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Abstract

We investigate ways to leverage uncertainty in face im-
ages to improve the quality of the face clusters. We observe
that popular clustering algorithms do not produce better
quality clusters when clustering probabilistic face represen-
tations that implicitly model uncertainty – these algorithms
predict up to 9.6X more clusters than the ground truth for
the IJB-A benchmark. We empirically analyze the causes
for this unexpected behavior and identify excessive false-
positives and false-negatives (when comparing face-pairs)
as the main reasons for poor quality clustering. Based on
this insight, we propose an uncertainty-aware clustering al-
gorithm, UAC, which explicitly leverages uncertainty infor-
mation during clustering to decide when a pair of faces are
similar or when a predicted cluster should be discarded.
UAC considers (a) uncertainty of faces in face-pairs, (b)
bins face-pairs into different categories based on an un-
certainty threshold, (c) intelligently varies the similarity
threshold during clustering to reduce false-negatives and
false-positives, and (d) discards predicted clusters that ex-
hibit a high measure of uncertainty. Extensive experimen-
tal results on several popular benchmarks and comparisons
with state-of-the-art clustering methods show that UAC pro-
duces significantly better clusters by leveraging uncertainty
in face images – predicted number of clusters is up to 0.18X
more of the ground truth for the IJB-A benchmark.

1. Introduction
Analyzing video streams from surveillance cameras is

becoming crucial for businesses and organizations to max-
imize their return on investment on video surveillance sys-
tems. For example, shopping malls, equipped with surveil-
lance cameras, analyze the video streams to gain insights
into shopper statistics to provide a better and personalized
experience to their customers. Table 1 shows a few exam-
ples of insights that are useful in a shopping mall scenario.
All these insights can be easily generated by first cluster-
ing faces detected in the surveillance videos. As shown in

*Now works at Google and this research has been performed while
employed at NEC Laboratories America, Inc.

Figure 1: A high level view of the target setup

Figure 1, faces are extracted from surveillance cameras and
stored in a database. These faces are then clustered to deter-
mine unique persons and to derive customer insights shown
in Table 1.

1. Number of shoppers visiting every day, week, month, or quarter
2. Number of returning shoppers visiting every day, week, month, or quarter
3. Number of shoppers visiting a specific store (e.g., toy store, theatre, etc.)
4. Number of shoppers visiting a specific set of stores of interest

Table 1: Customer insights from mall surveillance videos

Faces captured by surveillance videos are inherently
noisy. Consequently, facial features learned by conven-
tional, deterministic face embedding models [21, 4, 18, 13,
24] can be ambiguous, or certain facial features may not
even be present in the input face, leading to noisy represen-
tations. Consequently, clustering algorithms based on these
noisy representations tend to produce incorrect results.

Recently, probabilistic face embeddings (PFE [23] and
DUL [3]), which represent each face image as a multivari-
ate Gaussian distribution in the latent space, have been pro-
posed to improve the accuracy of face recognition when
face images are noisy. In addition, PFE [23] proposes a
new similarity function augmented with uncertainty infor-
mation to compute the similarity between two probabilistic
embeddings. Using such embeddings and similarity func-
tions, one would expect face clustering algorithms to pro-
duce better quality clusters when more information like un-
certainty is available. However, as we show in Section 2,
popular face clustering algorithms do not produce better
quality face clusters when using probabilistic embeddings
with uncertainty information.

Inspired by the use of uncertainty information to improve
face recognition [23], and principal component analysis [8],
we investigate ways to leverage uncertainty in face images
to improve face clustering tasks. In this paper, we make the
following contributions:

1. We show that popular face clustering algorithms do not
produce better quality clusters when additional informa-
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tion like uncertainty is implicit in the face representations
or the similarity function.

2. We empirically analyze the causes for this unexpected
behavior and identify excessive false-positives and false-
negatives (when comparing face-pairs) as the main rea-
sons for poor quality clustering.

3. We propose a novel uncertainty-aware clustering algo-
rithm, UAC, that explicitly leverages uncertainty infor-
mation during clustering to intelligently decide when a
pair of faces are similar or when to discard a predicted
cluster due to the high uncertainty estimate for the clus-
ter.

4. We propose a new cluster quality metric, Purity Adjusted
Amplification Score (PAAS), that more accurately reflects
the quality of clusters when data uncertainty is high.

5. Extensive experimental results on several popular bench-
marks, and comparisons with state-of-the-art clustering
methods, show that UAC produces an order of magnitude
better clusters by leveraging uncertainty in face images.

2. Motivation
With the increased face recognition accuracy by us-

ing uncertainty-aware probabilistic face embeddings, one
would expect a similar improvement for clustering tasks.
However, we find that these embeddings do not help to im-
prove the clustering accuracy when data uncertainty is high.
For example, Table 2 shows the number of clusters pre-
dicted by popular clustering algorithms using PFE [23] em-
beddings of face images in public benchmarks like LFW [9]
and IJB-A [10], which include faces with low and high un-
certainty, respectively. The number of predicted clusters for
the LFW benchmark is very close to the ground truth (face
images have very low uncertainty), while for the IJB-A, the
predicted clusters are overestimated by 5.97X, 7X, and 9.6X
by the DBSCAN [5], AHC [15], and GCN-V [30] clustering
algorithms, respectively. This is problematic because clus-
tering results are used to compute various analytics queries
like the ones shown in Table 1.

