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Abstract

Despite the recent successes in computer vision, there

remain new avenues to explore. In this work, we pro-

pose a new dataset to investigate the effect of self-occlusion

on deep neural networks. With TEOS (The Effect of Self-

Occlusion), we propose a 3D blocks world dataset that

focuses on the geometric shape of 3D objects and their

omnipresent self-occlusion. We designed TEOS to inves-

tigate the role of self-occlusion in the context of object

classification. In the real-world, self-occlusion of 3D ob-

jects still presents significant challenges for deep learning

approaches. However, humans deal with this by deploy-

ing complex strategies, for instance, by changing the view-

point or manipulating the scene to gather necessary infor-

mation. With TEOS, we present a dataset with two sub-

sets (L1 and L2), containing 36 and 12 objects, respec-

tively. We provide 768 uniformly sampled views of each

object, their mask, object and camera position, orienta-

tion, amount of self-occlusion, as well as the CAD model

of each object. We present baseline evaluations with five

well-known classification deep neural networks and show

that TEOS poses a significant challenge for all of them. The

dataset, as well as the pre-trained models, are made pub-

licly available for the scientific community under https:

//data.nvision.eecs.yorku.ca/TEOS.

1. Introduction

Over most of the last decade, computer vision was

pushed by efforts put into deep learning. The exact ad-

vent of this deep learning dominated era is often dated to

the ImageNet challenge ([39]) in 2012. Since then, the per-

formance of models on various tasks has been improving

at unparalleled speed; for instance, image classification on

the ImageNet dataset surpassed the reported human-level

performance in 2015 ([13]). Two of the enablers for the

recent successes are faster computers, specifically graphic

processors, and the availability of large scale and often well-

Figure 1. Example of the proposed objects from three different

viewpoints.

curated data sets to learn from.

The deep learning paradigm is omnipresent, and, with it,

the need for data with specific statistics to work in certain

domains. [26] goes as far as saying that ”Data is playing

an especially critical role in enabling computers to inter-

pret images as compositions of objects, an achievement that

humans can do effortlessly while it has been elusive for ma-

chines so far.”

Many domains exist in which one would like machines to

perform visual tasks ([5]). One of these is object classifica-

tion, which is defined as whether a particular item is present

in the stimulus ([51]).

Object classification is an essential capability of humans, as

well as for any robotic system whose goal is to be a real-

world assistant; in a factory, hospital, or at home, just to

name a few. Even though very successful in many domains,

deep learning methods are challenged with occlusion ([24]),

which is inevitable in real-world scenarios. Here, we go a

step further and show that deep learning methods are also

challenged by the self-occlusion of objects, hence not gen-

eralizing to objects’ 3D structure.

The problem of understanding the 3D structure from a 2D

description, for instance, a line drawing, was first put for-

ward independently by [18] and [6], and they both showed

that the necessary critical condition for a line drawing to

represent an actual arrangement of polyhedral objects was

labelability.

As the human brain is very efficient at reconstructing a

scene’s 3D structure from a single image with no texture,

colour or shading, efforts have been concentrated on com-
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putational complexity issues; one might think an efficient

solution exists (e.g. polynomial-time). [23], however,

proved that this problem is NP-Complete, also for simple

cases like trihedral, solid scenes. To further research in

this field, [34] proposed a method to generate random in-

stances of line drawings with useful distribution to investi-

gate questions related to complexity of understanding im-

ages of polyhedral scenes. More recently, [47] provided a

3D extension with controllable camera parameters and two

different light settings. It is designed to enable research on

how a program could parse a scene if it had multiple and de-

finable viewpoints to consider. An example of a polyhedral

scene from [47] is shown from three different viewpoints in

Fig. 2.

Figure 2. Six polyhedral scenes from three different viewpoints

with increasing complexity ([47]).

With the increasing successes, contemporary computer

vision approaches show a trend away from artificial prob-

lems and provide solutions to real-world problems, already

deployed in many domains ([1]), for example, optical char-

acter recognition, industrial inspection systems, medical

imaging, and biometrics. While toy-domains are essen-

tial demonstration vehicles even in the deep learning era

([8, 19, 20, 21, 31]), a disparagement of artificial domains

can be seen ([46]). At the very least, these domains can

support meaningful systematic experiments. Here we re-

visit one such artificial domain; the Blocks World. In visual

perception, the basic physical and geometric constraints of

our world play a crucial role.

