote the parameter
set of the MixConv layer as Θ(k)

Mix = {θ1, θ2, · · · , θM} in
the M group of depth-wise convalutional layers, where the
parameters for different groups have various spatial kernel
sizes for exploring spatial contexts in different local regions
with θm ∈ Rsm×sm×Lm , the MixConv layer is formulated
as:

X
(k)
spatial =Concat(f

θ1
dp(X1), f

θ2
dp(X2), · · · , fθMdp (XM )),

(5)

where fθmdp (·) represents the depth-wise convolutional layer
with the weight parameter θm (for simplicity, we ignore the
bias parameters). With the different kernel spatial sizes at
different groups, the spatial correlation in various local re-
gions is simultaneously integrated for extracting high rep-
resentative features in one layer. Moreover, we employ the
depth-wise convolutional operations in all groups, which
can greatly reduces the parameters ( 1

Lm
) compared with a

vanilla convolutional laye for being easily implanted in the
real imaging systems, and expect more reliable spatial struc-
ture reconstruction via concentrating on spatial context ex-
ploration.

Spatial context selection block: The output of the spa-
tial conv block includes M groups of feature maps possess-
ing different spatial contexts, which would contributes var-
iously to the HSI reconstruction according to the content
of the latent HSI. This study investigates a plug and play
block, dubbed as spatial context selection (SCS) block, for
adaptively learning the contribution index of the spatial fea-
ture maps, and optionally plug it inside the MixSS module
to form another version: HyperMixNet+. In the SCS block,
we firstly aggregate the feature maps with different spatial
contexts via employing global average pooling to generate

the global contribution indexes for all channels:

µk
ch =

1

W ×W

H∑
w=1

H∑
h=1

x
(k)
spatial,ch(w, h) (6)

where x(k)spatial,ch denotes the excitation value on the spatial
position (w, h) and the ch−th channel of the spatial feature
map X

(k)
spatial. With the global contribution index vector

µk = [µk
1 , µ

k
2 , · · · , µk

L] abtained using Eqn. (6), we further
explore the channel correlation for capturing the channel-
wise dependencies via two fully connected (FC) layers, and
then follows a non-linear transformation using an activation
function to generate the adaptive spatial context selection
(SCS) vector, expressed as:

A
(k)
SCS = σ(fFC(fFC(µ

k))) (7)

where fFC(·) denote the transformation operation of a
fully-connected layer, and σ(·) represents the sigmoid ac-
tivation function. Finally, the SCS vector are combined
with the raw spatial feature map for automatically empha-
sizing the representative feature maps with important spatial
contexts and attenuating the channels with irrelevant spatial
contexts for HSI reconstruction, formulated as:

X̄
(k)
spatial = A

(k)
SCS ⊗X

(k)
spatial (8)

where ⊗ is element-wise multiplication, and the elements
of A(k)

SCS are automatically replicated in the horizontal and
vertical directions of the spatial domain to match the di-
mensions of X

(k)
spatial. It should note that the SCS block

reduces the spatial feature map to L−dimensional global
vector for learning the contribution factor for different spa-
tial contexts, and needs very little additional parameters for
network learning.

Spectral conv block: With the spatial feature maps by
the spatial conv block or the SCS block, we aim at re-
constructing the (k + 1) − th stage of HSI via aggregat-
ing X

(k)
spatial or X̄

(k)
spatial into a Λ-band of cubic data. A

1188



point-wise convolutional layer is employed to fuse the fea-
tures with different spatial contexts, and is also expected to
exploit the correlation among different channels (spectral
bands). The fusion and exploration of the channel correla-
tion is formulated as:

X̄(k+1) = fPW (X̄
(k)
spatial) (9)

where fPW (·) denotes the transformation operation of the
point-wise convolutional layer. Since the point-wise con-
volutional layer focuses on only the correlation exploration
of different spectral channels without considering the spa-
tial correlation, we expect more reliable spectral reconstruc-
tion. Moreover the point-wise convolutional layer has much
less parameters than a vanilla conv layer for benefiting our
small-scale reconstruction model.