We also find that popular face cluster quality metrics
(e.g., Pairwise F-Score, BCubed F-score, NMI, etc.) do not
adequately reflect the true quality of clusters when data un-
certainty is high (we provide detailed results in Section 4.2).
For example, for the IJB-A case the DBSCAN [5] predicts
5.97X more clusters, however popular quality metrics still
report high scores: Purity = 0.97, BCubed F-Score = 0.84,
Pairwise F-Score = 0.78 and NMI = 0.94. Thus, we rethink
how to evaluate cluster quality to rank different clustering
algorithms when data uncertainty is high.

3. Related Work
Existing face clustering methods can be broadly catego-

rized into two groups: unsupervised and supervised.
Unsupervised methods, such as K-Means [14], DB-

SCAN [5], Agglomerative Hierarchical Clustering
(AHC) [15], etc. use similarity scores to find clusters.

Algorithm
LFW (Data Uncertainty = Low) IJB-A (Data Uncertainty = High)
Expected Predicted Expected Predicted
Clusters Clusters Clusters Clusters

DBSCAN 5749 5777 500 3483
AHC 5749 5841 500 5322

GCN-V 4600 4667 400 3214

Table 2: Predicted number of clusters for the popular clus-
tering algorithms using probabilistic embedding and mutual
likelihood score (MLS) similarity method [23].

In addition to the similarity function, K-Means uses
the number of clusters (i.e., K), while other algorithms
use similarity threshold as well as few other parameters
(e.g., minPts, linkage method, etc.). We cannot use
K-means [14] algorithm because the value of K is what
we are trying to estimate for our collections of faces. In
order to improve similarity scores, recently, some works
have focused on learning new similarity functions using
deep learning. For example, Lin et al. [11] propose a new
function based on the density affinity of the local neighbor-
hoods; Otto et al. [16] propose an approximate rank order
metric based on the shared nearest-neighbors information;
and PAHC [12] proposes a similarity function that measures
similarity between CNN features by evaluating linear SVM
margins, and SVM is trained based on the nearest neighbor
information. Among all unsupervised methods, DBSCAN
is one of the most popular density-based algorithms. It has
been successfully used in many real-world applications and
has received the SIGKDD test-of-time award in 2014 [22].
Agarwal et al. [1] provides a survey of the many variants
of the DBSCAN algorithm for handling noise, which is
very different from the data uncertainty issue considered in
this paper. We estimate noise from the face image, while
DBSCAN finds noisy data points based on the number of
nearest-neighbors and reachability information.

Recently some supervised clustering methods have been
proposed in order to learn cluster patterns. For example,
graph convolutional networks (GCNs) learn cluster repre-
sentations from the nearest-neighbor graphs [30, 6, 31, 28];
and Tapaswi [25] et al. propose a method to carve the fea-
ture space into equal-sized balls. Although these supervised
algorithms have achieved good results for some datasets,
these algorithms require hyperparameters tuning as well as
repeated training for each dataset. In addition, our evalu-
ation shows these algorithms do not work well when data
uncertainty is high.

To the best of our knowledge, no face clustering algo-
rithm explicitly considers uncertainty information. Most of
the above works use nearest-neighbors information in the
feature space. However, when data uncertainty is high, the
similarity estimate becomes incorrect, which generates in-
correct nearest-neighbors estimate – thus, these algorithms
may not be effective when data uncertainty is high.

4. Impact of Uncertainty on Clustering Tasks
In this section, we first describe how uncertainty is cap-

tured with a probabilistic embedding. Next, we evaluate the
impact of probabilistic embedding and uncertainty-aware
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similarity function on the clustering tasks. Our evaluation
shows that these enhanced embeddings do not improve the
quality of the clusters when data uncertainty is high. Fi-
nally, we further understand the reasons for poor cluster-
ing accuracy and present our key insights to consider uncer-
tainty during clustering effectively.

4.1. Uncertainty estimation
Probabilistic face embeddings provide a distributional

estimation [23, 3] instead of a deterministic point estima-
tion [4, 21, 13, 18, 24, 27, 20] in the latent space for each
input face image. It represents each face as a multivariate
Gaussian distribution, N (µ, σ2). The mean of the distribu-
tion estimates the most likely latent feature values while the
span of the distribution, or variance, represents the noise or
uncertainty of these estimates.

In this paper, we use PFE [23] for generating probabilis-
tic embeddings. Given a pre-trained face recognition (FR)
model, the mean vector µ is the deterministic embedding
generated by the FR model. Then, PFE adds an extra branch
to the FR model to learn the variance vector σ2. The extra
branch is trained using the mutual likelihood score (MLS).
While PFE learns σ2 separately, DUL [3] learns both µ and
σ2 simultaneously. Now, given a probabilistic embedding
of a face as µ1, µ2, ..., µD, σ2

1 , σ
2
2 , ..., σ

2
D, where D is the

feature dimension, then the estimated uncertainty is the har-
monic mean of the variances across all dimensions:

uncertainty =
D∑D

i=1
1
σ2
i

As an example, consider two popular face benchmarks,
LFW [9] and IJB-A [10]. Figure 2 shows the distribu-
tion of uncertainty in face images for both datasets. These
datasets exhibit different degrees of data uncertainty. The
uncertainty for the face images in the LFW dataset is less
than 0.0015. However, faces in IJB-A exhibit much higher
uncertainty when compared with faces in LFW. There are
faces in IJB-A with uncertainty greater than 0.0030! There-
fore, face images in LFW have less noise than face images
in IJB-A.
Probabilistic face embedding model. For our evaluation,
we use a pre-trained PFE model from github [32]. This
model uses a 64-layer residual network trained with AM-
Softmax [26] on the MS-Celeb-1M dataset [7]. The dimen-
sion of the deterministic embedding (µ) is 512. Thus, the
feature dimension of a PFE embedding (µ and σ2) is 1024.