Larry Roberts argued that ”the perception of solid ob-

jects is a process which can be based on the properties of

three-dimensional transformations and the laws of nature”

([38]). Roberts’ popular Blocks World was an early attempt

to build a system for complete scene understanding for a

closed artificial world of textureless polyhedral shapes by

using a generic library of polyhedral block shapes. This toy

domain that has remained as a staple of the AI literature for

over 50 years.

The polyhedral scenes shown in Fig. 2, showing a kind

of “extreme” blocks world setting, feature significant self-

occlusion. However, the space of possible objects and their

characteristics are far too large to conveniently use in a

learning scenario. Motivated by this set, we present a new,

more tightly controlled dataset, TEOS: The Effect of Self-

Figure 3. Example of the objects by [42] which are used as an

inspiration.

Occlusion.

TEOS is a Blocks World based set of objects with known

complexity, controlled viewpoints, with a known level of

self-occlusion and 3D models. TEOS shares similarities in

appearance with the so-called Shepard and Metzler Objects

([42]), which are widely used in the literature for mental

rotation tasks. See Fig. 3 for an illustration of two such ob-

jects.

However, with TEOS, we present a set of objects that go

beyond the Shepard and Metzler objects. Specifically, our

objects have known, incrementally increasing complexity,

they are designed to require self-occlusion to be solved, they

share a common coordinate system, and we will show that

they are challenging for visual tasks using modern classifi-

cation algorithms.

Our contributions are an investigation of the effect of self-

occlusion for object classification. To accomplish this, we

provide a novel set of objects, a carefully created dataset,

including an in-depth explanation of the objects and gen-

erated data with a focus on self-occlusion and a baseline

evaluation with modern classification algorithms.

The remainder of the paper is structured as follows. First,

we will explain in detail the objects we have created for

TEOS. We then continue by giving an overview of related

work, describing the data acquisition, presenting our self-

occlusion measure, evaluating the dataset against modern

classification algorithms, and finally finishing with our con-

clusions and future directions.

2. Related Work

To the best of our knowledge, self-occlusion has not at-

tracted much attention in the literature. However, occlusion

caused by other objects has. In addition to several datasets,

a number of approaches were introduced to deal with occlu-

sion.

2.1. Occlusion Datasets

A burden of deep learning is its need for vast mounts of

training data. Even though occlusion and its effect on vision

tasks has been addressed for some time ([16, 33, 4, 17]), oc-

clusion datasets created are usually too small to be used to

train successful deep learning models. Furthermore, to our

knowledge, datasets, if considering occlusion, mostly intro-
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duce various levels of clutter but fail to define occlusion in

a generic way. For instance, the CMU Kitchen Occlusion

dataset (CMU KO8) by [17] consists of 1,600 images of

eight kitchen objects, which only yields 200 examples per

class. The dataset has explicitly been designed to challenge

object recognition algorithms with strong viewpoint and il-

lumination changes, occlusions and clutter. Besides this, an

occlusion reasoning module is also proposed (Section 2.2).

With the ICCV 2015 Occluded Object Challenge ([15, 4]),

a dataset with eight objects positioned in a realistic setting

of heavy occlusion is presented. The objects can be de-

scribed as being of different domains (animals, office sup-

plies, kitchenware, ...). However, neither a definition of oc-

clusion nor a metric is given. Fig. 4 shows an example

image of the dataset.

Figure 4. A scene with different objects under occlusion from the

ICCV 2015 Occluded Object Challenge.

The majority of occlusion datasets, however, deal with

the occlusion of pedestrians. Specifically, in the context

of autonomous driving, detecting pedestrians, even if oc-

cluded, is crucial to detect potential collisions. It is ar-

gued that most existing datasets are not designed for eval-

uating occlusion. For instance, the Caltech dataset ([7])

only contains 105 out of 4250 images with occluded pedes-

trians. The CUHK Occlusion Dataset ([33]) is specifi-

cally designed as a pedestrian dataset with occlusion. The

authors selected images from popular pedestrian datasets

and recorded images from surveillance cameras and filtered

them for occluded pedestrians. The dataset contains 1,063

images with binary classification to indicate occlusion.

