
Deep Single Fisheye Image Camera Calibration for Over 180-degree
Projection of Field of View

Supplementary material

Nobuhiko Wakai
Panasonic Corporation

wakai.nobuhiko@jp.panasonic.com

Takayoshi Yamashita
Chubu University

takayoshi@isc.chubu.ac.jp

1. Comparison of bearing loss and non-gird
bearing loss

We describe the effectiveness of our non-grid bearing
loss designed for fisheye camera calibration. To compare
bearing loss [3] and our non-grid bearing loss, we also train
our network using the bearing loss on condition that other
settings are corresponded to the experiment in main paper.
Although standard image grids in the bearing loss are pro-
jected to a unit sphere, there are invalid grid points outer
image circles. Moreover, standard grid points are unbalance
for incident angles.

Table 1 shows that our non-grid bearing loss has small
absolute errors in all parameters compared with the bear-
ing loss. In addition, error distribution in the bearing loss is
wider than that in non-grid bearing loss in Fig. 1. In particu-
lar, the bearing loss causes large errors in long focal length.
Therefore, non-grid bearing loss is suit for fisheye camera
calibration with over 180◦ of field of views (FOV).

2. Experiments using SP360 dataset
For evaluating our method calibrating fisheye cameras,

we conduct training and evaluating our network compared
with conventional calibration methods. First, we describe
dataset and then show experimental results.

2.1. Dataset

We use a large-scale dataset of outdoor panoramas with
sun positions called SP360 dataset [1] artificially to make
images using arbitrary camera parameters. The difference
of SP360 and StreetLearn dataset (Manhattan 2019 sub-
set) [4] is as follows: Image size of SP360 dataset is
3328×1664 pixels, i.e., half width and height of StreetLearn
dataset. Additionally, SP360 dataset is divided into train
(including validation) and test sets of 19, 038 and 55 im-
ages, respectively. We render 27 and 300 image patches
for train and test sets, respectively. Train, validation, and

test sets have 502, 204, 11, 822, and 16, 500 images, respec-
tively because we use validation rate 0.023 for train and val-
idation division. Note that the number of images in SP360
dataset is approximately one third of that in StreetLearn
dataset. Thus, we render three times image patches in
SP360 dataset compared with that in StreetLearn dataset. In
experiment using SP360 dataset, we follows the main paper
settings except for the dataset.

2.2. Experimental results

We show experimental results using SP360 dataset in the
same manner of main paper evaluation.

2.2.1 Error distribution of our network

We show the error distribution of our network using the test
set of SP360. We show the absolute errors between ground-
truth and predicted values among these parameters in Fig. 2.

In our method, the absolute errors between ground-truth
and predicted parameters in tilt angle θ, roll angle ψ, and
focal length f are 6.62 ± 13.21 [deg], 9.34 ± 19.89 [deg],
and 0.276 ± 0.257 [mm], respectively in Tab. 1. In López-
Antequera’s method [3], the absolute errors in tilt angle θ
and roll angle φ are 32.25± 33.79 [deg] and 44.96± 25.94
[deg], respectively. Therefore, our method precisely cal-
ibrates rotation angles compared with López-Antequera’s
method.

2.2.2 Reprojection error

In the test set of SP360, the reprojection errors of our
method and López-Antequera’s method are 17.46 ± 15.43
and 41.80 ± 47.81 pixels, respectively. In addition to rota-
tion errors, our method has small reprojection errors com-
pared with López-Antequera’s method that has large repro-
jection errors due to large angle errors. This trend is the
same using StreetLearn dataset in evaluation.



Loss θ error [deg] ψ error [deg] f error [mm]

Bearing loss [3] 7.29± 14.03 10.12± 20.78 0.318± 0.301
Non-grid bearing loss 6.62± 13.21 9.34± 19.89 0.276± 0.257

Table 1: Comparison of bearing loss and non-grid bearing loss using our network.
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Figure 1: Error distribution on the test set of 16, 100 images in StreetLearn dataset. The horizontal axis indicates ground truth values of
parameters. The vertical axis indicates predicted parameters. The diagonal red lines indicate perfect prediction. The bottom images are
examples of rendered images using notated camera parameters.

2.2.3 Comparison using PSNR and SSIM

We evaluate the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [6] for intrinsic parameters. In
image rectification task, extrinsic parameters are ignored
because the image rectification is carried out using only in-
trinsic parameters.

Table 2 shows comparison of PSNR and SSIM in our
test set of SP360. Our method outperforms conventional
methods in both PSNR and SSIM the same as StreetLearn
dataset evaluation. Note that we exclude Santana-Cedrés’s
method for quantitative evaluation because it does not work
in many images where the line detector fails to extract lines.

Figure 3 shows that the qualitative rectification results on
our test dataset generated by our method and the others. In
various street images, our method obtains overall the most
similar to the ground truth images even if cameras are ro-
tated with large angles.

As described above, our method outperforms conven-
tional methods using SP360 as well as using StreetLearn
dataset.
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Figure 2: Errors on the test set of 16, 500 images in SP360 dataset. The horizontal axis denotes ground truth values while the vertical axis
denotes the absolute error between ground-truth and predicted values.

Method Learning Extrinsics Intrinsics Projection Over 180◦ FOV PSNR ↑ SSIM ↑

Santana-Cedrés [5]1 X Perspective - -
Yin [7] X X Fisheye 2 X 15.46± 1.59 0.3914± 0.1024
Liao [2] X X Perspective 15.75± 1.90 0.4413± 0.0100

López-Antequera [3] X X X Perspective 16.67± 3.02 0.5034± 0.0159
Ours X X X Fisheye X 21.60± 5.06 0.6434± 0.1818

1 Exclusion for evaluation due to failure of line detection in many images.
2 Using generalized fisheye camera models.

Table 2: Comparison of conventional methods and our method using the test set of SP360.
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Figure 3: Qualitative results on our test images of SP360. We show the input image, the ground truth image, and results of the compared
methods: Santana-Cedrés [5], Yin [7], Liao [2], López-Antequera [3], and our method from left to right.