4.2. Clustering with PFE
In this paper, we use DBSCAN [5], AHC [15], GCN-

V [30] algorithms to cluster latent feature vectors from
probabilistic face embedding. We consider two cases. The
first case “Deterministic + Cosine” works as a baseline be-
cause it represents the class of face embeddings [4, 21, 13,
18, 24, 27, 20] which does not consider the uncertainty in-
formation. It uses only the mean vector µ of a PFE embed-
ding. In contrast, the second case “Probabilistic + MLS”

Figure 2: Data uncertainty distribution in LFW [9] and IJB-
A [10] benchmarks. LFW has low data uncertainly, while
IJB-A has high data uncertainty.

represents the class of face embeddings [23, 3] which uses
uncertainty augmented face representation and similarity
function. It uses both µ and σ2 vectors of a PFE embed-
ding.

4.2.1 Similarity functions

We use cosine similarity for the deterministic embedding
and MLS for the probabilistic embedding.
Cosine Similarity. To calculate cosine similarity, we do not
consider the variance vector σ2

1 , σ
2
2 , ..., σ

2
D of a probabilistic

representation. 1. The cosine similarity score for a pair of
latent vectors (xi, xj) is calculated as follows:

cosine(xi, xj) =

∑D
l=1 µ

(l)
i ∗ µ(l)

j√∑D
l=1 µ

2(l)
i

√∑D
l=1 µ

2(l)
j

where D is feature dimension and µ
(l)
i refers to the lth di-

mension of the µi of xi.
Mutual Likelihood Score (MLS). PFE [23] proposes a
similarity function to take into account the data uncertainty
in a face image. MLS for a pair of latent vectors (xi, xj) is
calculated as follows:

MLS(xi, xj) =

D∑
l=1


(
µ
(l)
i − µ

(l)
j

)2

σ
2(l)
i + σ

2(l)
j

+ log
(
σ
2(l)
i + σ

2(l)
j

)
where µ

(l)
i refers to the lth dimension of the µi of xi and

similarly for σ2(l)
i .

4.2.2 Evaluation of clustering with PFE

We use two popular benchmarks for the evaluation:
LFW. The Labeled Faces in the Wild [9] contains 13,233
face images of 5,749 subjects. Of the 5,749 subjects, 4,069
individuals have only one face image each. These face

1We also considered different ways to augment the cosine similarity
function by incorporating uncertainty information (i.e., the cosine simi-
larity score depends on both µ and σ2). However, we observed that the
augmented cosine similarity score does not improve the quality of clus-
tering. Therefore, we are omitting further discussion of results using the
augmented cosine similarity function.

3489



Embedding + Similarity Algorithm
LFW (uncertainty: mean = 0.00070, std = 0.00020) IJB-A (uncertainty: mean = 0.00114, std = 0.00055)

Predicted Purity BCubed Pairwise NMI PAAS Predicted Purity BCubed Pairwise NMI PAAS
Clusters F-Score F-Score Clusters F-Score F-Score

Deterministic + Cosine DBSCAN 5799 0.9966 0.9932 0.9985 0.9986 0.9891 2267 0.9206 0.8393 0.4082 0.9251 0.3158
Deterministic + Cosine AHC 5121 0.5827 0.7065 0.0262 0.8007 0.5791 4293 0.9716 0.6747 0.6391 0.8965 0.2095
Deterministic + Cosine GCN-V 4697 0.9977 0.9873 0.9596 0.9967 0.9867 2259 0.9685 0.7790 0.7531 0.9223 0.2814

Probabilistic + MLS DBSCAN 5777 0.9952 0.9933 0.9968 0.9986 0.9893 3483 0.9688 0.8445 0.7832 0.9353 0.3032
Probabilistic + MLS AHC 5841 0.9966 0.9899 0.9966 0.9978 0.9864 5322 0.9921 0.7109 0.6932 0.9049 0.2203
Probabilistic + MLS GCN-V 4667 0.9976 0.9763 0.8014 0.9943 0.9893 3214 0.9864 0.7828 0.7692 0.9215 0.2703

Table 3: Experimental results for the DBSCAN [5], Agglomerative Hierarchical Clustering (AHC) [15], and GCN-V [30]
algorithms. In these experiments, we set minPts to 1, cosine similarity threshold to 0.5, and MLS similarity threshold to
2650. For AHC, we set the linkage method to average. For GCN, 20% data is used for training and in the k-Nearest-
Neighbors graph k is set to 80.

images were acquired by retrieving images of celebrities
and public figures and retaining only those images where a
face is detected using an off-the-shelf face detector, Viola-
Jones [19]. As a consequence, the variation in the facial
pose is limited.
IJB-A. The IARPA Janus Benchmark A (IJB-A) [10], a
publicly available media in the wild dataset containing
25,813 face images of 500 subjects. IJB-A is designed for
unconstrained scenarios, and it has the key features: (a)
wider geographic variations in subjects, (b) full pose varia-
tion, (c) a mix of faces from images and videos.