2.2. Occlusion Reasoning

Reasoning about occlusion has been used in many areas,

from object recognition to tracking and segmentation. Re-

ported in [17], the literature is extensive, but there has been

comparatively little work on modelling occlusion from dif-

ferent viewpoints and using 3D information until recently.

Further, occlusion reasoning is broadly classified into five

categories; inconsistent object statistics, multiple images,

part-based models, 3D reasoning, and convolutional neural

networks.

The first category uses inconsistent object statistics to rea-

son about potential occlusion. For instance, [32] use in-

consistencies in 3D sensor data to classify occlusions. [12]

introduce an occluder part in their grammar model when all

parts cannot be placed. [54] use a scoring metric based on

individual HOG filter cells. [17] incorporate occlusion rea-

soning in object detection in a two-stage manner. First, in

a bottom-up stage, occluded regions are hypothesized from

image data. Second, a top-down stage is used that relies

on prior knowledge to score the candidates’ occlusion plau-

sibility. Extensive evaluation on single and multiple views

shows that incorporating occlusion reasoning yields signifi-

cant improvement in recognizing texture-less objects under

severe occlusions.

The use of multiple images characterizes the second cate-

gory. For these approaches, consecutive images are nec-

essary to disambiguate the object from occluders. For in-

stance, [9] detects the objects and extrapolates the state of

occluded objects using an Extended Kalman Filter. Reliable

tracklets that are used in a temporal sliding window fashion

are generated to disambiguate occluded objects in [56].

One of the largest categories is part-based model ap-

proaches. A challenge of global object templates is occlu-

sion as their performance degrades with its presence signif-

icantly. A popular solution to this problem is to separate the

object into a set of parts and detect parts individually. This

approach yields more robust detections towards occlusion.

For example, [44] analyze the contribution of each part us-

ing a linear SVM and train the classifier to use unoccluded

parts to maximize the probability of detection. [55] go a

step further and use multiple part detectors to maximize the

joint likelihood. Binary classification of parts is introduced

by [52]. They decompose the HOG descriptor into small

blocks that selectively switch between an object and an oc-

clusion descriptor.

Figure 5. The effect of occlusion reasoning used in a CNN. Left the

original CNN (MaskRCNN) and different (2D and 3D) occlusion

reasoning approaches improve the detection ([37]).

More recent work is using 3D information. [35] train

multiple occlusion detectors on mined 3D annotated ur-

ban street scenes that contain distinctive, reoccurring oc-

clusion patterns. [53] use RGB-D information and an ex-

tended Hough voting to include object location and its visi-

bility pattern. [36] addresses precisely the problem of self-
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occlusion in the context of human pose estimation and adds

an inference step to handle self-occlusion to an off-the-shelf

body pose detector to increase its performance under self-

occlusion. [3] propose an object recognition system that

also works in the presence of occlusion and clutter. They

use a soft label Random Forest to learn the shape features

of an object. Using occlusion information, taken from the

depth data, the forest emphasizes the shape, thus making

it robust to occlusion. More recently, [40] propose a part-

based architecture to recover the 6D object pose in-depth

images that is also able to deal with occlusion. Their Intrin-

sic Structure Adaptor adapts the distribution shifts arising

from shape discrepancies and removes the variations of tex-

ture, illumination, pose, etc.