3.4. The mixed loss function

In HSI reconstruction scenario, spectral recovering fi-
delity would greatly affect the performance of the down-
stream tasks in the hyperspectral analysis systems. Thus the
spectral characteristic preservation is more essential than
the spatial detail maintenance. The existing deep models for
HSI reconstruction usually explore the reconstruction errors
such as the mean squared error of the prediction and the
ground-truth HSI as the loss function for network training.
The loss function with the reconstruction error mainly mea-
sure the spatial fidelity while completely overlooking the
spectral fidelity, and thus generally results in high spectral
distortion. To handle the limited spectral recovering prob-
lem, this study combines spectral fidelity, where the spec-
tral angle mapper (SAM) [16] metric is used for evaluat-
ing the spectral reliability, and spatial fidelity (the conven-
tional mean square error) to formulate a mixed loss function
(MixLoss) for network training. Given the n − th ground-
thruth HSI and its corresponding prediction from our Hy-
perMixNet: Xn and X̂n, the SAM value between Xn and
X̂n is computed as:

LSAM =
1

W ×H

W∑
w=1

H∑
h=1

(x(w, h), x̂(w, h))

∥(x(w, h))∥2 · ∥(x̂(w, h))∥2
(10)

where w and h represent the pixel positions in vertical
and horizontal directions, and (·, ·) denotes the dot prod-
uct of two vectors. Let denotes the MSE loss as LMSE , the
MixLoss is formulated as,

LMixLoss(Xn, X̂n) = αrMSELMSE+(1−α)rSAMLSAM

(11)
where rMSE and rSAM are scale-adjusting parameters for
normalizing two losses to the same order (rMSE = 1 and
rSAM = 0.1 in our experiments) while α (0 ≦ α ≦ 1) is a
hyper-parameter for balancing the contribution between the
two losses.

4. Experiment and Result

4.1. Experiment setting

To demonstrate the effectiveness of our proposed
HypeMixNet model, we conduct extensive experiments
on three benchmark hyperspectral datasets including the
CAVE dataset [34], the Harvard dataset [7], and the ICVL
dataset [1]. The CAVE dataset consists of 32 images with
spatial resolution 512 × 512 while the Harvard dataset
is composed of 50 outdoor images with spatial resolution
1040 × 1392 captured under daylight conditions. The ICVL
dataset, which is by far the most comprehensive HSI dataset
with large variety of natural scenes, is composed of 201
images with spatial resolution 1300 × 1392, from which
we select a subset with 104 images as the dataset in our
experiments. All HSI images in the three datasets have
31 spectral channels ranging from 420nm to 720nm for
the CAVE and from 400nm to 700nm for the Harvard and
ICVL datasets. We randomly select 22 images in CAVE
dataset, 40 images in Harvard dataset, and 90 images in
ICVL dataset for network training and the remainder for
testing. For simulating the 2D snapshot image, we con-
struct the transmission function T (h,w) of the coded aper-
ture in the HS imaging system via randomly generating a
binary matrix according to a Bernoulli distribution with p =
0.5, and then transform the original HSI with the transfor-
mation function to the snapshot measurements. To prepare
samples for network training, we extract the corresponding
patches with spatial size of 48 × 48 from the original HSIs
and their snapshot measurements. We compare our pro-
posed method with several state-of-the-art HSI reconstruc-
tion methods, including four traditional methods with hand-
crafted prior modeling , i.e, TwIST with TV prior [15, 27],
AMP with sparsity prior [22], and 3DNSR and SSLR with
NLS prior [29, 10], and three deep learning-based methods,
i.e., HSCNN [32], HyperReconNet [30], and Deep Spatial
Spectral Prior (DeepSSPrior) [25]. To evaluate the effect
of integrated MixSS module in HyperMixNet, we experi-
mentally vary the number K of the MixSS module with 5,
7, and 9, respectively, and provide the final HSI reconstruc-
tion for comparison. We also set the value of α in MixLoss
to 0.5 for combining spatial and spectral fidelity losses, and
please refer to the supplemental material for more compared
results for various values of α. Three quantitative metrics
including peak signal-to-noise (PSNR), structural similar-
ity (SSIM) [31], and spectral angle mapping (SAM) [16]
are employed to evaluate the performance of different HSI
reconstruction methods. PSNR and SSIM measure the spa-
tial fidelity of the reconstructed HSIs, which are calculated
on each 2D spatial image, and averaged over all spectral
bands. SAM assesses the spectral fidelity, which is calcu-
lated on each 1D spectral vector and averages over all spa-
tial points. Larger values of PSNR and SSIM suggest better
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Table 1: Performance comparisons on ICVL, Harvard and CAVE datasets (3% compressive ratio). The best performance is
labeled in bold, and the second best is labeled in underline.

