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Abstract

Face detection has been well studied for many years.
One remaining challenge is to detect faces from low-light
images. The brightness of the image captured under ex-
tremely low-light conditions could be very low and the con-
trast will be severely reduced. It is easy to cause confu-
sion during feature extraction and affects the performance
of face detection. In this paper, we propose a single-stage
low-light face detection method. First, we design an im-
proved MSRCR method to increase the image quality un-
der the condition of ensuring that the colors of the image
are not distorted. It shows better enhancement effect than
other methods in the DARK FACE dataset, especially the
low-resolution face details are well preserved. There are a
number of small, blurred and partially occluded faces. To
address this, the Pyramidbox algorithm is a very effective
face detection algorithm. Moreover, we conduct multi-scale
tests to further develop the performance of the model and
integrated the results through Soft-NMS method to obtain
final results. Integrating these techniques, this paper has
achieved high accuracy and obtained excellent results in the
face detection task of the DARK FACE dataset.

1. Introduction

Face detection is a research hotspot in the field of com-
puter vision and has received more and more attention in
recent years [ 13, 16, 35]. The related research has been ma-
turely applied in security, finance, transportation and other
industries and fields [5, 43]. As the development of technol-
ogy, given an ideal image and without the influence of com-
plex illumination, low resolution and occlusion, the face de-
tection algorithm has been able to guarantee high accuracy
and stability.

Figure 1. The images provided in DARK FACE dataset. They
are captured during the nighttime, at teaching buildings, streets,
bridges, overpasses, parks etc., all labeled with bounding boxes of
human face.

However, the continuous expansion of application sce-
narios also puts forward higher requirements on the face
detection technology. One of the challenging problems is
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the face detection in extremely low-light scenes. Images
captured under extremely low-light conditions belong to the
common type of low-quality images. The brightness of the
image is very low and will reduce the contrast, so it is easy
to cause confusion during feature extraction and hurt the
performance of face detection. In addition, when process-
ing low-light images obtained in real scenes, serious noise
pollution and uneven illumination must be considered. The
former may destroy the basic structure of the face in the im-
age, while the latter may interfere with the effectiveness of
spatial feature extraction and bring unavoidable troubles.

In order to systematically study the performance of face
detection algorithms under extremely low light conditions,
a challenging benchmark named DARK FACE [41, 36] was
recently constructed. As shown in Figure 1, DARK FACE
dataset provides 6,000 real-world low light images captured
during the nighttime, at teaching buildings, streets, bridges,
overpasses, parks etc. They are all labeled with bounding
boxes of human face, as the training and validation sets.
The current advanced face detection algorithm has also been
tested on DARK FACE dataset. For example, DSFD [18]
produces an mAP of 15.3%, in a sharp contrast to above
90% on the hard subset of the popular WIDER FACE [39]
benchmark, which shows that it remains extremely chal-
lenging to detect faces under low-light conditions.

Faced with the drawbacks of low-light images, image en-
hancement technology is an effective processing method.
At present, retinex theory is one of the most popular meth-
ods in the field of low-light image enhancement [17]. There
are many algorithms based on retinex theory and the repre-
sentative method is multi-scale retinex with color restora-
tion (MSRCR) [15]. The MSRCR method proposes to esti-
mate the illumination of the input image using Gaussian sur-
round filtering of different scales and conduct enhancement
by applying color restoration followed by linear stretching
to the logarithm of reflectance [24]. This method has shown
great ability in providing dynamic range compression, color
restoration and preserving most of the details. Based on the
MSRCR method, this article will seek the best image en-
hancement method to improve the problem of face detection
algorithm failure caused by low-light.

The Pyramidbox algorithm is a very effective face de-
tection algorithm [33]. Compared with previous methods,
it proposes an anchor-based context assisted method to in-
troduce supervised information on learning contextual fea-

Figure 2. The flow diagram of low-light face detection method under extremely low-light conditions proposed in this paper. It includes
three parts: low-light image enhancement, single-stage face detection and multi-scale testing.

