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Abstract

Modern blind deblurring methods usually show degen-
erate performance when handling images captured in low-
light conditions because these images often contain satu-
rated regions of light sources, and the image contents and
details in dark regions are poorly visible. In contrast, event
cameras can faithfully record the positions and polarities
of intensity changes with a very high dynamic range and
low latency, which suffer less in the dark than conventional
cameras. However, existing event-based deblurring meth-
ods require guidance from global events with the same spa-
tial resolution as the blurry image (typically 346 × 260
pixels), which significantly limits the spatial resolution of
images they can process. In this paper, we address this
problem in a two-stage way by proposing a neural network
named DeLiEve-Net, which learns to Deblur low-Light im-
ages with light streaks and local Events. An RGB-DAVIS
hybrid camera system is built to validate that our method
can deblur high-resolution RGB images with events in low-
light conditions.

1. Introduction
Taking photos in low-light conditions requires longer ex-

posure time and/or higher sensitivity (ISO) to ensure the
sensor receives adequate light. In such a situation, the
recorded pictures are very prone to blur due to inevitable
camera shakes. Despite modern blind deblurring methods
[51, 37] are successful in restoring plausible sharp contents
in various scenarios, they usually show degenerate perfor-
mance when handling images captured in low-light condi-
tions because these images often contain saturated regions
of light sources, and the image contents and details in dark
regions are poorly visible (Figure 1 (a)). So it is of great
interest to deblur low-light images reliably.

Unique features in low-light images, such as noise pat-
tern [55], dark channel [35], and light streaks (caused
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Figure 1. An example for low-light image deblurring (captured by
a DAVIS346 event camera). (a) Blurry low-light image containing
saturated light streaks. (b) Result of Hu et al. [18]. (c) Corre-
sponding events. We use color pair (red, blue) to represent the
event polarity (1,−1) throughout this paper. (d) Our result. The
estimated blur kernels are shown in the top left of (b) and (d).

by light sources during camera shake) [18], could facili-
tate their deblurring. Existing methods adopt a two-stage
pipeline, i.e., blur kernel estimation and deconvolution,
by firstly exploring low-light features that contain useful
cues about the blur kernel. However, accurately estimat-
ing the blur kernel in low-light conditions is non-trivial,
since the quality of these features is severely deteriorated
due to the limited dynamic range of a conventional cam-
era. Furthermore, the iterative optimization-based deconvo-
lution adopted by these methods [38, 9] tends to fail on im-
ages with severe saturation and high noise level, since they
rely heavily on handcrafted image priors (Figure 1 (b)).

The low latency and high dynamic range (HDR) proper-
ties of event cameras, such as DVS (captures events) [28]
and DAVIS [3] (captures events along with grayscale active
pixel sensor (APS) frames), make them particularly use-
ful in deblurring applications [36, 7, 20, 29]. Thanks to
the less-contaminated motion cues encoded in events (Fig-
ure 1 (c)), these methods are able to generate sharp im-
ages directly from blurry inputs, and such end-to-end de-
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blurring approaches demonstrate stronger robustness to arti-
facts arising from blur kernel estimation and deconvolution
than image-based solutions. However, they require guid-
ance from global events with the same spatial resolution as
the blurry image, which significantly limits the application
scenarios since the spatial resolution of events (typically
346 × 260 pixels) is more than 100 times smaller than an
image captured by a modern camera (or camera phone).