Table 3 shows our evaluation results. In addition to
the predicted number of clusters,we report values for sev-
eral popular metrics that are frequently used to estimate the
overall quality of clustering [17, 25, 28, 30, 31]: Purity2 [2],
BCubed F-Score [2], Pairwise F-Score [2], and Normalized
Mutual Information (NMI) [2]. The gray-colored columns
report the PAAS metric, which we explain in Section 5.2.
For all these metrics, a value close to 1.0 indicates better
cluster quality.
DBSCAN. The number of predicted clusters for LFW is
very close to the ground truth 5749 for both the “Determin-
istic + Cosine” and “Probabilistic + MLS”. Also, the val-
ues of all the cluster quality metrics are almost 1.0 for both
cases. This result is expected because, as shown earlier, im-
ages in the LFW dataset are generally of good quality, and
they have low uncertainty. So, by considering uncertainty
in “Probabilistic + MLS” during clustering, we do not see a
big advantage.

In contrast, the number of predicted clusters for the IJB-
A dataset is much larger compared to the ground truth
subjects of 500: clustering with “Deterministic + Co-
sine” predicts 3.53X times more clusters compared to the
ground truth, and clustering with “Probabilistic + MLS”
over-predicts the number of unique persons by a factor of
5.97X. Also, contrary to what one would expect, clustering
with “Probabilistic + MLS”, which uses uncertainty, over-
predicts clusters by 2.44X when compared with clustering
using “Deterministic + Cosine”. It is also surprising that
clustering using “Probabilistic + MLS” has a higher score
for the popular cluster quality metrics like Purity, BCubed
F-Score, Pairwise F-Score, and NMI metrics – the Pairwise
F-Score is almost twice as high (0.7832 vs. 0.4082) when

2We report the weighted clustering purity (WCP) score used in [25]

compared with clusters obtained by “Deterministic + Co-
sine”.
Agglomerative Hierarchical Clustering (AHC). Our re-
sults show that AHC [15] shows similar trends as the DB-
SCAN. This is not surprising, as AHC is also an unsu-
pervised algorithm. In fact, when the linkage.method =
single, it produces the same results as DBSCAN. Here, we
set linkage.method = average. For IJB-A, “Probabilistic
+ MLS” predicts 9.6X more clusters, while “Determinis-
tic + Cosine” predicts 7.6X more clusters. Overall, we do
not see any significant benefit from using “Probabilistic +
MLS” when data uncertainty is high.
GCN-V. GCN-V [30] also shows similar trends as the DB-
SCAN3. It is a supervised clustering algorithm. We use
20% of the data for training in order to learn cluster pat-
terns. Training a GCN network is a cumbersome task as
it requires tuning hyperparameters and labeling the dataset.
Surprising, even with these extra efforts, GCV-V does not
show better performance for the IJB-A – “Probabilistic +
MLS” predicts 7X more clusters, while “Deterministic +
Cosine” predicts 4.64X more clusters. Overall, we find that
even “Probabilistic + MLS” cannot handle high data uncer-
tainty.
Cluster quality metric.. Our results in Table 3 show that
widely used metrics [2] like Purity, BCubed F-score, Pair-
wise F-score and NMI alone do not adequately capture the
accuracy of the clustering algorithm in the presence of un-
certainty. These metrics fail to penalize algorithms that
over-cluster (generates too many clusters).

4.3. Deeper analysis of clustering with PFE

We perform a controlled experiment to better understand
the various sources of clustering inaccuracy in the presence
of uncertainty. We select two images (of different people)
and systematically increase the uncertainty in the images
by introducing more Gaussian blur4. Figure 3 shows the
two images of two different persons and their correspond-
ing blurred images as we gradually increase the degree of
uncertainty (i.e. degree of Gaussian blur).

3Other GCN variants (i.e., GCN-(V+E) [30], linkage based GCN [28],
affinity graph-based GCN [31]) also exhibit similar trends.

4Gaussian blur is used here for the illustration purposes. We considered
many other sources of noise (i.e., occlusion, random Gaussian noise, etc.),
and they all exhibit similar behaviors as the Gaussian blur.
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(a) blur = 0 (b) blur = 7 (c) blur = 15 (d) blur = 23

(e) blur = 0 (f) blur = 7 (g) blur = 15 (h) blur = 23
Figure 3: Face images used in the controlled experiment

(a) Deterministic (b) Probabilistic
Figure 4: Effect of increasing uncertainty on “Deterministic
+ Cosine” (left) and “Probabilistic + MLS” (right).

Figure 4 shows the effect of uncertainty on cosine simi-
larity score and MLS. We consider three different cases:

1. Genuine (good, noisy): We start with an original, good
quality face image, and compare it with increasingly
blurred versions of the original image. Since the two face
images in the pair belong to the same person, we refer to
the pair as a genuine pair. The effect of increasing blur
on the “Deterministic + Cosine” is shown by the blue line
in Figure 4a. Similarly, the effect of increasing blur on
the “Probabilistic + MLS” is shown by the blue line in
Figure 4b.