Single-stage | —s| Muti-scale
face detection testing

(i T iy

tures for small, blurred and partially occluded faces. The
Low-level Feature Pyramid Networks (LFPN) and Context-
sensitive Prediction Module are designed in order to merge
contextual features and facial features better and handle
faces with different scales well in a single shot. The al-
gorithm has strong adaptability in images with different
characteristics, maintaining high accuracy and stability. We
choose the Pyramidbox algorithm as the core idea of the
low-light face detection algorithm, and adjust the loss func-
tion according to the characteristics of the data set to obtain
the detection network that best matches the image.

Driven by the above motivations, we propose a single-
stage face detection method under extreme low-light con-
ditions. It contains three modules, as shown in Figure 2.
First, based on the MSRCR method, the image enhance-
ment module is designed to complete the preprocessing of
the low-light images in the dataset. Then the Pyramidbox
algorithm is used as the core module of face detection and
the classification loss function and regression loss function
are modified for image features. Moreover, multi-scale test-
ing is used to improve the overall model detection perfor-
mance as there are a large number of small targets in im-
ages. Experiment results show that the design of these three
modules has achieved a great improvement in the face de-
tection results under extremely low-light conditions.

To summarize, we make the following contributions:

1) An effective method to solve the problem of low-light
face detection: single-stage low-light face detection method
based on the improved MSRCR method,

2) The Pyramidbox algorithm and multi-scale testing
scheme are proved to be effective for face detection under
extremely low-light conditions,

3) The advanced performance of the model is verified on
the DARK FACE dataset and has obtained leading experi-
mental results.

2. Related Work

The focus of this paper is to propose a face detection
method for low-light images and it is closely related to two
aspects: low-light image enhancement and face detection.

Low-light image enhancement. Low-light image en-
hancement has always been an important means to improve
image perception quality [20]. The common enhancement
methods can be divided into two categories [37]: 1) image
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restoration based on physical models; 2) image enhance-
ment based on image processing techniques. For the first
category, by establishing and inverting the image degra-
dation process to obtain the best estimate of the clear im-
age [12, 31], and the second category directly improves con-
trast and highlights details by global or local pixel process-
ing, regardless of the cause of color cast and image degrada-
tion [15]. Many effcient solutions are frequently designed
based on the retinex theory [17]. It assumes an image as a
combination of a reflectance map that reflects the physical
characteristic of scene objects and a spatially smooth illu-
mination map. Based on this theory, algorithms were de-
signed to focus on resolving the ambiguity between illumi-
nation and reflectance by imposing certain priors on a varia-
tional model based on empirical observations [7, &, 11, 19].
There are many algorithms based on retinex theory such as
single-scale retinex (SSR), multi-scale retinex (MSR) and
multi-scale retinex with color restoration (MSRCR) [15].

In this paper, we constantly adjust and improve the
MSRCR algorithm to find a low-light image enhancement
method that best matches the DARK FACE dataset, which
not only improves the perception quality of the original im-
age, but also ensures that the subsequent face detection al-
gorithm can exert more stable performances.

Face detection. Face detection is the most fundamen-
tal and essential task in face-related applications. The most
representative and outstanding work in the early is utiliz-
ing AdaBoost algorithm with Haar-Like features to train
a cascade of face and non-face classifiers [35]. Then a
large number of subsequent works were proposed for the
improvement of cascade detectors [44, 28, 3, 38]. With the
rapid development of convolutional neural networks(CNN),
a lot of progress for face detection has been made in re-
cent years. The object detection algorithm designed based
on CNN has achieved great success in this field, includ-
ing R-CNN [9, 10], SSD [22], YOLO [29] and their ex-
tensions. In addition, for situations that detect faces in un-
controlled environment, the anchor-based detection frame-
work can play a greater advantage, for example: WIDER
FACE [1], SSH [26] and S®FD [42] develop scale-invariant
networks to detect faces with different scales.