In this paper, we propose DeLiEve-Net, a neural net-
work which learns to Deblur low-Light images with light
streaks and local Events. In order to process high-resolution
RGB images and take full advantage of events, we de-
sign an RGB-DAVIS hybrid camera system inspired by [1].
Unlike existing event-based approaches [7, 20, 29] which
are largely based on the event-based double integral (EDI)
model proposed in [36], we adopt the two-stage deblurring
pipeline (blur kernel estimation and deconvolution) based
on spatially-uniform blur assumption and use only local
events in the first stage to achieve high-fidelity blur kernel
estimation (Figure 1 (d)) by utilizing the additional low la-
tency and HDR observations encoded in events while in-
troducing the ability to process high-resolution RGB im-
ages. The two-stage design of DeLiEve-Net is shown in
Figure 2: The first stage is a blur kernel estimator analyz-
ing the temporal and structural information of light streaks
from local events in a patch to estimate the underlying blur
kernel; the second stage is a non-blind image deconvolver
extracting multi-scale information from the blurry image
to perform noise-resistant deconvolution with the estimated
blur kernel. To summarize, this paper makes contributions
by demonstrating: (1) The first event-guided solution for
the challenging low-light image deblurring task using light
streaks. (2) A two-stage neural network for high-fidelity
blur kernel estimation and noise-resistant deconvolution.
(3) The first event-based deblurring method that can deblur
high-resolution RGB images.

Experimental results show that DeLiEve-Net performs
better than optimization-based low-light image deblurring
approach using light streaks [18] and event-based deblur-
ring methods [36, 29] requiring guidance from global events
with the same spatial resolution as the blurry image (e.g.,
captured by a DAVIS346 event camera).

2. Related works
Generally, image deblurring methods could be divided

into two categories: non-blind methods, which assume the
blur kernel is known, and blind methods, which deblur with-
out knowing the blur kernel. We focus on blind methods.

Blind image deblurring. Blind image deblurring is a
highly ill-posed problem due to the complexity of natural
image structures and the diversity of blur kernel shapes.
Some works treated this problem as a maximum a poste-
riori (MAP) estimation problem and proposed several im-

age priors (e.g., total variation regularization [5], heavy-
tailed gradient distributions [12, 27], local smoothness prior
[42], normalized sparsity prior [24], L0-regularized prior
[49, 34]) to relieve its ill-posedness. These handcrafted
priors have shown their effectiveness in a large variety of
scenes, however, they did not make full use of the informa-
tion lying in specific image patterns. To improve the de-
blurring performance, several methods tried to exploit the
latent priors in various blurring-aware indicators, such as
strong edges [21, 8], patch recurrences [31], blurry image
outliers [11], channel statistics [35, 50], and light streaks
[18]. Recently, deep neural networks have been adopted to
handle this problem. These learning-based methods could
be divided into two categories: direct methods and indirect
methods. Direct methods try to deblur in an end-to-end
manner [32, 52, 46, 25, 26, 13, 51, 44, 53]. They usually
run much faster than conventional optimization-based ap-
proaches and demonstrate visually more impressive results.
However, indirect methods, which try to estimate the blur
kernel [22, 37] or its attributes (e.g., Fourier coefficients
[4], patch-wise motion vectors [45], and dense motion flows
[6, 14]) first and then use them to deblur, usually show bet-
ter generalization ability and suffer less from overfitting.

Low-light image deblurring. Whereas modern deblur-
ring methods are successful in restoring plausible sharp
contents from a single blurry image, they usually show de-
generate performance when handling images captured in
low-light conditions due to saturation and high noise level.
Several methods have been designed for such extreme con-
ditions. Zhuo et al. [56] fused a pair of blurred and flash
images to recover a sharp image. Zhong et al. [55] applied
a directional low-pass filter to reduce the noise level. Pan
et al. [35] proposed a dark channel prior which enforces the
sparsity of the dark channel to facilitate blur kernel estima-
tion. Hu et al. [18] utilized the light streaks as additional
cues to estimate the blur kernel.