Convolutional neural networks form the last group of ap-

proaches. [37] introduce a framework to predict 2D and

3D locations of occluded key points for objects to mitigate

the effect of occlusion on the performance. Evaluated on

CAD data and a large image set of vehicles at busy city

intersections, the approach increases the localization accu-

racy of MaskRCNN by about 10%. A self-occlusion ex-

ample can be seen in Fig. 5. [27] uses deep supervision

to fine-grain image classification. In their approach, they

simulate challenging occlusion configurations between ob-

jects to enable reliable data-driven occlusion reasoning. Oc-

clusion is modelled by rendering multiple object configu-

rations and extracting the visibility level of the object of

interest. [25] introduce CompositionalNets, which is com-

bined with part-based models. The fully-connected classifi-

cation layer is replaced with a differentiable compositional

model. The idea is to decompose images into objects and

context, and then decompose objects into parts and objects’

pose. The approach can learn occlusion invariant features

and discard occluders during classification, hence increas-

ing performance under occlusion. However, a trade-off is

that a good occluder localization lowers classification per-

formance because classification benefits from features that

are invariant to occlusion, where occluder localization re-

quires a different type of features. Namely, ones that are

sensitive to occlusion. It is pointed out that it is essential to

resolve this trade-off with new types of models.

3. Object Definitions

With TEOS, we present in total 48 objects, split into two

sets; L1 and L2. L1 consists of 36 objects in 18 complexity

classes, hence tailored towards research exploring the effect

of finely grained complexity changes.

All objects consist of the following two elements: One

20mm x 60mm x 120mm base (Fig. 6 right) and n 20mm x

20mm x 60mm cuboids (Fig. 6 left). The complexity of an

object is simply calculated as

compl = n+ 1 (1)

Figure 6. The building blocks used to create the objects of TEOS;

cuboid (left) and base (right).

Figure 7. Left: Illustration of the common coordinate system of

the objects. Right: Possible cuboid connection points on the base.

Where n is the number of cuboids used. Further, inter-class

object complexity refers to objects that are not of the same

object complexity class, while intra-class object complexity

refers to objects that are of the same object complexity class

but differ in their configurations.

Building an object, the base has five connection points for

cuboids. All cuboids are only attached upright, sitting flush

with the bottom of the base. This also makes it simple to

define a coordinate system.

All objects share the same coordinate system, which is cru-

cial for any research that looks at the effect of the orienta-

tional difference of 3D objects. The coordinate system is

defined as depicted in Fig. 7 (left); the Y-Axis is running

orthogonal out of the base, the X-Axis running through the

base from its center of gravity towards the end with three

cuboids-connectors, and the Z-Axis runs orthogonal to the

Y- and X-Axis with the positive direction through the side

of the base with two cuboid connections.

A cuboid has eight connectors at which another cuboid can

be attached (Fig. 7 (right)). Consecutive cuboids are always

orthogonally and never aligned in their direction, which is

one of the differences to the Sheppard and Metzler objects.

Furthermore, cuboids never intersect or touch neighbouring

cuboids, hence avoiding geometrical loops. Creating the

objects for L1, we focused on making the complexity com-

parable by consecutively adding one cuboid per complexity

class to the object of the previous complexity class.

In several empirical studies with human subjects, we have

studied the relationship between the number of elements per

object and classification accuracy. The performance to clas-
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Figure 8. Top: Illustration of L1 with all 36 objects. Bottom: Il-

lustration of L2 with all 12 objects, split into three different com-

plexity classes.

sify L1 objects is reliable (accuracy of > 98%) for objects

of compl = 7 (Eq. 1). The classification is less accurate

(89%) with objects of compl = 10. Finally, the classifica-

tion gets challenging (57%) with objects of compl = 18.

Based on these findings, we have created the L2 set. It is de-

signed with less variation across complexity class but more

variation within a complexity class. Twelve objects are

evenly split into three complexity classes; easy with seven

elements, medium with ten elements, and hard with 18 el-

ements. Within a complexity class, the objects only differ

in one small detail by changing one of the elements’ orien-

tation. This said, the L1 and L2 subsets enable two classes

of self-occlusion analysis; one with high inter-class object

complexity variability and another with high intra-class ob-

ject complexity variability in appearance, respectively. Fur-

thermore, as will be discussed later, this set also provides

self-occlusion distributions with unique means for each of

the three complexity classes (see Fig. 14).

Lastly, we present the L1 and L2 object sets. The L1 ob-

jects can be seen in Fig. 8 (top), and consist of 36 objects

split into 18 complexity classes. There is a distractor object

of the same complexity for each object that differs only in

one small detail; one of the items is oriented differently. The

introduction of the distractor objects is intended to support

research in visual recognition, where merely counting the

number of elements would reveal the object class. The L2

objects can be seen in Fig. 8 (bottom). Fig. 9 shows how

an increase of complexity of the L1 dataset also increases

the average amount of self-occlusion among all viewpoints.

