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Abstract

Deep learning-based blind super-resolution (SR) meth-

ods have recently achieved unprecedented performance in

upscaling frames with unknown degradation. These mod-

els are able to accurately estimate the unknown downscal-

ing kernel from a given low-resolution (LR) image in order

to leverage the kernel during restoration. Although these

approaches have largely been successful, they are predomi-

nantly image-based and therefore do not exploit the tempo-

ral properties of the kernels across multiple video frames.

In this paper, we investigated the temporal properties of the

kernels and highlighted its importance in the task of blind

video super-resolution. Specifically, we measured the kernel

temporal consistency of real-world videos and illustrated

how the estimated kernels might change per frame in videos

of varying dynamicity of the scene and its objects. With

this new insight, we revisited previous popular video SR ap-

proaches, and showed that previous assumptions of using

a fixed kernel throughout the restoration process can lead

to visual artifacts when upscaling real-world videos. In

order to counteract this, we tailored existing single-image

and video SR techniques to leverage kernel consistency dur-

ing both kernel estimation and video upscaling processes.

Extensive experiments on synthetic and real-world videos

show substantial restoration gains quantitatively and qual-

itatively, achieving the new state-of-the-art in blind video

SR and underlining the potential of exploiting kernel tem-

poral consistency.

1. Introduction

Super-resolution (SR) is an ill-posed problem that as-

sumes the low-resolution image (LR) is derived from a

high-resolution (HR) image and is recently dominated by

deep learning due to its unprecedented performance [6]. In

order to better restore the high-frequency details, state-of-

the-art video SR methods [35, 36, 37] exploit the temporal

*Equal contributions.

frame information by employing a multi-frame SR (MFSR)

approach. Specifically, each supporting frame is aligned

with its reference frame through motion compensation be-

fore the information in these frames are merged for upscal-

ing.

Most of these methods, however, assume that the degra-

dation process, applying the blur kernel and the downscal-

ing operation, is pre-defined. Therefore, the performance

of these methods significantly deteriorates for real-world

videos as the downscaling kernel, which is used for upscal-

ing, differs from the ground truth kernel, a phenomenon

known as the kernel mismatch problem [8]. Although

there has been significant progress to enable the usage of

SR models in real-world applications, these solutions are

predominantly image-based [3, 12, 22, 42]. The primary

paradigm of these blind image-based solutions consists of

either a two-step or an end-to-end process, starting with a

kernel estimation module and followed by a SR model that

aims to maximize image quality given the estimated kernel

and/or noise. Hence, when upscaling videos, these works

do not utilize the temporal similarity between kernels and

have to estimate kernels individually per frame. This is not

only computationally expensive but also less effective, since

estimating kernels independently per-frame may result in

inaccurate kernels, as shown in Sec. 4 and Sec. 5, and thus

kernel mismatch.

Recent blind MFSR approaches, on the other hand, uti-

lized a fixed kernel to upscale every frame [20, 29] in the

same video – we hypothesize that this fixed kernel assump-

tion can also lead to kernel mismatch. Therefore, in this

work, we attempt to investigate and answer the following

questions: how does the kernel change temporally in real-

world videos, and how can we leverage this change in the

video restoration process?

Towards our goal, we first investigated the temporal dif-

ferences in kernels in Sec. 4. In particular, we used a recent

image-based kernel estimation approach, KernelGAN [3],

on frames of real-world videos and observed that videos

of varying dynamicity, such as scene changes and object

motion blurs, can result in corresponding variations in the
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downsampling kernels. We then show how videos of dif-

ferent dynamicity can affect the temporal consistency of

their downscaling kernels. From this perspective, we re-

evaluated previous MFSR approaches on real-world videos

in Sec. 5. Through our experiments, we show that the com-

mon assumption of using a fixed downsampling kernel for

multi-frame approaches can lead to the kernel mismatch

problem, resulting in inaccurate motion compensation and

hence inferior restoration results. To counteract these draw-

backs, we tailored these existing techniques to exploit our

new insight on kernel temporal consistency in Sec. 6, lead-

ing to substantial gains as compared to state-of-the-art. In

summary, the main contributions of this work are:

• To the best of our knowledge, we are the first to inves-

tigate the temporal consistency of kernels in real-world

videos for deep blind video SR.

• We present the limitations and drawbacks of using a

fixed kernel, a scenario that is commonly assumed, for

multi-frame SR approaches.