Event-based deblurring. Event cameras (e.g., DVS
[28] and DAVIS [3]) are bio-inspired sensors that can de-
tect per-pixel brightness changes asynchronously. They
have many attractive properties that frame-based cameras
do not possess: high temporal resolution, very high dy-
namic range, low power consumption, and high pixel band-
width, some of which could naturally benefit the deblurring
task. Pan et al. [36] proposed an event-based double integral
(EDI) model that clarifies the relationship among the blurry
image, events, and latent frames. Chen et al. [7] proposed
a residual model suitable for learning image deblurring and
high frame rate video generation with events. Jiang et al.
[20] used a convolutional recurrent neural network that in-
tegrates visual and temporal knowledge of both global and
local scales to recover image details. Lin et al. [29] pro-
posed an end-to-end trainable neural network to generate
high-speed videos and used dynamic filtering to handle the
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Figure 2. Architecture of the proposed deblurring network DeLiEve-Net (D). It consists of two stages: a blur kernel estimator (F ) that
estimates the underlying blur kernel K by analyzing the temporal and structural information of light streaks Bp from local events ep in a
patch, and a non-blind image deconvolver (G) that performs noise-resistant deconvolution with the estimated blur kernel K by extracting
multi-scale information from the blurry image B.

events triggered by the spatially-varying threshold.
Our method belongs to blind deblurring approaches de-

signed for low-light images, and it specially utilizes light
streaks in blurry images and their corresponding events to
estimate the blur kernel. It suffers less from saturation
and noise due to the benefit of employing events and our
context-aware deconvolution process. Moreover, we expect
the resolution of the images we can process is not limited to
the spatial resolution of events by using only local events.

3. Proposed method
In this section, we first derive the formulation of the low-

light image deblurring problem using light streaks and local
events in Section 3.1. Then, we introduce our two-stage
framework designs in Section 3.2 and Section 3.3. Imple-
mentation details are presented in Section 3.4.

3.1. Problem formulation

We aim to restore a sharp image from a spatially-uniform
blurred image captured in low-light conditions. For the
spatially-uniform blur, we could use convolution to build
the image formation model:

B = clip(I⊗K + N), (1)

where B, I, and K denote the captured blurry image, the
latent irradiance, and the spatially-uniform blur kernel re-
spectively, N represents the noise term, ⊗ stands for the
convolution operator, clip is a clipping function defined as
clip(v) = v if v falls into the dynamic range of the cam-
era sensor, and clip(v) = 0 or 11 otherwise. Since light

1All irradiance values are normalized to [0, 1] in this paper.

streaks are common in low-light images and they roughly
resemble the shapes of underlying blur kernels (an exam-
ple is shown in Figure 1), we could explicitly utilize them
as additional cues for blur kernel estimation by cropping a
patch containing a light streak from the blurry image, so
Equation (1) could be patch-wisely formulated as

Bp = clip(Ip ⊗K + Np), (2)

where the subscript p identifies variables related to the
cropped light streak patch. However, due to the limited dy-
namic range of a conventional camera, light streaks are usu-
ally saturated so that it is difficult to estimate the blur kernel
accurately. Prominently, we recognize that an event camera
can faithfully record the positions and polarities of intensity
changes, which suffers less from saturation than conven-
tional cameras. Therefore, we introduce an event camera as
a secondary detector to capture events during the exposure
time to handle this issue.

Inside an event camera, each event e(u, t, σ) is triggered
whenever the latent irradiance L(u, t) of pixel u = (x, y)>

at time t exceeds a preset threshold c. Here σ is the polar-
ity given by: σ = 1 if ∆ logL(u, t) ≥ c, and σ = −1 if
∆ logL(u, t) ≤ −c. Turning the image formation model
into an event-based view [36] and denoting the latent irradi-
ance of a light source patch (will become a light streak patch
after exposure) at time t as Lp(t), the relationship between
Bp and Lp(t) can be described as

Bp = clip

(
Lp(0)