Each point shows the self-occlusion of the respective ob-

ject from a specific viewpoint. The viewpoints are evenly

distributed on a sphere around an object, resulting in 768

Figure 9. Illustration of the amount of average self-occlusion per

object of L1. Each point shows the self-occlusion of the respective

object from a specific viewpoint. The straight line illustrates the

increase in average self-occlusion as the complexity increases.

unique views. The straight line illustrates the increase in

average self-occlusion as the complexity increases. How-

ever, worth noting, with an increasing amount of complex-

ity, the self-occlusion distribution per class decreases. Fur-

ther information about our self-occlusion measure will be

explained in Section 5.

4. Dataset Acquisition

TEOS is a dataset that is designed to be used in the vir-

tual as well as the real world. For the former, one can use

the rendered images and provided 3D Models (.STL file).

For the latter, the objects are designed to be printable with

a 3D printer. However, in this Section we want to focus on

the generation of the rendered dataset images for which we

have used Blender ([2]), a free and open-source 3D com-

puter graphics software toolset. For TEOS, each object was

rendered from 768 views – Totalling 36,864 images. To

achieve realistic renderings of the objects, we used the Cy-

cles Path Tracing rendering engine, created a white, smooth,

plastic imitating material, set six light sources in the render-

ing scene and used 4,096 paths to trace each pixel.

Each object is rendered from the same set of views. To

determine the views, we used the Fibonacci lattice ([48])

approach. This approach allows distributing points on a

sphere uniformly. Other approaches, for example, using ra-

dial distance, polar angle and azimuthal angle, will result in

an unevenly sampled sphere; dense on the poles and sparse

closer to the equator. Fig. 10 illustrates the chosen views

to generate the dataset. Each blue-coloured point represents

a location where the camera is placed and oriented to the

center where the object (red) is. We chose a sphere radius

of two such that the object is view-filling but not cropped.

Further, as it is sometimes practiced in the machine learn-

ing community ([10, 29, 30, 22]), we also provide the object

mask and renderings with a dark and bright background for
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Figure 10. Illustration of viewpoints used to render each object of

L1 and L2. Views are evenly distributed on a sphere around an

object (blue points) and point towards the object (light red). In

total 768 views are taken.

data augmentation purposes. The annotation file contains

the object-type, view-id, bounding box information, object

and camera positions and orientations, object dimensions,

and self-occlusion value.

5. Self-Occlusion Measure

It seems evident that if we see less of an object, it is

harder to classify it. Regions of the object that are occluded

to us might hold distinct features to tell object X apart from

object Y . In other words, occlusion for visual classification

plays an important role. However, it is not only dependent

on the view but also on the object. Let us take, for exam-

ple, a sphere. No matter from which angle we look at it, we

always observe 50% of it. On the contrary, for a complex

polygonal shape, this cannot be answered as quickly as it is

dependent on its geometry.

[11] distinguishes two kinds of occlusions; “external occlu-

sion” and “self-occlusion.” “External occlusion” is caused

by an object entering the space between the camera and

the object of interest and “self-occlusion ”which describes

the occlusion caused by the object of interest to itself. For

TEOS, we are interested in the latter, as we always have one

object in the scene. To our knowledge, no standard self-

occlusion measure is used for computational approaches;

therefore, we aim to specify our own intuitive measure as:

SOci =
Aci

φ

Aσ
(2)

Where Aφ is defined as the occluded (not visible) surface

area of the object and Aσ stands for the total surface area

of the object. These values are computed as shown in Al-

gorithm 1. Note that for this calculation, the object identity

must be known. An object might have different views from

which it causes the same amount of self-occlusion, result-

ing in perhaps a considerably different appearance. Fig. 11

shows an example of two objects from two different views

Figure 11. Examples of different objects (Object 10 and 13 of L1)

and poses causing the same amount of occlusion but different ap-

pearances.

with the same amount of occlusion.