Refer to previous design ideas for detectors, the Pyra-
midBox algorithm was proposed to handle the hard face de-
tection problem [33]. Its advantage is reflected in improving
the utilization of contextual information. By designing the
PyramidAnchor and Low-level Feature Pyramid Network to
combine adequate high-level context semantic feature and
low-level facial feature together, which allows the Pyramid-
Box algorithm to predict faces of all scales in a single shot.
In this paper, we use the PyramidBox algorithm as the core
module of face detection. After image enhancement, the
sample characteristics of images such as noise, image res-
olution, and contrast have changed a lot. We adjusted the

PyramidBox Loss Layer with reference to facal loss [21]
and balanced L1 loss [27], and finally got the face detector
we need.

3. Proposed Method

The method we propose is divided into three modules:
the MSRCR low-light image enhancement module, the
PyramidBox face detection module and the multi-scale test
module. They are combined together to form the low-light
single-stage face detection model.

3.1. MSRCR low-light image enhancement module

In most cases, retinex processing on images will cause
serious saturation reduction problems, resulting in color
distortion [15]. The advantage of the MSRCR method is
reflected in the restoration of colors and maintaining the
color consistency before and after image enhancement. The
single-scale retinex is given by:

Ri(z,y) = log Ii(x,y) — log[F(x,y) * Li(x,y)] (1)

where R;(z,y) is the retinex output, I;(x,y) is the image
distribution in the ith spectral band and F'(x,y) is the sur-
round function.
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Figure 3. The pipeline of the improved MSRCR algorithm.

For the MSRCR method, we consider a simple colori-
metric transform. It is a method to create a relative color
space, and in so doing becomes less dependent than raw
spectrophotometry on illuminant spectral distributions:

Z;S’:l]i(a:) y)

for the ith color band, and S is the number of spectral chan-
nels (S = 3 for the RGB color space).
Then we can get the output of MSRCR as:

RMSRCRi (.T, y) = CZ (fﬂ, y)Erjyzlwani 3)

Ii(z,y) = @

where
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Context-sensitive Predict Layers

PyramidBox Loss Layer

Figure 4. The architecture of the PyramidBox algorithm. It consists of Scale-equitable Backbone Layers, Low-level Feature Pyramid

Layers, Context-sensitive Predict Layers and PyramidBox Loss Layer.

is the 7th band of the color restoration function (CRF) in
the chromaticity space, N is the number of scales, w,, is the
weight associated with the nth scale, R,,, is the ith compo-
nent of the nth scale and Ry;srcr, is the ith spectral band
of the multiscale retinex with color restoration.

The advantage of the MSRCR algorithm lies in the
global enhancement of the image but there are obvious
drawbacks in the application process [24], for example: the
weight of each scale are fixed values without rich gradi-
ent information; the traditional retinex algorithm takes it
for granted that the space illumination changes slowly, but
the brightness of image always mutates in the actual scene;
the Gaussian filtering does not have good performance in
edge preservation. It is necessary to improve the MSRCR
to adapt to low-light images collected under natural condi-
tions. The improved MSRCR algorithm pipeline is shown
in Figure 3.

We use the Gaussian filtering to obtain the rough illumi-
nation components of the original image and accurate illu-
mination components are acquired by guided filtering. With
improved Sobel edge detector, we optimize weight selection
for different scales of reflectance estimation.

The rough illumination components L,, ;(n € [1, N],i €

{R, G, B} representing the three color channels) and the
original image have the relationship as:

where M, (z,y) is the surround function, which is related
to the scales of Gaussian filtering.

The accurate illumination components Lj, ;, the original
image \S; and the rough illumination components L,, ; have
the relationship with guided filtering as:

L/n,i(xv y) = Fguided(si (x7 y)a Ln,i(z7 y)a Tn, 6) (6)

where Fjiqeq is the guided filtering function, S; is the
guidance image, L, ; is the filtering input image, r,, is the
scale and € is a regularization parameter.