2. Imposter (noisy, noisy): We start with two images of
two different persons. Since the two images belong to
different persons, we call the pair as an imposter pair.
Then, we gradually apply increasing blur to both the im-
ages. The degree of blur is the same for both the images.
The effect of increasing blur on the “Deterministic + Co-
sine” is shown by the orange line in Figure 4a. Similarly,
the effect of increasing blur on the “Probabilistic + MLS”
is shown by the orange line in Figure 4b.

3. Imposter (good, noisy): Again, we start with two im-
ages of two different persons. Both original images are
of good quality (they exhibit very low uncertainty). Since
the two images are of different persons, we have an im-
poster pair. Then, we gradually apply increasing blur to
only one of the images (while leaving the other image as
is). The effect of increasing blur on the “Deterministic +

Cosine” is shown by the green line in Figure 4a. Simi-
larly, the effect of increasing blur on the “Probabilistic +
MLS” is shown by the green line in Figure 4b.

4.3.1 Effect on deterministic embedding

Consider the results shown in Figure 4a. We typically set a
threshold on the cosine similarity score to determine if two
face images belong to the same person. A threshold of 0.4
appears to be a good choice so that genuine pairs are cor-
rectly matched to be the same person. As the Gaussian blur
is varied from 0 to 17, we are able to correctly classify an
original image and its blurred version to be the same per-
son. As we increase the blur beyond 17, the uncertainty
in the blurred image increases and we are no longer able
to conclude that the original image and its blurred version
are a match (i.e., we have a false negative). This will cause
the clustering algorithm to place the original image and its
blurred version into different clusters, and we may end up
with a lot of unnecessary clusters. We refer to this situation
as the false-negative problem.

Figure 4a illustrates another important problem. As-
suming a threshold of 0.4 for the cosine similarity score,
many pairs in the Imposter(noisy, noisy) category (orange
curve) will be incorrectly declared as a match as the Gaus-
sian blur increases beyond 20. This will result in false-
positives. In this case, face images of two different people
will be placed in the same cluster, and erroneously, far fewer
clusters will be generated (compared to the ground truth or
actual number of clusters). We refer to this situation as the
false-positive problem.

4.3.2 Effect on probabilistic embedding

Consider the results shown in Figure 4b. Again, we typi-
cally set a threshold on MLS to determine if two face im-
ages belong to the same person. A threshold of 2650 ap-
pears to be a good choice so that genuine pairs (blue line)
are correctly matched to be the same person. As the Gaus-
sian blur is varied from 0 to 17, we are able to correctly
classify an original image and its blurred version to be the
same person. As we increase the blur beyond 17, the uncer-
tainty in the blurred image increases and we are no longer
able to conclude that the original image and its blurred ver-
sion are a match (i.e., we have a false negative). This will
cause the clustering algorithm to place the original image
and its blurred version into different clusters, and we may
end up with a lot of unnecessary clusters. So, we have a
false-negative problem.

However, unlike the case in Figure 4a, Figure 4b
does not have the false-positive problem. Again, assum-
ing a threshold of 2650 for MLS, many pairs in the Im-
poster(noisy, noisy) category (orange curve) will be cor-
rectly declared as a non-match as the Gaussian blur in-
creases beyond 20. So, by using uncertainty information,
MLS avoids the false-positive problem. Accordingly, re-
sults of clustering are also not polluted by false-positives.
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4.4. Key insights
If the uncertainty in face images is low, both “Determin-

istic + Cosine” and “Probabilistic + MLS” perform well.
However, as uncertainty increases, we see a divergence in
the behavior of the two cases.

Unlike a similarity function based on the cosine sim-
ilarity score, the MLS-based similarity function does not
suffer from false-positives caused by noisy imposter pairs.
Therefore, by leveraging uncertainty information, MLS can
satisfactorily address the false-positive problem. However,
both cosine similarity score, and MLS, are unable to address
the false-negative problem adequately. Here, genuine pairs
(where both images in the pair belong to the same person,
but one of the images has high uncertainty) are missed.

Based on the above key insight, the next section intro-
duces a new clustering algorithm that leverages the uncer-
tainty information.

5. Clustering with Uncertainty Estimates
We first present an uncertainty-aware clustering algo-

rithm. Next, we present a new cluster quality assessment
metric.

5.1. Uncertainty-aware clustering algorithm
Clustering algorithms rely on similarity scores for find-

ing similar faces. These algorithms implicitly assume that
similarity scores are reliable, which is only true when the
input set consists of mostly good quality faces (for exam-
ple, LFW [9] dataset). However, similarity scores become
unreliable (as shown in Figure 4) whenever the input set
contains a mix of good and noisy faces, and consequently,
clustering algorithms generate incorrect results.

What if, in addition to the similarity score, the uncer-
tainty information about a face is explicitly made available
to the clustering algorithm instead of being embedded in a
representation or similarity function? Can a clustering al-
gorithm leverage this additional information and improve
clustering? We show that a clustering algorithm can use ex-
plicit uncertainty information to assess the trustworthiness
of a similarity score, take appropriate actions to avoid the
false-positive and false-negative problems, and improve the
quality of clusters – this is the basis of our new clustering
algorithm, UAC.

