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1. Introduction

In this supplemental material, we expound on topics in-
cluded in the paper submission in the following sections be-
low:

1. In Section 2, we provide technical details of the U-Net
neural network architecture used in our implementa-
tion.

2. in Section 3, we discuss a technique to extract solar
irradiance from the predicted sky-images in the form
of global horizontal irradiance (GHI).

2. Network Architecture
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Figure 1: U-Net Architecture

We adapt the future frame prediction model proposed for
activity forecasting in [2l]. The backbone of this architecture
is a U-Net [3]] that takes in the input images to predict the
image at the next time instant in the time lapse. Figure []
shows the structure of the U-Net model used. The legend in
Figure [T] indicates the operations between each layer. The
black arrow between the encoder and decoder structure in-
dicates skip connections that concatenate information from
the encoder layer to the subsequent decoder layer.
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2.1. Training Details

Our model is implemented in the Python programming
language that utilizes the PyTorch machine learning frame-
work. Experimenting with various parameters, the optimal
batch size and number of epochs that we utilize are 4 and 40
respectfully. We train our model using 3 NVIDIA GeForce
RTX 2080 Ti GPUs which takes about 1.5 hours per epoch
to train on a dataset of 42,171 images.

3. GHI

Prediction of cloud movement in a subsequent image
is only one step in precise prediction of solar irradiance.
Therefore, using the predicted frames, we calculate GHI
values similar to [1]] in order to validate our results on accu-
rately forecasting solar irradiance. We use a random forest
(RF) ensemble model that, when trained with ground truth
GHI values and sky-images, predicts a GHI value for that
time instance. Figure 2] shows predicted GHI values cap-
tured each minute on a day’s worth of data. Given 4 previ-
ous sky-image frames at time instants {t —5,t —3,t — 1, ¢}
as input, the predicted image frame at ft+1 is used as infer-
ence to compute GHI. This is repeated for all time instances
throughout the specified day. Table [T] shows comparison
SNR metrics for longer term prediction. Time instances af-
ter ¢t + 1 are recursively forecasted using predicted frames.
For reference, ”SkyNet” in the figures below, denote the
SkyNet-UNet model.
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Figure 2: Predicted GHI values captured each minute on
August 6, 2003. Each minute interval of GHI is predicted
using 4 previous time instances. Table[I]shows comparison
metrics.

GHI prediction performance (NMSE in dB)

t+1 t4+3 t4+5 t+7

SkyNet 1845 16.24 1440 13.27

PhyD-Net 17.54 1527 13.66 12.62

Optical Flow 17.53 15.76 1434 13.83

Table 1: Comparison of the signal-to-noise-ratio for GHIL.
Due to the fact that ground truth GHI values are captured
each minute, we must predict every other subsequent image
frame. For example ¢ + 5 represents a 5-min ahead fore-
casting time using 4 previous time instance frames. These
values are averages over 5 days from 08/06/03 to 08/11/03.
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