Then the logarithmic reflectance image of can be rewrit-
ten as:

Ri(z,y) = S0 W, log[Si(x,y)] — log[L}, ;(z,y)] (7)

where W, ; is the parameter related to the Sobel edge de-
tector. The improved MSRCR method makes up for the
inherent shortcomings of the MSRCR and exerts an excel-
lent level in the image enhancement of the DARK FACE
dataset. Especially in the preservation of face details, it has
advantages that other methods cannot match.
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3.2. PyramidBox face detection module

Anchor-based object detection frameworks with sophis-
ticated design of anchors have been proved effective to han-
dle faces of variable scales [30, 22, 26, 42]. The architec-
ture of PyramidBox, as shown in Figure 4, uses the same
extended VGG16 backbone and anchor scale design as
S3FD [42], which can generate feature maps at different lev-
els and anchors with equal-proportion interval. Low-level
FPN is added on this backbone and the Context-sensitive
Predict Module is used as a branch network from each pyra-
mid detection layer to get the final output [33]. The details
of each component in the architecture are as follows.

1) Scale-equitable Backbone Layers.

Use the base convolution layers and extra convolutional
layers in S3FD [42] as backbone layers, which keep layers
of VGG16 from convl_1 to pool5, then convert fc6 and fc7
of VGG16 to conv_fc layers. Then add more convolutional
layers to make it deeper and the feature pyramid of the orig-
inal image con be extracted in this layers.

element-wise
product

A

(a) Feature Pyramid Net.

Concatenate U

(b) Context-sensitive Predic-
tion Module.

Face Cls} Face Reg JHead Cls | Head Reg |Body Cls} Body Reg

| PyramidBox Loss Layer Ij

(c) PyramidBox Loss Layer.

Figure 5. Details in the architecture of PyramidBox algorithm.

2) Low-level Feature Pyramid Layers.
The low-level feature with highresolution plays a key
role to improve the performance of face detector to han-

dle faces of different scales. Many state-of-the-art works
construct different structures in the same framework to de-
tect faces with variant size, where the high-level features
are designed to detect large faces while lowlevel features
for small faces [26, 42, 40]. Faces that are small, blurred
and occluded have different texture feature from the large,
clear and complete ones, so high-level features play a very
limited role in the small faces detection. At the same time,
the noise impact of high-level features cannot be ignored,
as they are usually extracted from regions with little face
texture.

In the PyramidBox algorithm, by constructing the Low-
level Feature Pyramid Network (LFPN) and the top-down
structure from a middle layer, receptive field would be close
to the half of the input size, instead of the top layer. The
structure details of each LFPN block are shown in Figure
5(a).

3) Context-sensitive Predict Layers.

In order to jointly enjoy the gain of wider and deeper
network [32], Context-sensitive Predict Module is the most
essential part in the PyramidBox algorithm. SSH [26] in-
creases the receptive field by placing a wider convolutional
prediction module on top of layers with different strides and
DSSD [6] adds residual blocks for each prediction module,
as shown in Figure 5(b). In the Context-sensitive Predict
Module, the PyramidBox algorithm replaced the convolu-
tion layers of context module in SSH by the residual-free
prediction module of DSSD to reap all the benefits of the
DSSD module approach while remaining rich contextual in-
formation from SSH context module. At the same time, it is
novel to apply the max-out background label on both posi-
tive and negative samples to reduce the false positive (FP)
rate of small nagatives and improve the problem of small,
blurred, or occluded faces that are prone to appear in images
in low-light environments. The design details are shown in
Figure 5(c).

4) PyramidBox Loss Layers.

There are a series of pyramid anchors to supervise the
task of classification and simultaneously for each target
face. In the PyramidBox Loss Layers, We determined in
the experiment to use focal loss for classification and bal-
anced L1 loss for regression. Subsequent experimental data
proves that this configuration is reasonable and shows the
best performance on the DARK FACE dataset.