To address the false-positive and false-negative prob-
lems, we leverage uncertainty information. We classify a
face pair into one of four classes, as shown in Figure 5.
Here, x-axis and y-axis correspond to uncertainty estimates
of facex and facey , respectively; and the dotted lines cor-
respond to the uncertainty threshold ut. We use this thresh-
old to group uncertainty values into LOW and HIGH
based on whether they are below or above the ut, respec-
tively. We focus on the following four cases:

1. {facex(LOW ), facey(LOW )}. In this case, both de-
terministic and probabilistic embeddings provide accu-

Figure 5: The accuracy of the similarity estimate of a face-
pair (facex, facey) varies with the uncertainty level.

rate estimates (because data uncertainty is low), and clus-
tering algorithms correctly cluster the two faces.

2. {facex(HIGH), facey(LOW )}. In this case, both de-
terministic and probabilistic embeddings provide inaccu-
rate estimates (because data uncertainty of the facex is
high). As observed in Figure 5, this case leads to false-
negatives (faces from the same person are incorrectly
deemed to be dissimilar due to a low similarity score).

3. {facex(LOW ), facey(HIGH)}. This is similar to the
case above.

4. {facex(HIGH), facey(HIGH)}. In this case, both
deterministic and probabilistic embeddings provide in-
accurate estimates (due to the high data uncertainty of
both faces). We observe very high similarity scores ir-
respective of whether images are of the same person or
two different persons. The former case corresponds to
the true positive, while the second case corresponds to
the false positive.

To handle the above-mentioned four cases, we propose
a new, uncertainty-aware clustering algorithm, UAC. It
has two key phases: a) cluster formation by explicitly
leveraging uncertainty and b) cluster uncertainty estimation
and pruning.

Case-specific similarity thresholds: UAC varies the sim-
ilarity threshold based on the uncertainty of facex and
facey . We assume that the base similarity threshold is ϵ
(with a default value of 0.50). UAC takes different actions
based on the uncertainty of the two faces in a face pair:

1. {facex(LOW ), facey(LOW )}. The similarity thresh-
old remain unchanged.

2. {facex(HIGH), facey(LOW )}. We lower the simi-
larity threshold to ϵ − ∆HL. For example, if ∆HL =
0.05, then the new similarity threshold is (0.50 − 0.05)
or 0.45. By lowering the similarity threshold, UAC can
avoid false-negatives.

3. {facex(LOW ), facey(HIGH)}. This case is similar
to the case above.

4. {facex(HIGH), facey(HIGH)}. Since it is hard to
distinguish between the true positive and false positive
cases due to lack of adequate information content, to be
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safe, we ignore similarity estimates when the uncertainty
level of both images are high by raising the similarity
threshold to ∞. In the three cases above, when there is at
least one face with a LOW uncertainty, we can trust the
similarity score to a certain extent. However, when both
faces have HIGH uncertainty, there is no rational basis
to trust the similarity score.

Uncertainty of clusters. After clusters are formed using
case-specific thresholds, UAC performs one more step. It
assigns an uncertainty estimate to each cluster, as follows:

uncertainty(Ci) =

∑|Ci|
m=1 uncertainty(facem)

|Ci|

where cluster Ci consists of |Ci| (similar) faces, and
uncertainty(facem) is the uncertainty of facem (com-
puted using the formula in Section 4.1). If the
uncertainty(Ci) is above the ut threshold, then UAC con-
siders Ci as a noisy cluster, which is excluded from the final
clustering results.

Algorithm 1 describes the key steps in UAC. To cluster
n faces, it creates an undirected graph G with n nodes. Ini-
tially, G has no edges. Next, UAC performs an all-pairs
comparison and adds an edge (i, j) whenever it finds that
the similarity score of face pair (fi, fj) is the same or above
the appropriate similarity threshold (which is varied based
on the uncertainty case of face-pair (fi, fj). Then, UAC
finds the connected components of G – each component
corresponds to a cluster. Finally, UAC estimates the un-
certainty of each cluster and returns the clusters that have
LOW uncertainty. Overall, UAC performs O(n

2

2 ) similar-
ity comparisons to add E edges in G and needs O(n + E)
operations to find the connected components.

5.2. Cluster quality metric
Many famous metrics like Purity, BCubed F-score, Pair-

wise F-score, and NMI have been proposed to evaluate clus-
ter quality. We use these metrics to evaluate the quality of
our clusters. However, to better evaluate cluster quality in
the presence of data uncertainty, we introduce a new met-
ric, Purity Adjusted Amplification Score (PAAS), which is
defined as follows:

PAAS =
purity

amplification

Amplification. It measures the degree of over-clustering
with respect to the ground truth. For each person, we count
the number of different clusters that the faces similar to this
person are assigned to, and then we estimate the amplifica-
tion as the harmonic mean of all counts:

amplification =
I∑I

i=1
1

counti

where counti denotes the count of different clusters for the
faces corresponding to the i-th person and I is the total
number of persons. A good clustering algorithm should get

an amplification score close to 1, and bad ones should score
much larger than 1. However, the best amplification is easy
to achieve when a clustering algorithm assigns all faces to a
single cluster5.