Dataset Metrics TwIST AMP 3DNSR SSLR HSCNN HyperReconNet DeepSSPrior Our(K = 5) Our(K = 7) Our(K = 9)
PSNR 26.15 24.56 27.95 29.16 36.64 38.43 39.67 39.19 40.16 40.70

ICVL SSIM 0.936 0.909 0.958 0.964 0.963 0.972 0.979 0.976 0.980 0.981
SAM 0.053 0.09 0.051 0.046 0.075 0.060 0.053 0.052 0.047 0.044
PSNR 27.16 24.96 28.51 29.68 35.09 36.04 37.62 36.81 37.72 37.70

Harvard SSIM 0.924 0.935 0.94 0.952 0.936 0.938 0.955 0.947 0.952 0.951
SAM 0.119 0.155 0.132 0.101 0.092 0.166 0.130 0.127 0.119 0.120
PSNR (−) (−) (−) (−) 23.22 25.82 24.82 25.57 25.88 25.81

CAVE SSIM (−) (−) (−) (−) 0.720 0.829 0.807 0.818 0.814 0.831
SAM (−) (−) (−) (−) 0.475 0.305 0.392 0.290 0.259 0.260

Paramaeters (−) (−) (−) (−) 311,541 580,709 341,173 120,017 167,503 214,989

Table 2: Ablation results of the proposed HyperMixNet and HyperMixNet+ on all three datasets.

Dataset
Compare Model HyperMixNet HyperMixNet+

Group number M 1 2 3 4 1 2 3 4
Loss MSE Mix MSE Mix MSE Mix MSE Mix MSE Mix MSE Mix MSE Mix MSE Mix

ICVL
PSNR 39.36 39.24 39.96 39.84 40.34 40.24 39.36 40.70 37.13 38.01 38.13 37.81 38.83 38.72 38.86 39.12
SSIM 0.977 0.977 0.979 0.979 0.981 0.980 0.977 0.981 0.967 0.976 0.977 0.976 0.979 0.977 0.980 0.979
SAM 0.055 0.051 0.049 0.049 0.048 0.046 0.055 0.044 0.061 0.063 0.054 0.053 0.050 0.051 0.056 0.050

Harvard
PSNR 37.56 37.61 37.1 37.22 37.22 37.47 37.28 37.7 36.88 36.73 37.37 36.9 37.33 37.16 36.98 36.87
SSIM 0.953 0.953 0.952 0.951 0.946 0.950 0.948 0.951 0.949 0.945 0.953 0.948 0.955 0.951 0.949 0.949
SAM 0.131 0.126 0.144 0.124 0.143 0.124 0.134 0.12 0.157 0.133 0.135 0.131 0.136 0.125 0.153 0.131

CAVE
PSNR 25.62 24.26 25.56 25.75 25.69 25.94 25.85 25.81 24.24 23.90 24.50 24.56 24.01 24.95 24.42 25.14
SSIM 0.818 0.783 0.802 0.813 0.825 0.838 0.837 0.831 0.808 0.809 0.817 0.789 0.823 0.813 0.823 0.831
SAM 0.342 0.320 0.348 0.268 0.333 0.263 0.324 0.260 0.394 0.312 0.361 0.293 0.360 0.280 0.364 0.268

performance, while a smaller value of SAM implies a better
reconstruction.

4.2. Numerical Results

Table 1 manifests the compared quantitative evaluation
of the reconstructed HSIs on ICVL, Harvard, and CAVE
datasets using both traditional methods and deep learning-
based methods including our proposed HyperMixNet, and
the network parameters to be learned in deep learning-based
methods. Moreover, since our proposed HyperMixNet is
mainly composed of a serial of MixSS modules, where the
module number can be adapted according to the trade-off of
the reconstruction effectiveness and efficiency, we also pro-
vide the compared results via varying the module numbers
in Table 1. From Table 1, it can be seen that the proposed
HyperMixNet outperforms most state-of-the-art methods in
both spatial and spectral fidelity indexes excepting a little
drop of SAM value on the Harvard dataset compared with
the SSLR and HSCNN methods. However, the number
of parameters in our proposed HyperMixNet with K = 9
MixSS modules is reduced by 31%, 63%, and 37% com-
pared with HSCNN, HyperReconNet, and DeepSSPrior, re-
spectively. In addition, the network parameter of our Hy-
perMixNet can be further reduced with K = 7 but with-
out largely affecting the reconstruction performances for all
three datasets. Thus, it can be concluded that our proposed
HyperMixNet not only reduces the reconstruction model
size but also simultaneously improves the HSI restoration

accuracy.