T

∫ T

0

exp

(
c

∫ t

0

Ep(s)ds

)
dt

)
, (3)

where Lp(0) = Ip, T is the exposure time, and Ep(s) is a
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function which equals to σ if a local event ep(u, s, σ) (trig-
gered in the light streak patch) exists, or 0 otherwise. Then,
to deblur using a two-stage pipeline, we need to 1) esti-
mate the blur kernel K from the light streak patch Bp and
its corresponding local events ep, and 2) conduct non-blind
deconvolution on the blurry image B with the estimated blur
kernel K. So, from the analyses above, we could see that K
can be determined by Bp and ep:

K = f(Bp, ep), (4)

where f is an implicit function derived from Equation (2)
and Equation (3). As K becomes available, we can then
estimate the sharp image S = clip(I):

S = g(B,K), (5)

where g stands for non-blind deconvolution.
Based on Equation (4) and Equation (5), we design two

network modules: blur kernel estimator F and non-blind
image deconvolver G, to fit f and g respectively. The over-
all deblurring pipeline can be described as

S = G(B,K) = G(B, F (Bp, ep)) , D(B,Bp, ep). (6)

We callD DeLiEve-Net, whose complete pipeline is shown
in Figure 2.

3.2. Blur kernel estimator

Although local events contain low latency and HDR ob-
servations about the light streak, estimating the blur kernel
accurately is still difficult because events are sparse, noisy,
and non-uniformly distributed signals. However, by jointly
extracting features from the light streak patch and its cor-
responding local events, we could use the unique shape of
the light streak to localize and extract the events related to
the latent light source for obtaining fine-grained but less-
noisy motion cues. Besides, in this way, the lost informa-
tion about the unclipped radiance of the light source could
be compensated by events that are not affected by the lim-
ited dynamic range of a conventional camera, which makes
the blur kernel estimation more accurately.

We therefore design a blur kernel estimator F to esti-
mate the spatially-uniform blur kernel K from a cropped
light streak patch Bp and its corresponding local events ep.
As shown in the first stage of Figure 2, this network module
could be described as K = F (Bp, ep). We first use convo-
lutions with a large receptive field (7× 7) and a U-Net [40]
backbone to perform feature extraction and fusion from Bp

and ep jointly because the U-Net backbone have excellent
localization and context generalization ability. Strided con-
volutions are used to substitute max-pooling layers in each
scale of the U-Net backbone respectively for finer feature
fusion. Then we try to reconstruct the blur kernel K from
the output features X of the U-Net backbone. Note that

we cannot reconstruct K directly by performing convolu-
tions on X because blur kernels are always very sparse (all
of the padding pixels are zero); and once a padding pixel
is predicted to be a valid pixel (non-zero pixel, which be-
longs to the valid part of the blur kernel), the structure of
the blur kernel is destroyed so that the robustness of de-
convolution will be affected. To overcome this issue, we
propose a “logit and reweight” strategy: We first predict
logits Lo from X using a bottleneck block [16] and a 1 × 1
convolution (“Logit block” in Figure 2) to distinguish valid
pixels from padding pixels, then predict the valid pixel val-
ues in the blur kernel K by reweighting the logits Lo us-
ing an attention gate [33] (“Reweight block” in Figure 2).
This procedure could be written as Lo = LogitBlock(X)
and K = ReweightBlock(Lo,X) = Lo � M, where
M = M(Lo,X) denotes the attention map [33] computed
by Lo (as input signal) and X (as gating signal) inside the at-
tention gate, and � stands for the point-wise multiplication
operator. The “logit and reweight” strategy can enforce the
sparsity of the blur kernel by predicting its logits, so more
accurate blur kernel estimation can be achieved.

Note that in this stage our blur kernel estimator only op-
erates in a local patch (identified by the subscript p), so the
size of the event patch does not affect the resolution of the
image to be deblurred in the next stage.

3.3. Non-blind image deconvolver

As the blur kernel K becomes available, we next need
to perform non-blind deconvolution on the blurry input im-
age B to restore the sharp image S. However, for a low-
light scene containing light sources, a conventional camera
usually captures images with obvious saturation and high
noise level, which may lead to severe ringing artifacts if de-
convolution is directly applied. Fortunately, these images
still contain useful semantic and contextual features in non-
saturated regions, which should be explored to relieve the
pressure of deconvolving a high-noise image.