Therefore, we also consider the camera’s point of view with

ci as the camera pose. Here, ci is defined as the camera posi-

tion ci = (xi, yi, zi) and computed based on the Fibonacci

lattice approach (see Fig. 10). The camera orientation is

automatically set such that the object is in the centre of the

viewpoint.

Figure 12. Some object viewpoints and their corresponding SOci .

Figure 13. Visualization of the octahedron based projection used

to map camera positions. Bottom: two example camera poses (ci
and cj) mapped to oh1 and oh3.

For evaluation purposes, we also define a function that

maps a camera position (ci) onto one of the eight regions of

the octahedral viewing-sphere placed at the centre of an ob-

ject. Fig. 13 illustrates a mapping example for two camera-

positions. We represented the viewing sphere around an

object as a spherically tiled octahedron, resulting in eight

uniformly distributed triangles. To map a viewpoint ci to a

tile, we perform a determinant check to see in which tile a
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given camera pose ci is located.

In our rendered data set, the self-occlusion was calculated

by using the following steps:

Algorithm 1 Self-Occlusion

1: Iterates over all faces of the object with valid normals

and calculate the (Aσ)

2: Subdivide the objects into many thousand elements

3: Position the camera at a given location and pointing it

at the object (see Fig. 10)

4: Select vertices that are visible through view-port

5: Divide object into visible and not-visible part

6: Iterate over all faces of the not-visible object with valid

normals and calculate (Aφ)

7: Lastly, calculate Self-Occlusion (Equation 2)

Fig. 12 shows eight examples of the same object (object-

7) from different viewing angles and sorted based on their

amount of self-occlusion. As can be seen in the illustration,

a single object can cast many different appearances based

on the viewing angle and a significant change in the amount

of what is observable of it.

Figure 14. Illustration of the self-occlusion distribution for L1 and

L2 (top), as well as the distributional relation between viewpoint

mapping and self-occlusion for L1 and L2 (bottom).

Fig. 14 illustrates the self-occlusion distribution for L1 and

L2 (top) and the distributional relation between viewpoint

mapping and self-occlusion for L1 and L2 (bottom). Self-

Occlusion for L1 ranges from 49.99% to 95.16% with a

mean at around 68% and L2 from 54.08% to 87.5% with

a mean at 61% (Easy), 63% (Medium), and 71% (Hard).

The lower half of the Fig. shows that different octahedron

viewpoints result in varying amounts of self-occlusion. For

both L1 and L2, an overall sweet-spot with the least self-

occlusion is at oh5, presumably resulting in the best classi-

fication result. More specifically, for L2 class “Hard”, this

spot is at oh2/4 and for class “Medium” at oh7.

6. Baseline Evaluation

In this Section, we discuss how well modern classifica-

tion approaches perform on TEOS. We have chosen five

deep learning models with different properties, carefully

trained and evaluated them on TEOS.

We have chosen Inception-V3([49]), MobileNet-V2 ([41]),

ResNet-V2 ([14]), VGG16 ([45]) and EfficientNet ([50])

as reference networks for TEOS. Their trained version of

TEOS will be made publicly available. Table 1 shows more

details about the networks in ascending order of their pa-

rameter count.

Table 1. High-Level CNN Characteristics

CNN Layers Parameters (mil.)

MobileNet-V2 53 3.4

Inception-V3 48 24

ResNet-V2 152 58.4

EfficientNet-B7 813 66

VGG16 152 138

Besides the architecture of CNNs, a crucial element is

the choice of training-parameters and so-called hyperpa-

rameters. In our case, we have looked at the input size, input

noise, dropout rate, learning rate, optimization algorithm

and lastly, the difference between learning from scratch and

fine-tuning the networks. Hyperparameters such as input

noise, drop rate, learning rate were determined using the hy-

perparameter optimizer Hyperband by [28]. The remaining

parameters were empirically determined. Table 2 presents

the parameters used to establish the baseline of TEOS.