Algorithm 1 UAC Pseudocode
Require: Faces (f1, . . . , fn), similarity threshold (ϵ), uncertainty threshold (ut)

G← Graph(n) ▷ Initialize undirected graph G with n nodes
for i← 1, 2, . . . , n do

for j ← i, i + 1, . . . , n do
ui ← uncertainty(fi) > ut ? HIGH : LOW
uj ← uncertainty(fj) > ut ? HIGH : LOW
sim threshold←∞
if ui = LOW and uj = LOW then

sim threshold← ϵ
else if ui = LOW and uj = HIGH then

sim threshold← ϵ−∆HL

else if u i = HIGH and u j = LOW then
sim threshold← ϵ−∆HL

else if u i = HIGH and u j = HIGH then
sim threshold←∞

end if
if similarity(fi, fj) ≥ sim threshold then

Add edge(i, j) in G ▷ Mark that fi and fj are similar
end if

end for
end for
S ← G.connectedComponents() ▷ Find connected components in G
C ← ∅ ▷ Good Clusters
for all s ∈ S do

if uncertainty(s) ≤ ut then
Add s in C

end if
end for

return C

Purity. It is computed as follows [2]: first, each cluster is
assigned to the most frequent ground truth identity; next,
cluster assignment accuracy is estimated as the ratio of the
total number of correctly assigned faces and the total num-
ber of faces. Purity values lie in between 0 and 1, and a good
clustering algorithm should get a score close to 1. However,
one can achieve a perfect purity score by forming one clus-
ter per face.

PAAS is a composite metric that is the ratio of purity
and amplification, and it measures contradictory qualities
of a clustering algorithm. It is easy for a random clustering
algorithm to get a perfect score in either amplification or
purity, but it is rare for a random algorithm to get perfect
scores for both. PAAS score is a value between 0 and 1, and
it can be used to compare different clustering algorithms.

6. UAC Evaluation on Noisy Datasets
IJB-A. Table 4 shows the evaluation results for our
uncertainty-aware clustering (UAC) algorithm for the IJB-
A benchmark. As we increase the uncertainty threshold
(ut), the number of predicted clusters increases slowly, and
compared to the ground truth, the quality of the clusters
decreases. For example, when ∆HL = 0.0 and we vary
ut from 0.0012 to 0.0014 for the “Deterministic + Cosine”
case, the number of predicted clusters increases from 547
to 651. This is in contrast to the results in Table 3 where

5Amplification is different from the inverse purity [2] metric, which
also achieves the best score when all faces are placed in a single cluster
and its value lies in between 0 and 1.
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Embedding + Similarity
Uncertainty

∆HL

IJB-A (Expected Clusters = 500)
Threshold Predicted Purity BCubed Pairwise NMI PAAS

(ut) Clusters F-Score F-Score
Deterministic + Cosine 0.0012 0.00 547 0.9931 0.9904 0.9906 0.9969 0.9128
Deterministic + Cosine 0.0013 0.00 587 0.9934 0.9890 0.9901 0.9965 0.8954
Deterministic + Cosine 0.0014 0.00 651 0.9936 0.9863 0.9887 0.9955 0.8570
Deterministic + Cosine 0.0012 0.05 521 0.9825 0.9849 0.9801 0.9956 0.9040
Deterministic + Cosine 0.0013 0.05 565 0.9824 0.9831 0.9791 0.9950 0.8860
Deterministic + Cosine 0.0014 0.05 621 0.9775 0.9776 0.9678 0.9934 0.8499
Deterministic + Cosine 0.0012 0.10 449 0.8549 0.9016 0.7347 0.9723 0.7924
Deterministic + Cosine 0.0013 0.10 501 0.8768 0.9152 0.7551 0.9758 0.7967
Deterministic + Cosine 0.0014 0.10 556 0.8908 0.9238 0.7979 0.9786 0.7875
Deterministic + Cosine 0.0012 0.15 218 0.2876 0.4212 0.0137 0.5173 0.2494
Deterministic + Cosine 0.0013 0.15 261 0.3283 0.4653 0.0157 0.5714 0.2729
Deterministic + Cosine 0.0014 0.15 317 0.3561 0.4951 0.0178 0.6129 0.2801

Probabilistic + MLS 0.0012 0.00 525 0.9863 0.9873 0.9825 0.9963 0.9187
Probabilistic + MLS 0.0013 0.00 553 0.9866 0.9868 0.9823 0.9961 0.9097
Probabilistic + MLS 0.0014 0.00 602 0.9870 0.9853 0.9818 0.9955 0.8796
Probabilistic + MLS 0.0012 10.0 522 0.9806 0.9841 0.9769 0.9956 0.9145
Probabilistic + MLS 0.0013 10.0 551 0.9811 0.9838 0.9771 0.9954 0.9051
Probabilistic + MLS 0.0014 10.0 597 0.9817 0.9826 0.9767 0.9949 0.8763
Probabilistic + MLS 0.0012 20.0 514 0.9778 0.9827 0.9731 0.9951 0.9108
Probabilistic + MLS 0.0013 20.0 548 0.9786 0.9822 0.9734 0.9949 0.9013
Probabilistic + MLS 0.0014 20.0 596 0.9792 0.9810 0.9731 0.9944 0.8718
Probabilistic + MLS 0.0014 30.0 584 0.9737 0.9774 0.9654 0.9934 0.8683
Probabilistic + MLS 0.0012 30.0 502 0.9625 0.9731 0.9450 0.9927 0.8957
Probabilistic + MLS 0.0013 30.0 541 0.9728 0.9782 0.9650 0.9938 0.8950

Table 4: UAC evaluation on IJB-A benchmark when uncer-
tainty threshold (ut) and ∆HL are varied. We set the cosine
similarity threshold to 0.50 and MLS threshold to 2650 (i.e.,
same as Table 3). The blue-colored rows indicate the rec-
ommended range of ut and ∆HL.

implicit consideration of uncertainty in face representations
and similarity function (“Probabilistic + MLS” case) lead to
a prediction of over 2700+ clusters.