We therefore design our non-blind image deconvolver G
to extract multi-scale features for increasing the robustness.
It performs deconvolution on the input blurry image B with
the estimated blur kernel K for predicting the sharp image
S. As shown in the second stage of Figure 2, this network
module could be described as S = G(B,K). We adopt the
autoencoder [17] architecture to extract image features at
different levels, which is proved to be effective in recover-
ing sharp image contents [32, 46, 51]. Furthermore, since
the deconvolution is dictated by the blur kernel K, inspired
by [22], we introduce the kernel guided convolution blocks
in both the encoder and decoder. Kernel guided convolution
blocks map the blur kernel K into a list of multipliers and
biases, which modulate and shift the output of the convo-
lutions at each layer. It allows the blur kernel K to act on
our deconvolver uniformly across the entire spatial domain,
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which stabilizes the deconvolution process. Moreover, to
expand the receptive field for more detailed contextual in-
formation, we embed multiple residual bottleneck blocks in
the coarsest layer.

Thanks to the multi-scale contextual information ex-
tracted from the input blurry image, our deconvolver could
understand the scene better and handle more complicated
blurry images with saturation and high noise level, so that
the deconvolution becomes more robust and the ringing ar-
tifacts are alleviated to a large extent.

3.4. Implementation details

Loss function. The loss function of the blur kernel esti-
mator LF is defined as

LF = LF1
(Lo,bin(Kgt)) + LF2

(K,Kgt) · α
= BCEWL(Lo,bin(Kgt)) + L1(K,Kgt) · α,

(7)

where LF1
defines the loss between the logits Lo and the

binarized ground truth blur kernel bin(Kgt), LF2
defines

the loss between the estimated blur kernel K and the ground
truth blur kernel Kgt, BCEWL and L1 denote the binary cross
entropy with logits loss and L1 loss respectively, and α is
set to 100. The loss function of the non-blind image decon-
volver LG is defined as

LG = LG(S,Sgt)

= Perc(S,Sgt) · β1 + L2(S,Sgt) · β2,
(8)

where S and Sgt represent the estimated and ground truth
sharp image, Perc and L2 denote the perceptual loss and
L2 loss, β1 and β2 are set to 0.1 and 10 respectively. The
perceptual loss is defined as

Perc(S,Sgt) = L2(φh(S), φh(Sgt)), (9)

where φh denotes the feature map from h-th layer of VGG-
19 network [43] pretrained on ImageNet [41], and here we
use activations from V GG3,3 convolutional layer.

Training dataset generation. Our two-stage framework
designs also make generating the training dataset quite sim-
ple and flexible, whose pipeline is shown in Figure 3. Note
that it is unnecessary to extract light streaks in the training
phase since the training of the two stages is independent 2.
We only need to generate light streak patches directly for
training the first stage and use images unrelated to those
light streak patches to train the second stage.

For training the blur kernel estimator, we first generate
the irradiance patch Ip with a fixed size of 48×48 pixels. It
contains a single Gaussian light source with randomly sam-
pled radius in the range of [1, 5] pixels and intensity in the
range of [ 180255 ,

1000
255 ], laid on a random background cropped

2As for inference, we can either use the method proposed in [18] to
automatically extract light streaks or extract them manually.
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Figure 3. Training dataset generation pipeline.

from images in the GoPro dataset [32]. We then generate a
random camera motion trajectory using the algorithm pro-
posed in [2]. Sub-pixel interpolation is applied to obtain the
blur kernel K (also 48 × 48 pixels), which is further con-
volved with Ip to generate the blurry light streak patch as
Bp = clip(Ip ⊗ K + Np). Here, Np is additive Gaussian
noise with zero mean and 1% variance. Finally, we move
Ip along the trajectory to generate a high frame rate video
at 1200 FPS and apply V2E [10] (without frame interpola-
tion) to generate corresponding local events ep (stacked into
a spatio-temporal voxel grid before sending to the network).