4.3. Ablation Studies

In this section, we present the ablation study for explor-
ing different integrated components in the MixSS module,
and the used losses: MSE loss and the proposed mixed loss
for the network training. As described in subsection 3.3,
we exploited the MixConv layer for reconstructing spatial
structure, which consists of M groups to explore differ-
ent level spatial contexts (the standard depth-wise convolu-
tional layer with M = 1), and integrate the SCSB block to
investigate another version, dubbed as HyperMixNet+, for
adaptively selecting useful spatial features. We conducted
experiments with different group numbers (1 ≤ M ≤ 4) of
the MixConv layer, MSE/Mixed losses (α = 0.5 for Mixed
loss. Please referrer to more ablation results with different
α values) on both HyperMixNet and HyperMixNet+ . Ta-
ble 2 gives the ablation results on all three datasets. From
Table 2, we can see that larger group number in the Mix-
Conv layer manifests better results on all datasets, and the
mixed loss provides large improvement in spectral fidelity
(SAM value) while simultaneously maintaining or improv-
ing spatial fidelity (PSNR and SSIM values). The explored
HyperMixNet+ with the optional SCSB leads to no per-
formance boosting compared to the HyperMixNet while it
achieves comparable performance with the benchmark deep
learning-based methods. In the future, we are going to ex-
plore more effective selecting module for spatial contexts.
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GT / 

Compressive

HSCNN

(37.51, 0.047)

HyperReconNet

(35.66, 0.063)

DeepSSPrior

(39.29, 0.040)

Our (K = 5)

(38.84, 0.040)

Our (K= 7)

(39.97, 0.037)

Our (K= 9)

(40.40, 0.034)

Figure 3: Visual quality comparison of the representative reconstructed image of HSCNN [32], HyperReconNet [30],
DeepSSPrior [25] and our proposed HyperMixNet (K =5, 7, 9) from ICVL dataset. The PSNR and SAM for the resulted
images are shown in the parenthesis.

GT / 

Compressive

HSCNN

(37.46, 0.095)

HyperReconNet

(35.41, 0.126)

DeepSSPrior

(39.81, 0.076)

Our (K = 5)

(38.03, 0.087)

Our (K= 7)

(38.96, 0.080)

Our (K= 9)

(40.08, 0.075)

Figure 4: Visual quality comparison of the representative reconstructed image of HSCNN [32], HyperReconNet [30],
DeepSSPrior [25] and our proposed HyperMixNet (K =5, 7, 9) from Harvard dataset. The PSNR and SAM for the re-
sulted images are shown in the parenthesis.

4.4. Perceptural Quality

To visualize reconstruction results, two representative
images from the ICVL and the Harvard datasets using
HSCNN, HyperReconNet, DeepSSPrior, and our proposed
HyperMixNet (K = 5, 7, 9) are shown in Figure 3 and Fig-
ure 4. The first column shows the compressive snapshot im-
age by CASSI and its corresponding Ground-Truth image
while the other columns in the first and second rows pro-
vide the reconstructed images and the absolute difference
images between the ground-truth and the reconstruction us-
ing different deep learning-based methods. To conduct vi-
sualization, which considers the intensities of all spectral
bands, we convert the HSIs to sRGB space via the CIE
color matching function. From Figure 3, we can see that
the proposed HyperMixNet is able to reconstruct wall col-
ors and the building, which cannot be reconstructed by con-
ventional deep learning-based models, much closer to the
ground truth. Figure 4 also shows that the reconstructed
HSI with the proposed HyperMixNet (K = 9) achieved the

best spatial and spectral restoration results.

5. Conclusion

This study proposed a more efficient and effective deep
model, named as HyperMixNet, for the HSI reconstruc-
tion. HyperMixNet mainly consists of multiple MixSS
modules for reciprocally exploring spatial and spectral cor-
relations and hierarchically restoring the spatial and spec-
tral residual components. Specifically, to reduce parameters
and exploit different levels of spatial context, we adopted
a MixConv layer for implementing the spatial reconstruc-
tion layer. Moreover, to recover more reliable spectral in-
formation of the latent HSI, we integrated spectral fidelity
measure into the loss function of network training, and pro-
posed a mixed loss for accounting for both spatial and spec-
tral restoration degrees. Experimental results on three HSI
datasets showed comparable or better performance than the
state-of-the-art methods, and much less parameters than the
benchmark deep models.
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