3.3. Multi-scale test module

The size of the image will greatly affect the performance
of the model. For low-light face data collected under ex-
tremely low-light conditions, neither the size of the target
face nor the quality of the image can be well guaranteed.
Therefore, the input of multi-scale images can very cleverly
average the differences and output multiple results of mod-
els can be obtained by adjusting the input size of the image.
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Soft-NMS [2] is an algorithm which decays the detection
scores of all other objects as a continuous function of their
overlap. For the multiple output of models, the basic idea of
the Soft-NMS is used for further processing to get the final
prediction result.

In the object detection task, if a bounding box has a very
high overlap with detection box M, it should be assigned a
very low score, while if it has a low overlap, it can maintain
its original detection score. Out of this consideration, Soft-
NMS propose a modification to the traditional greedy NMS
algorithm [4, 34, 2]. It decrease the detection scores as an
increasing function of overlap instead of setting the score
to zero as in NMS. Soft-NMS can better process the over-
lapping detection areas, especially the detection results of
multiple models in the same area, and improve the accuracy
of the final result.The following pseudocode Algorithm 1
shows the procedures of the Soft-NMS.

Algorithm 1: The pipline of the Soft-NMS
algorithm[2].
Input: B = {b1,...,bn},S = {s1,..,sn };
B is the list of initial detection boxes;
S contains corresponding detection scores.
begin
D« {};
while B # empty do
m < argmax S ;
M < by
D+ DUM,
B+ B—-M,;
for b; in B do
‘ i < 8; f(iou(M,b;);
end

end
return D, S;

end

4. Experiments
4.1. Setup

1) Dataset and metric

The DARK FACE dataset is the most commonly used
low-light face detection dataset and we use it as our testbed.
It is composed of 6,000 images taken in under-exposure
condition where human faces are annotated by human with
bounding boxes for training and validation, and 9,000 im-
ages taken with the same equipment in the similar environ-
ment without human annotations. It also provide a unique
set of 789 paired lowlight/normal-light images captured in
controllable real lighting conditions which can be used as
parts of the training data. The training and evaluation set

includes 43,849 annotated faces [41, 36]. Table 1 presents a
summary of a few common low-light face detection image
datasets.

Table 1. Comparison of low-light face detection image datasets.

Dataset Training Testing
Image Face Image Face
ExDark[23] 400 - 209 -
UFDDI[25] - - 612 -
DARK FACE 6,000 4,3849 4,000 37,711
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Figure 6. Face resolution and face number distribution in training
set.

For the images in the dataset, the resolution is 1,080 x
720. Figure 6 shows the distribution of the number of faces
and resolution in the 6,000 images of the training and 4,000
for testing (since the original test set is withheld, we use the
publicly available 100 test images as our test set). There are
usually 1 to 20 annotated faces in a single image and the an-
notated faces have large scale variance, ranging from 1x2
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to 335 %296, but majority are concentrated in the small area.
From the statistics, we know that the final performance of
the algorithm depends largely on the detection results of
small resolution face in the DARK FACE dataset.

Face detection performance is usually measured by mean
Average Precision (mAP), and it is also the most important
basis for us to evaluate algorithms.

2) Optimization

As for the parameter initialization, the size of the input
image is 480x480, batch size is set to 8 and our Pyra-
midBox algorithm uses the pre-trained model on WIDER
FACE [39] to initialize the weights. The initial learning rate
Ir is set to 10~% and it is reduced by 10 times every 30
epochs, with a total of 100 epochs are trained.

4.2. The effect of low-light image enhancement

We test the improved MSRCR method in the DARK
FACE dataset. At the same time, the RetinexNet [36] and
EnlightenGAN [ 4] method are used to compare their per-
formance on mAP(0.5) indicator. The image processed by
the three methods is shown in Figure 7. Through the com-
parison, it is easy to see that the improved MSRCR method
greatly improves the clarity of the image while ensuring that
the image color is not distorted. By observing the human
face area, the improved MSRCR method can still exert a
powerful improvement effect on faces with small resolution,
which is a great help for subsequent face detection tasks un-
der extreme conditions.