For training the non-blind image deconvolver, we first
randomly select an image being resized and cropped to
256×256 pixels from the GoPro dataset [32] and ExDARK
dataset [30] as the latent irradiance I3. Then we generate
a blur kernel K and convolve it with I to obtain the blurry
image as B = clip(I⊗K + N) using the same method as
above. Note that here the sharp image S = clip(I) = I
because these images are captured by a conventional cam-
era with limited dynamic range.

Training strategy. We implement DeLiEve-Net using
PyTorch on a PC with an Intel Core i7-8700K CPU and an
NVIDIA 2080Ti GPU, and train two stages independently
for 2000 and 300 epochs respectively. ADAM optimizer
[23] is used for both two stages. The learning rates for two
stages are set to 1× 10−3 and 5× 10−4 respectively. After
the first 200 epochs we linearly decay the learning rate of
the second stage to 2.5 × 10−4 over the next 100 epochs.
Instance normalization [47] is added during training.

3Strictly speaking, we should use scene radiance values here, but these
images are non-linear with unknown radiometric responses. We just use
the contents of them as the “ground truth” of our image irradiance.
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Figure 4. Qualitative comparisons on synthetic data. (a) Blurry image. (b) Ground truth sharp image. (c)∼(h) Deblurring results of Zhang
et al. [51], Ren et al. [37], Pan et al. [36], Lin et al. [29], Hu et al. [18], and ours. Quantitative results evaluated using PSNR (P), MS-SSIM
(M), and LPIPS (L) are labeled in each image.

4. Experiments

4.1. Evaluation on synthetic data

We compare the results of DeLiEve-Net with two state-
of-the-art learning-based blind deblurring methods (Zhang
et al. [51] and Ren et al. [37]), two state-of-the-art event-
based methods (Pan et al. [36] and Lin et al. [29]), and
a low-light image deblurring method which also specially
utilizes light streaks (Hu et al. [18]4). Since existing bench-
mark dataset containing low-light images with light streaks
(e.g., [39]) does not provide corresponding events5, to per-
form the quantitative evaluation, we build a synthetic test
dataset consisting of 50 different images, whose generation
pipeline could be summarized as: First, we capture 10 low-
light images in the RAW format including diverse scenes by
a Sony α7R III camera with an FE 24-70 mm F2.8 GM lens;
for each RAW image we make four additional copies so that
in total we have 50 linear images whose dynamic ranges are
higher than the 8-bit low dynamic range images to serve as
image irradiance I; then we use the same way as the train-
ing dataset generation pipeline in Section 3.4 to obtain 50
different camera motion trajectories and corresponding blur
kernels for generating blurry images and local events.

4For a fair comparison, we adopt their spatially-uniform deblurring
method in our experiments.

5We cannot generate events from their data either because the motion
trajectory or video is unavailable.

Table 1. Quantitative evaluation results on synthetic data among
Zhang et al. [51], Ren et al. [37], Pan et al. [36], Lin et al. [29],
Hu et al. [18], and ours. ↑ (↓) means the higher (lower) the better
results throughout this paper. ∗ means that the model is retrained
on our training dataset.