• Through tailored alterations to existing SR approaches,

we underline the potential of exploiting kernel tem-

poral consistency for accurate kernel estimation and

motion compensation, resulting in considerable perfor-

mance gains in video restoration.

2. Related Work

Single-Image Blind Super-Resolution. Previous deep

learning-based image-based SR approaches [6, 7, 30, 18,

32, 1, 30] assumed a fixed and ideal downsampling degra-

dation process, often bicubic interpolation, leading to poor

performance when applied to real-world images. As a re-

sult, most blind SR approaches focused on estimating the

downsampling kernel and/or utilizing it for upsampling.

Efrat et al. [8] first highlighted the kernel mismatch prob-

lem: using the incorrect kernel during restoration had a sig-

nificant impact on the performance regardless of the choice

of image prior. Towards accurate downsampling kernel es-

timation, Michaeli et al. [25] exploited the inherent recur-

rence property of image patches and proposed an iterative

algorithm to derive the kernel that maximizes the similarity

of recurring patches across scales of the LR image. Bell-

Kligler et al. [3] adopted a GAN approach [10], in which

the generator learnt an estimated kernel to downscale the

input image with and the discriminator learnt to differenti-

ate between the patch distribution of the input image and its

downscaled variant. The downsampling kernel can also be

learned using CNNs by enforcing that the super-resolved

image maps back to the LR image [13] or using a paired

of real-world image dataset [4]. Exploiting the kernel mis-

match phenomenon, Gu et al. [12] and Luo et al. [22] alter-

natively estimated the kernel from the approximated super-

resolved image and restored the image by using the esti-

mated kernel, reaching the current state-of-the-art.

Multi-Frame Super-Resolution. MFSR approaches fo-

cus on utilizing temporal information from the LR frames

by aligning and fusing them in order to further boost

restoration performance through CNNs or RNNs. Earlier

works [19, 17] performed motion compensation by esti-

mating optical flow using traditional off-the-shelf motion

estimation algorithms [2]. As the accuracy of motion es-

timation directly affects the reconstruction quality of the

super-resolved images, these traditional motion estimation

works are superseded by more accurate CNN-based net-

works such as spatial transformer networks [15] or task-

specific motion estimation networks [14, 27, 33], leading

to approaches [21, 24, 34, 38, 28] that focused on inte-

grating motion estimation and SR networks for end-to-end

learning. Recent works [16, 35, 36, 37] decoupled this de-

pendency on motion estimation networks and performed

motion compensation by adaptively aligning the reference

and supporting frames through dynamically-generated fil-

ters or deformable convolutions [5, 43]. Although major-

ity of these works helped to elucidate the relationship be-

tween motion estimation and video restoration, they ne-

glected the degradation process by assuming a fixed known

kernel. Therefore, unlike previous MFSR works that fo-

cused on incorporating temporal information in the frames,

we also utilized the temporal information in the downscal-

ing degradation operation in order to further boost restora-

tion performance.

Towards blind MFSR, Pan et al. [29] used a kernel es-

timation network, consisting of two fully-connected layers,

to learn a fixed blur kernel for inference. However, they,

similar to Liu et al. [20], assumed that the kernel is fixed

at every timestamp, resulting in poor SR performance as

shown in Sec. 5.

3. Problem Formulation

Multi-frame Super Resolution (MFSR) uses a set of 2N
supporting LR frames {yt−N , · · · , yt−1, yt+1, · · · , yt+N}
to upscale the reference LR frame yt at time t, utilizing tem-

poral information across frames. The degradation process is

usually expressed as follows:

yt+i =
(

(Ft→t+ixt) ∗ kt+i

)

↓s +nt+i (1)

where y and x are the LR and HR image respectively, k is

the blur kernel, ↓s is the downscaling operation (e.g. sub-

sampling) using scaling factor s, n is the additive noise,

i = −N, · · · , N , and F is the warping matrix w.r.t the op-

tical flow applied on xt. The image warping process can

either be done explicitly via an optical flow or implicitly via

dynamically-generated filters [16] or deformable convolu-

tions [5]. The process of applying k together with the ↓s is
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also referred to as applying a downscaling kernel or SR ker-

nel [3, 12]. Traditionally, a prior term is individually hand-

crafted for xt, kt+i and Ft→t+i, but most deep learning-

based approaches capture the prior [6] through CNNs by

training it using a large amount of examples.