Table 2 shows the face detection mAP(0.5) obtained by
using different enhancement method. The data in the table
shows that the improved MSRCR method can play the best
enhancement effect on the DARK FACE dataset.

Table 2. Comparison of mAP(0.5) obtained by different low-light
image enhancement methods.

. . improved
Method RetinexNet EnlightenGAN MSRCR MSRCR
mAP(0.5) 69.8 72.7 75.6 76.2

4.3. The choice of loss functions

Different loss functions will have a great impact on the
training process and results of the model. When detecting
faces with very low resolution, the original loss function of
the PyramidBox method can no longer guarantee the best
performance of the model. For different tasks, it is neces-
sary to test and find the better loss functions for the face
detection under extremely low-light conditions.

In the original PyramidBox algorithm, cross entropy loss
and smooth L1 loss are respectively the classification and
regression loss functions. On the basis of preprocessing the
image, we choose cross entropy loss and focal loss [21] as
the loss function of the classification task, smooth L1 loss

(a) Original. (b) EnlightenGAN.

(c) RetinexNet.

(d) improved MSRCR.

Figure 7. Three different low-light image enhancement methods.
Enlarge the concentrated area of the face to compare the effects of
different methods.

and balanced L1 loss [27] as the loss function of the regres-
sion task, cross-validate and obtain the optimal model from
it. Table 3 shows the test results of the four groups of ex-
periments.

According to the data in the table, we finally choose fo-
cal loss as the loss function of the classification task and
balanced L1 loss as the loss function of the regression task
to ensure that the model can perform best in low-resolution
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Figure 8. The final detect results. Enlarging the dense areas of faces, it can be seen that low-resolution faces can also be well detected.

Table 3. Compare the mAP(0.5) obtained by four different loss
function selection methods.

Clasmﬁcapon cross entropy | cross entropy focal loss focal loss
loss function loss loss

Regression smooth L1 balanced L1 smooth L1 balanced L1
loss function loss loss loss loss
mAP(0.5) 76.2 77.1 779 79.2

face detection tasks.

4.4. Multi-scale testing and Soft-NMS

There are various face sizes in the dataset. The multi-
scale testing method can use images of different scales to
make full use of training samples and equalize the face de-
tection results of different scales as much as possible, so as
to ensure that faces with small resolutions are used to fur-
ther improve the performance of the model. The Soft-NMS
method [2] is used to integrate the test results of different
scales in the most reasonable way, and finally get the output
results we need.

Table 4. Comparison of mAP(0.5) obtained by different scale se-
lection.

2-2.3-2.5 2-2.5

Scale selection 0.5-1-2 1-1.5-2 2-2.5-3 273 2753

mAP(0.5) 78.0 719 82.3 81.8 82.0

It can be seen in Table 4 that if different scales are se-
lected for testing, the results of mAP(0.5) are also differ-
ent. In experiments, we determined the optimal scale choice

i i

and obtained the final detection results on the DARK FACE
dataset. Part of the result is shown in Figure 8.

The leaderboard is illustrated in Table 5, where we show
top 3 contestants in the UG2+ 2021 Trackl.2 - Face De-
tection in the Low-Light Condition. The result proves the
effectiveness of our method again.

Table 5. Leaderboard of UG2+ 2021 Track1.2 - Face Detection in
the Low-Light Condition in the test stage.

Team TAL-ai DeepBlueAl New Horizons Ours

mAP(0.5) 74.89 71.65 69.71 82.3

5. Conclusion

This paper proposes an advanced face detection method
under extremely low-light conditions. The highlights are
mainly reflected in: the use of improved MSRCR method to
enhance low-light face images, use the PyramidBox method
for face detection with the innovative loss functions, multi-
scale testing and use the Soft-NMS method to complete the
results integration. Integrating these techniques, this paper
achieved high accuracy and obtained excellent results in the
face detection task of the DARK FACE dataset.
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