PSNR↑ MS-SSIM↑ LPIPS↓
Zhang et al. [51] 26.201 0.9073 0.3529
Zhang et al. [51] ∗ 25.747 0.8849 0.4014
Ren et al. [37] 21.270 0.7379 0.3501
Pan et al. [36] 26.879 0.9413 0.2074
Lin et al. [29] 18.881 0.6349 0.4651
Hu et al. [18] 24.829 0.8674 0.3075
Ours 28.585 0.9621 0.1925

Since the event-based methods [36, 29] we compare need
global events in the whole image plane as input, we pro-
vide such information to them while only local events to
our method. To evaluate the results quantitatively, we adopt
three commonly adopted image quality metrics including
PSNR, MS-SSIM, and LPIPS [54] (learned perceptual im-
age patch similarity, higher (lower) means more different
(similar) to ground truth, which is different from PSNR and
MS-SSIM). Results are shown in Table 1. We have retrained
all learning-based models with released training codes on
our training dataset, and these results are marked with ∗.
From the results we can see that our model outperforms the
compared methods in all of the metrics, while Ren et al.
[37] and Lin et al. [29] do not perform well, because Ren
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(c) Zhang et al. (d) Ren et al. (e) Pan et al. (f) Lin et al. (g) Hu et al. (h) Ours(b) Blurry image(a) Events
Figure 5. Qualitative comparisons on real data captured by a DAVIS346 event camera. (a) Events. (b) Blurry image. (c)∼(h) Deblurring
results of Zhang et al. [51], Ren et al. [37], Pan et al. [36], Lin et al. [29], Hu et al. [18], and ours.

Table 2. Quantitative evaluation results using kernel similarity
(KS) among the methods which also estimate blur kernels (Hu et
al. [18] and Ren et al. [37]) and ours.

Hu et al. [18] Ren et al. [37] Ours

KS↑ 0.3723 0.4947 0.5989

et al. [37] suffers from misalignment and ringing artifacts
severely, and Lin et al. [29] needs information of adjacent
frames, which is unavailable in our settings6. Visual qual-
ity comparisons7 are shown in Figure 4, our model can de-
blur robustly with fewer artifacts. Furthermore, to show that
DeLiEve-Net can achieve high-accuracy blur kernel estima-
tion, we compare it to the methods which also estimate blur
kernels (Hu et al. [18] and Ren et al. [37]) using kernel sim-
ilarity (KS) proposed in [19] (higher means more similar to
ground truth kernels), as shown in Table 2.

4.2. Evaluation on real data
To show that DeLiEve-Net has a good generalization

ability on real captured low-light images and events and
real camera shake, we capture several images along with
corresponding events using a DAVIS346 event camera. As
shown in Figure 5, our method generalizes well in both in-
door and outdoor scenarios with excellent performance.

4.3. Results using different event-image resolutions
To demonstrates that DeLiEve-Net can deblur high-

resolution RGB images with events, we build an RGB-
DAVIS hybrid camera system consisting of an RGB camera
(PointGrey Chameleon3, resolution of 2448× 2048 pixels,
and we resize the images to 1224 × 1024 pixels in our ex-
periments) and an event camera (DAVIS346, resolution of
346× 260 pixels) with the same F/1.4 lens to capture high-

6Only a single frame with its corresponding events is available.
7Since the retrained results are not better than the original results in

quantitative evaluation, we use the original results for visual quality com-
parisons throughout this paper.

Light 
Input

DAVIS  Camera

Beam 
Splitter

Figure 6. Our RGB-DAVIS hybrid camera system.

resolution RGB images and low-resolution events, as shown
in Figure 6. To ensure the motion trajectories of the two sen-
sors are approximately the same, we use a beam splitter in
front of them to make their fields of view aligned [15, 48].

We need to extract events in the exposure time of a cer-
tain RGB image from the event camera using this hybrid
camera system. However, it is non-trivial to achieve pre-
cisely temporal synchronization unless we can configure a
synchronized clock to trigger two cameras simultaneously
at the chip level, which is beyond the scope of this pa-
per. Instead, we propose an alternative strategy to demon-
strate the possibility of using DeLiEve-Net for deblurring
high-resolution RGB images with local events. We assume
the APS frames and events are well synchronized in the
event camera. The approximated temporal synchronization
is achieved by periodically capturing a scene and select the
“best” aligned frame pair between RGB images and APS
frames. We first set the exposure time of the RGB images to
the same value as the APS frames and set the RGB camera
to burst mode. Next, we capture a sequence of RGB images
and APS frames, and select a frame pair with the closest ap-
pearance by scaling them to the same size and seeking a pair
with maximum image similarity evaluated using MS-SSIM.
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(a) Blurry image (b) Zhang et al. (c) Ren et al. (d) Hu et al. (e) Ours
Figure 7. Qualitative comparisons on high-resolution real RGB data captured by our RGB-DAVIS hybrid camera system. (a) Blurry image.
(b)∼(e) Deblurring results of Zhang et al. [51], Ren et al. [37], Hu et al. [18], and ours.