In order to solve for k and x, state-of-the-art blind image-

based algorithms split the problem into two sub-problems,

estimating k and restoring x, and address each problem se-

quentially [3, 12] or alternately [39, 22]. MFSR solutions,

on the other hand, include an additional sub-problem of es-

timating the motion between each supporting frame and its

reference frame in order to perform motion compensation

and hence leverage the temporal frame information dur-

ing restoration. Although previous traditional video SR ap-

proaches [9, 23] assume that the kernel varies across frames,

recent works [20, 29] assume a fixed kernel. In our work,

we study and highlight the implications of both assumptions

and advocate for the per-frame kernel approach, resulting in

the following optimization problem:

x̂t = argmin
xt

N
∑

i=−N

∥

∥yt+i −
(

(Ft→t+ixt) ∗ kt+i

)

↓s
∥

∥

k̂t = argmin
kt

∥yt − (xt ∗ kt) ↓s∥

F̂t→t+i = argmin
Ft→t+i

∥

∥yt+i −
(

(Ft→t+ixt) ∗ kt+i

)

↓s
∥

∥

(2)

where x̂, k̂, and F̂ are the estimated HR image x, kernel k,

and warping matrix F respectively.

4. Kernels In Real-World Videos

In order to investigate the temporal kernel changes in

real-world videos, we extracted a pool of kernel sequences

from the Something-Something dataset [11], a real-world

video prediction dataset. As ground truth kernels do not

exist in real-world videos, we applied the state-of-the-art

image-based kernel extraction method, KernelGAN [3], to

extract the sequences of kernels. Through these kernel se-

quences, we observed that the extracted SR kernels can of-

ten be different for each frame, while on the other hand may

also exhibit certain levels of temporal consistency, depend-

ing on the video’s dynamicity.

Fig. 1 illustrates this phenomena, in which we show the

distributions of the magnitude of kernel changes in dif-

ferent video sequences. Specifically, we reshaped the ex-

tracted kernels for each frame and reduced them through

principal component analysis (PCA). We then computed

the sum of absolute differences between the kernel PCA

components of adjacent frames and plotted this difference

using videos of varying dynamicity (left and middle plot

groups in Fig. 1). As a baseline, in comparison with an
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Figure 1: We quantify temporal kernel consistency by mea-

suring kernel PCA change for adjacent frames in real-world

videos with high/low kernel temporal consistency. Random

frames are sampled from different videos at each times-

tamp as a baseline to highlight temporal kernel consistency

within same video. Kernel changes are represented by solid

dots while boxplots show distributions.

unrealistic real-world video without any temporal consis-

tency, we sampled random frames from different random

videos at each timestamp, of which its kernel PCA changes

are represented by the right plot in Fig. 1. We observed

that some videos’ kernel differences, namely the left group

of plots showing video sequences 13, 16 and 22 from the

Something-Something dataset in Fig. 1, are of high tempo-

ral kernel consistency, of which the kernels remain largely

unchanged throughout. In contrast, the middle group of

plots represent the kernel differences of videos with low

temporal kernel consistency, namely video sequence 2, 23

and 25, of which kernel changes can be much significant.

Visually, Fig. 2 shows example frames from corresponding

videos of high and low temporal kernel consistency. In par-

ticular, videos with high temporal kernel consistency depict

slow and steady movements with no motion blurs or scene

changes - e.g. a video of a hand slowly reaching towards

a cup or videos with almost identical frames at each time

step. On the other hand, videos with low temporal kernel

consistency have motion blur caused by rapid movements

of the camera or object, e.g. large object motions caused

by a man weaving a straw hat or placing a container up-

right and shaky camera motions, as illustrated in the right of

Fig 2. Therefore, our experiments highlight that SR kernels

in real-world videos are often non-uniform and can exhibit

different levels of temporal consistency.