In UAC, for a fixed ut, as we increase the ∆HL, the
number of predicted clusters are progressively closer to the
ground truth. However, there is a trade-off. Increasing
the ∆HL value helps to address the false-negative problem,
where multiple clusters are created for faces of the same
person. However, beyond a certain point, increasing ∆HL

can also create the false-positive problem where faces of
different persons are included in a single cluster. Conse-
quently, this lowers the clustering quality. Thus, there is
a sweet spot for ∆HL where the clustering accuracy is the
highest.

Similarly, we observe a sweet spot for ut. As we increase
ut, both false-positive and false-negative problems become
more prevalent. A higher ∆HL achieves best trade-off when
ut is higher. However, if ut is too high then similarity scores
become unreliable and ∆HL is not effective anymore.

When we set ut ≤ 0.0013, and ∆HL ≤ 0.05 for the
“Deterministic + Cosine” and ∆HL ≤ 20 for “Probabilistic
+ MLS” (marked in blue color rows), we achieve the best re-
sults. In this range, UAC predicts 0.02X - 0.18X more clus-
ters than the ground truth while achieving very high scores
in other cluster quality metrics. In contrast, uncertainty-
unaware algorithms like DBSCAN [5], AHC [15], and
GCN-V [30] predict 4.5X - 9.6X more clusters (results
shown in Table 3).

The gray-colored columns in Table 3 and Table 4 show
the score of our PAAS metric. Compared to popular met-
rics like Purity, BCubed F-score, Pairwise F-score and NMI,
PAAS does not report a high score when a clustering al-
gorithm produces over-clusters (i.e., it predicts too many
clusters compared to the ground truth). PAAS penalizes
over-clusterings more compared to other metrics. Specifi-
cally, when data uncertainty is high (i.e., a dataset like IJB-
A), PAAS metric can help to select a better clustering algo-

Algorithm
YTF (Expected clusters = 1594)

Predicted Purity BCubed Pairwise NMI PAAS
Clusters F-Score F-Score

DBSCAN (minPts = 01) 7937 0.9555 0.8011 0.6912 0.9494 0.4359
DBSCAN (minPts = 05) 3499 0.9556 0.8102 0.6993 0.9536 0.5935
DBSCAN (minPts = 10) 3204 0.9565 0.8153 0.7041 0.9548 0.6162

UAC (∆HL = 0.00) 2521 0.99999 0.8574 0.8703 0.9466 0.7297
UAC (∆HL = 0.05) 2041 0.9711 0.8632 0.8692 0.9476 0.7600

Table 5: UAC evaluation results on YTF [29] benchmark.

rithm. For example in Table 4, based on the PASS score we
can rank clusters produced by the “Deterministic + Cosine”
with ut = 0.0012 and ∆HL = 0.05 higher than the “De-
terministic + Cosine” with ut = 0.0013 and ∆HL = 0.05,
although other metrics report very close score for both set-
tings.
YouTube Faces Database (YTF). We also report experi-
ments results on YTF [29]. It contains 3,425 videos with
611,246 faces from 1594 people. YTF has higher data
uncertainty (mean = 0.00136) than IJB-A (mean =
0.00114). For YTF, we compare UAC with DBSCAN [5]
using “Deterministic + Cosine”. In particular, we eval-
uate the effect of the minPts parameter (which controls
the desired minimum size of clusters) of DBSCAN. We set
the cosine similarity threshold to 0.80. For UAC, we set
ut = 0.0012 and set ∆HL ≤ 0.05. For DBSCAN, we
set 1 ≤ minPts ≤ 10. Table 5 shows our evaluation re-
sults. For DBSCAN, as we increase minPts the number
of predicted clusters comes closer to the ground truth. Even
with minPts = 10, UAC outperforms DBSCAN algorithm
– it predicts 0.28X more clusters (2041) with high scores
in other metrics, while DBSCAN predicts almost twice as
many clusters (3204) as the ground truth (1594). Again, it
shows that leveraging uncertainty explicitly can improve the
quality of clustering.

In general, minPts is very hard to set for unknown
datasets as it depends on the data distribution. In particu-
lar, if a dataset contains many small clusters, then an incor-
rect minPts setting can discard all clusters. For example,
LFW has 4069 ground-truth clusters with one face image
each, and a minPts ≥ 2 simply discards all of them. In
contrast, UAC does not require information about the mini-
mum cluster size – rather, UAC discards a cluster when the
uncertainty estimate of that cluster exceeds ut, which can
be set without any knowledge of the data distribution.

7. Conclusion

We investigated new ways to improve the accuracy of
a clustering task by leveraging uncertainty information.
Popular clustering algorithms with uncertainty-augmented
probabilistic embedding and similarity functions do not au-
tomatically improve clustering accuracy when data uncer-
tainty is high. However, by considering uncertainty infor-
mation explicitly during clustering and choosing different
similarity thresholds, we show that it is possible to improve
clustering accuracy significantly for the probabilistic and
deterministic embeddings.
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