Table 3. Quantitative evaluation results of ablation study.

PSNR↑ MS-SSIM↑ LPIPS↓
End-to-end 27.250 0.9590 0.2081
W/o events 27.112 0.9438 0.1984
W/o “l. & r.” 21.203 0.7825 0.3510
W/o perc. loss 27.598 0.9582 0.2705
Our complete model 28.585 0.9621 0.1925

Visual quality comparisons are shown in Figure 78. This
proof-of-concept experiment shows a great potential of ap-
plying events for deblurring images satisfying modern cam-
era specifications and daily life photography.

4.4. Ablation study
To verify the validity of each model design choice, we

conduct ablation studies and show comparisons in Table 3.
We first remove the blur kernel estimator to deblur in an
end-to-end manner (End-to-end). Our two-stage model out-
performs the end-to-end model, this is because estimating
the blur kernel first introduces constraints in the deconvolu-
tion process, which turns the blind deblurring problem into
a less ill-posed non-blind one [22, 37]. Then, we remove
the local events from the input of the blur kernel estimator
(W/o events) to verify the necessity of the additional low la-
tency and HDR observations encoded in local events. Fur-
thermore, we remove the “logit and reweight” strategy in
the blur kernel estimator (W/o “l. & r.”), and the perfor-
mance decreases badly because the estimation of blur ker-
nels becomes unstable. Finally, we remove the perceptual
loss to show its effectiveness (W/o perc. loss). These re-
sults demonstrate our complete model achieves the optimal
performance with these specific designed strategies.

5. Conclusion and discussion
We propose DeLiEve-Net, consisting of a blur kernel es-

timator and a non-blind image deconvolver, to deblur low-
light images with light streaks and local events. It analyzes

8Note that we do not compare with event-based methods [36, 29] be-
cause they require guidance from global events with the same resolution as
the blurry image, which is not available.

(a) Blurry image (b) Ours
Figure 8. An example of handling spatially-variant blur.

the temporal and structural information of light streaks from
local events in a patch to estimate the underlying blur ker-
nel, and extracts multi-scale information from the blurry im-
age to perform noise-resistant deconvolution with the esti-
mated blur kernel. Experiments show that DeLiEve-Net not
only deblurs low-light images robustly with fewer artifacts
but also handles high-resolution color images.

DeLiEve-Net for the first time shows a great potential
of applying events for deblurring high-resolution and color
images, which cannot be achieved by existing event-based
methods using an APS image [36, 7, 20, 29]. However,
with only local events provided, it can only handle spatially-
uniform blur at present. While global events are available,
handling spatially-variant blur becomes possible by adopt-
ing a similar approach as [18]: We first split the blurry
image and its corresponding global events into a grid of
patches to estimate the patch-wise blur kernels and use them
to perform deconvolution respectively, then reweight the de-
convolution results to get the final deblurred image. An ex-
ample is shown in Figure 8. Although the performance of
handling spatially-variant blur may not as good as spatially-
uniform blur, we believe it can be improved by extending
the 2D blur kernel into a 3D one, which is left for our future
work. In addition, our RGB-DAVIS hybrid camera system
cannot achieve temporal synchronization precisely, and this
could be solved by locating the two sensors in the same chip
with different resolutions (pixel sizes) in the future.
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