5. Kernel Mismatch in Previous MFSR

In order to highlight the importance of incorporating

temporal kernel consistency in blind video restoration, we

looked into the limitations and drawbacks of both previ-
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Figure 2: Example frames from videos of high/low kernel temporal consistency as shown in Fig. 1. Videos of low kernel

temporal consistency (right) contain a higher proportion of video dynamicity as compared to videos of high kernel temporal

consistency (left).
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Figure 3: Examples of consecutive frames in real-world

videos upscaled using a fixed kernel (top row), and differ-

ent per-frame kernels (bottom row). More examples can be

found in the supplementary material (s.m. Fig. 1).

ous and recent multi-frame super resolution (MFSR) ap-

proaches [19, 17, 21, 24, 34, 38, 29]. Specifically, these

works assumed that either a fixed degradation operation is

used for all videos or a fixed SR kernel is used to degrade all

frames in each video – assumptions that do not hold for real-

world videos as shown in Sec. 4. Consequently, these works

suffer from the kernel mismatch phenomenon [8] when they

are used to upscale real-world videos.

Impact on Frame Upscaling. Previous MFSR works ex-

ploit temporal frame information using a fixed SR kernel.

We first show with a naive approach, that the use of a single

kernel, even without utilizing temporal frame information,

to restore every frame is detrimental towards the perfor-

mance of frame upscaling in the video restoration process.

Towards this goal, we independently computed a kernel

per frame of videos taken from the Something-Something

dataset using KernelGAN and restored these frames using

ZSSR [31]. We compared this per-kernel approach with a

single-kernel approach where we only estimated the SR ker-

nel on the first frame in the video and used that same ker-

nel to restore all subsequent frames in each video. Fig. 3

shows the qualitative difference between the two experi-

ments and we observed that using a fixed kernel indeed re-

sulted in more severe visual artifacts and unnatural textures.

All experiment details and more examples can be found in

the supplementary material (s.m. Sec. 1 & Fig. 3).

Impact on Motion Compensation. We then show that

a fixed kernel assumption further aggravates MFSR ap-

proaches. The premise of these approaches is to utilize

temporal frame information in order to boost the restoration

performance. To this end, previous MFSR works used mo-

tion compensation to warp each supporting frame to its ref-

erence frame before fusing these frames together for upscal-

ing. As mentioned in Sec. 3, the optical flow used for warp-

ing is either estimated explicitly using traditional or deep

motion-estimation techniques or implicitly using adaptive

filters or deformable convolutions.

In order to visualize the impact of kernel mismatch on

motion compensation for real-world videos, we consider

two sets of videos, one from LR sequences of the original

REDS dataset [26], which are degraded using a fixed kernel,

while the other from our REDS10 testing sequence (details

discussed in Sec. 6.1), which are generated using different

per-frame kernels and thus better resemble the degradation

characteristics of real-world videos than the former.

We then used an explicit deep motion estimation model,

which is commonly used in previous MFSR approaches [21,

24, 34, 38] to compute the optical flow. Specifically, we

adopt PWCNet [33] to estimate optical flow in our exper-

iment. The optical flow is then used to warp each sup-

porting frame and the results are shown in Fig. 4, for both

fixed and per-frame degradation video sets. We observe that

motion compensation performs better on the fixed degrada-

tion video set, benefiting the previous approaches that were

specifically designed under the fixed kernel assumption. On

the other hand, due to the kernel dynamicity in real-world

videos, the warped supporting frames of those approaches

often suffer from kernel mismatch when dealing with videos

of varying kernels, as shown in Fig. 4 (bottom row). We

further show that this phenomenon is also observed with

the use of implicit motion compensation, and the errors in-
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Figure 4: Example aligned frames with their reference frame at time t. Motion compensation model in current MFSR

approaches performs better when considering a fixed SR kernel at every timestamp (top row), which however does not hold

for real-world videos. For videos with varying kernels per frame, the aligned frames are oversmoothed and blurred (e.g. see

the frames at t - 1 of both examples) due to kernel mismatch (bottom row). Zoom in for best results. More examples are

provided in the supplementary material (s.m. Fig. 4.)

curred from inaccurate motion compensation can be propa-

gated throughout the restoration process in Sec. 6.2.

6. Exploiting Temporal Kernel Consistency

We hypothesize that by using temporal kernel consis-

tency, we can mitigate the limitations highlighted in Sec. 5.

Towards understanding the impact of doing so, we first

adopted the state-of-the-art blind image-based SR algo-

rithm, DAN [22] and incorporated MFSR modules from

EDVR [36] for temporal alignment through implicit mo-

tion compensation, fusion, and video restoration. We then

tailored these approaches to exploit temporal kernel consis-

tency and analyzed the benefits and performance impact of

doing so through an ablation study.