Table 2. Chosen Training Parameters

Parameter Value

Input Size 224 x 224 – 800 x 800

(dependent on CNN)

Input Noise Gaussian Noise of 0.1

Drop Rate 20%

Learning Rate 1e-5

Optimizer Adam Optimization

Learning Method Fine Tuning

To prepare the data for training, we chose a 20% val-

idation split and augmented the remaining 80% with the

following data augmentation techniques ([43]): rotation

(0− 40◦), width/height shift (0-20%) and zoom (0-20%).

Our results show that MobileNet-V2 performed best across

L1 and L2. Specifically, for L1, it achieved a top-1 accu-
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racy of 17.25% and 10.83% on the L2 data set. See Fig. 15

for the classification accuracies of all networks. It seems

that MobileNet-V2 is the only network that was able to

learn some aspects of TEOS, performing with a large (L1)

or small (L2) margin above chance, whereas all other net-

works perform at around chance. This, perhaps, has some-

thing to do with the relatively homogeneous appearance of

TEOS, not allowing the more complex CNNs to learn from.

However, this needs to be investigated further in the future.

Figure 15. Evaluation results on L1 (left) and L2 (right) for five

different CNNs and their accuracy across the entire datasets.

Generally, L2 is more challenging to learn for CNNs

than L1. Even the best performing CNN is only 2.53%

above chance, where this margin for L1 was at about 14.5%.

This is explainable with the high intra-class similarity of L2

– objects of one class look very similar to each other and

only vary in a small detail, which might be only observable

from certain views, hence will be confused with each other.

The L1 dataset, on the other side, has a low inter-class sim-

ilarity – the appearance of objects varies between classes.

A closer look at the results of L2 reveals that more exten-

sive networks (VGG16 and EfficientNet-B7) were able to

learn objects of class “Hard” of L2; however, they could not

learn “Medium” and “Easy” Objects. The smaller networks,

on the other hand (MobileNet-V2 and Inception-V3), were

able to learn “Easy” and “Medium” objects but not “Hard.”

Except for MobileNet-V2, all networks have problems to

learn the “Easy” Objects. See Fig. 15 for details.

Regarding the connection between classification accuracy

and amount of self-occlusion, it can be generally said that

the classification accuracy goes down if self-occlusion in-

creases. We have chosen the three best-performing CNNs

to analyze this connection and grouped L1 and L2 from

50% to 85% self-occlusion in 5% intervals. < 50% captures

viewpoints with a self-occlusion of less than 50%. > 85%
includes images with more than 85% (Fig. 16).

Furthermore, we also investigated the connection between

the viewpoint mapped to an octahedral viewing-sphere and

accuracy. As can be seen in the example of L1 and

MobileNet-V2, the viewpoint does play a vital role and can

result in an increase of accuracy performance by 13.28 →֒

22.31 = 67.99%. Across L1 and L2 the octahedral view-

Figure 16. Evaluation for the three top-performing CNNs. Top:

Accuracy across the entire datasets with respect to self-occlusion.

Bottom: Accuracy and how it is affected by the chosen viewpoint.

point resulting in the best performance was oh5. This can

be explained with that all objects share a common coordi-

nate system and shows once more that the viewpoint matters

and, even more, that an ideal viewpoint can exist.

Further, even though the CNNs are trained and validated

on the entire data set, their best performance can be seen

at lower self-occlusion rates, which shows the vital role of

self-occlusion for object classification performance.

7. Conclusion and Future Directions

In this work, we have presented a novel 3D blocks world

dataset that focuses on the geometric shape of 3D objects

and their omnipresent challenge of self-occlusion. We have

created two data sets, L1 and L2, including hundreds of

high-resolution, realistic renderings from known camera an-

gles. Each data set also comes with rich annotations.

Further, we have presented a simple but precise measure

of self-occlusion and were able to show how self-occlusion

challenges the classification accuracy of modern CNNs and

the viewpoint can benefit the classification. Lastly, in our

baseline evaluation, we have presented that CNNs cannot

learn TEOS, leaving room for future work improvements.

We hope to have paved a way to explore the relationship

between object classification, viewpoint, and self-occlusion

with this work. Specifically, we hope that TEOS is useful

for research in the realm of active vision – to plan and rea-

son for the next-best-view seems to be crucial to increase

object classification performance.
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