6.1. Experiment Setup

Models. DAN [22] is an end-to-end learning approach that

estimates the kernel k, and restores the image x, alternately.

The key idea, as shown in black in Fig. 5, is to have two con-

volutional modules: 1) a restorer that reconstructs x given

the LR image y, and the PCA of k; and 2) an estimator that

learns the PCA of k, based on y and the resulting super-

resolved image x̂. The basic block for both components is

the conditional residual block (CRB), which concatenates

the basic and conditional inputs channel-wise and then ex-

ploit the inter-dependencies among feature maps through

a channel attention layer [41]. The alternating algorithm

executes both components iteratively, starting with an ini-

tial kernel, Dirac, and resulting in the following expression:

x(j+1) = argmin
x

∥

∥

∥
y − (x ∗ k(j)) ↓s

∥

∥

∥

1

k(j+1) = argmin
k

∥

∥

∥
y − (x(j+1) ∗ k) ↓s

∥

∥

∥

1

(3)

Input LR Frames
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Kernel 
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Kernel PCAs

Intermediate SR Frames

Reshape 
+ PCA

Initial Kernels

PCD
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TSA

Module

Restoration

Module

Output SR Frame

Repeat J 

Iterations

LR + Kernel Features

(No upsampling)

Figure 5: Our experiment setup of utilizing multiple frames

for temporal kernel estimation (shown in black) and us-

ing temporal kernels for multi-frame restoration (shown in

blue). See text for details and the supplementary material

(s.m. Fig. 1) for a more detailed architecture diagram.

where j presents the iteration round, j ∈ [1, J ]. Both com-

ponents are trained using the sum of the absolute difference,

L1 loss, between k and k̂, and between x and x̂ estimated

by the last iteration.

For multi-frame experiments, as shown in blue in Fig. 5,

we used the LR feature maps at the last restorer iteration

before upsampling and adopted EDVR’s PCD Module, TSA

Module, and Restoration Module for temporal alignment,

fusion, and video restoration respectively. In other words,

we merged kernel estimation and blind image restoration

techniques with MFSR motion compensation methods and

made alterations in order for these modules to utilize tempo-

ral kernel consistency. Further details of these modules and

the architecture can be found in the supplementary material

(s.m. Sec. 2 & s.m. Fig. 1).

Training Data. We combined both REDS [26] training and

validation set and randomly sampled 250 for train and 10

for test. Following [3], we generated anisotropic Gaussian
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kernels with a size of 13×13. The lengths of both axes were

uniformly sampled in (0.6, 5), and then rotated by a ran-

dom angle uniformly distributed in [-π, π]. For real-world

videos, we further added uniform multiplicative noise, up

to 25% of each pixel value of the kernel, to the generated

noise-free kernel, and normalized it to sum to one. Each

frame of each HR video was degraded with a randomly gen-

erated kernel and then downsampled using bicubic interpo-

lation to form the synthetic LR videos. Following previous

works [40, 12, 22], we reshaped the kernels and reduced

them through principal component analysis (PCA) before

feeding into the network. We adopted this frame-wise syn-

thesis approach for two reasons: 1) to the best of our knowl-

edge, there is no video dataset with real-world kernels avail-

able, and extracting large amount of kernel sequences from

video benchmarks for training is costly. 2) the synthetic

training kernels generated as mentioned above can create

various degradation in the individual frames, and thus are

able to model real-world videos with varying levels of ker-

nel temporal consistency.

Testing Data. We created our testing set with 10 sequences

from the REDS testing set (000 and 010-018), denoted as

REDS10, aiming to mimic the actual degradation of real-

world videos that are of varying video dynamicity. Con-

cretely, following our experiments in Sec. 4, we first sam-

pled videos from the Something-Something dataset [11]1.

The sequences from Something-Something dataset were

randomly sampled such that their estimated kernels had dif-

fering temporal kernel consistency. These kernels were then

used to degrade our test set to mimic the degradation charac-

teristics of real-world videos. We then randomly sampled a

sequence from these estimated real-world kernel sequences

and used it to downsample each selected video in REDS102.

As a result, our testing set has the similar degradation char-

acteristics as that of real-world videos, while allow us to

perform quantitative evaluations. The kernel temporal con-

sistency of this test set can be found in the supplementary

material (s.m. Fig. 2). For real-world video evaluations,

we used videos from the Something-Something dataset. All

implementation details can be found in the supplementary

material (s.m. Sec. 3).

6.2. Effectiveness of Temporal Kernel Consistency

Temporal Kernel Estimation. We first studied the effec-

tiveness of taking multiple frames into account for kernel

estimation. In other words, instead of estimating kernels in-

dividually for each frame, we leveraged our key insight that

the downsampling kernels of frames within a video are tem-

porally consistent to achieve a faster and more accurate ker-

nel estimation for videos. To this end, we modified the esti-

1In particular, sequences 13, 16, 21, 35, 37, 49, 52, 55, 63, and 71.
2For cases in which the length of the video is longer than the selected

kernel sequence, we loop over the same kernel sequence for the remaining

frames.
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Figure 6: Distribution of kernel estimation errors of dif-

ferent estimators for each video sequence in our test set.

Single-frame estimator (Est-1+Res-1) tends to perform

worse than multi-frame estiamtors (Est-3/5+Res-1) by hav-

ing larger error variance with many outliers.

mator to take in multiple LR frames, {yt+i}
i=N
i=−N , and gen-

erated their corresponding estimated kernels, {k̂
(j)
t+i}

i=N
i=−N .

We then utilized the existing channel attention block in

DAN by adopting an early fusion approach, which merges

information at the beginning of the block, to exploit the

inter-channel relationships not only between basic and con-

ditional inputs, but also among temporal inputs. Specifi-

cally, the features of the HR frames are concatenated with

the LR features in every CRB in order to leverage the exist-

ing structure of DAN’s estimator without adding additional

channels or layers as shown in the supplementary material

(s.m. Fig. 1).

We experimented with different number of input frames

on the estimator, labelled as Est-α where α is the num-

ber of frames used for kernel estimation. Likewise, we la-

belled β as the number of frames used for restoration, Res-

β. For a fair comparison, here we used DAN’s restorer,

β = 1, which is single-frame and therefore not including

our adopted EDVR components. Fig. 6 shows the distribu-

tion of kernel estimation errors of the aforementioned mod-

els in terms of the absolute sum of PCA difference between

the estimated kernels and their respective ground truth ker-

nels for all frames in each sequence found in REDS10. We

observed that independent kernel estimation per-frame can

lead to a larger variance and numerous outliers as compared

to temporal kernel estimation. Notably, temporal kernel es-

timation results in, on average, more accurate kernels for

videos with high dynamicity, i.e. low kernel temporal con-

sistency, while performs similarly for videos with high ker-

nel temporal consistency. The performance increase in ker-

nel estimation, however, did not improve performance sig-

nificantly in video restoration as shown in Table 1. This
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Models PSNR/SSIM

Est-1 + Res-1 (DAN) 26.28/0.7118

Est-3 + Res-1 26.30/0.7124

Est-5 + Res-1 26.31/0.7213

Est-1 + Res-3 26.37/0.7170

Est-1 + Res-5 26.54/0.7287

Est-3 + Res-3 26.62/0.7364

Est-5 + Res-5 26.76/0.7400

Table 1: Ablation study on the impact of utilizing temporal

kernel estimation on video restoration for both kernel esti-

mation and motion compensation. Red for best performing

model and blue for second best. Although estimating more

accurate kernels did not significantly improve the perfor-

mance of a single-image restorer, it is critical for motion

compensation and hence benefiting multi-frame restorers.

phenomenon is also observed in recent blind iterative im-

age SR works [12, 22] and these works reported that this

was due to the restorer’s robustness to the kernel estima-

tion errors of the estimator since they were jointly trained.

Although having a more accurate kernel estimation did not

drastically impact a single-frame video restoration perfor-

mance, we show that it is essential at improving the perfor-

mance of a multi-frame restoration approach.

Incorporating Temporal Kernels for MFSR. The perfor-

mance gain of utilizing the temporal information of multiple

frames is dependent on the accuracy of its motion estima-

tion; an inaccurate flow can result in misaligned frames af-

ter motion compensation and thus artifacts in the restored

video [34, 38, 35, 16]. As shown in Sec. 5, performing

motion compensation under the assumption of a fixed SR

kernel directly on real-world videos can result in regular ar-

tifacts in the warped frames. To mitigate this, instead of

following the convention of employing motion compensa-

tion on the LR frames or features directly, we performed

motion compensation on the LR frames after considering

their corresponding kernels. Specifically, we utilized the

feature maps at the last restorer iteration as shown in Fig. 5

which embed both LR frame and the corresponding kernel

features from the estimator, and then adopted EDVR for

temporal alignment, fusion, and restoration as mentioned

in Sec. 6.1. This approach mitigates the problem of inac-

curate motion compensation caused by kernel variation in

real-world videos, but the restoration performance may still

depend on the accuracy of estimated kernels; errors in ker-

nel estimation would propagate and result in inaccurate mo-

tion compensation.

To verify this, we first ran our multi-frame restorer,

β = {3, 5}, with a single-frame estimator, α = 1 and com-

pared it with running the multi-frame restorer together with

the multi-frame estimator. The results are shown in Table 1.

As expected, having a multi-frame restorer resulted in an

improvement in video restoration similar to that of previous

Proposed for Models PSNR/SSIM

MFSR TDAN [35] 25.93/0.6867

EDVR [36] 26.21/0.7060

Blind SISR IKC [12] 26.22/0.7021

DAN [22] 26.28/0.7118

Blind MFSR DBVSR [29] 26.11/0.6986

Est-3 + Res-3 (Ours) 26.62/0.7364

Est-5 + Res-5 (Ours) 26.76/0.7400

Table 2: We compare our model with state-of-the-art mod-

els from MFSR, which assume a fixed bicubic degradation,

and blind single-image SR methods, which restore each

frame independently.

works [19, 17, 21, 24, 34]. However, these per-frame esti-

mator MFSR models did not perform as well as their tempo-

ral estimator counterparts. In particular, although our per-

frame estimator MFSR model utilized information from 5
frames (Est-1 + Res-5) to restore each frame, it did not out-

perform our temporal estimator MFSR model that only ex-

ploited information from 3 frames (Est-3 + Res-3). Hence,

we can conclude that the kernel mismatch errors incurred

during kernel estimation propagated through the implicit

motion compensation module of EDVR, affecting tempo-

ral alignment, fusion, and thus restoration. In other words,

more accurate estimated kernels through the temporal ker-

nel estimator enable the multi-frame restorer to leverage

temporal frame information better. Therefore, the interplay

between accurate kernel estimation and motion compensa-

tion is the key to utilize temporal kernel consistency for

video restoration.

Comparisons with Previous Works. We compared our ap-

proach, with existing works on both our test set REDS10

and real-world videos taken from the Something-Something

dataset. Specifically, we considered state-of-the-art MFSR

methods, TDAN [35] and EDVR [36], blind image-based

SR methods, IKC [12] and DAN [22], and a recently pro-

posed blind MSFR approach, DBVSR [29].

From the quantitative and qualitative comparisons based

on REDS10 (Table. 2 & Fig. 7) and real-world qualita-

tive examples (Fig. 8), we observe that existing MFSR ap-

proaches are lacking due to kernel mismatch, affecting both

motion compensation and video restoration as shown in

Sec. 5. Both TDAN and EDVR, in particular, were trained

using the fixed bicubic degradation assumption and DB-

VSR assumed a fixed temporally uniform kernel. Blind

SISR approaches, on the other hand, restore each frame in-

dependently and hence perform slightly better than exist-

ing MFSR approaches. Our approach, which exploits ker-

nel temporal consistency for accurate kernel estimation and

mitigates the effects of kernel mismatch on motion com-

pensation, leads to a dominant solution for real-world video

restoration. We provided additional examples in the supple-

mentary material (s.m. Fig. 5 & Fig. 6).
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Figure 7: Qualitative comparison among existing models, along with bicubic upscaling, on our benchmark test sequences.

Zoom in for best results.
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Figure 8: Real-world qualitative comparisons among existing models, along with bicubic upscaling. Zoom in for best results.

Note that there is no ground-truth available.

7. Conclusion

In this paper, we presented the temporal kernel changes

in videos and showed that they varied in their consistency

depending on the video’s dynamicity. Through our exper-

iments, we highlighted the importance of estimating ker-

nels per-frame to tackle the effects of temporal kernel mis-

match in previous works. We then showed how temporal

kernel consistency can be generally incorporated into exist-

ing works through the interaction between both kernel esti-

mation and motion compensation in order to leverage both

temporal kernel and frame information for blind video SR.

We hope to influence future blind video SR model design

by emphasizing the potential of leveraging kernel temporal

consistency in restoring videos.
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