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1. Implementation Details of KernelGAN &

ZSSR.

We used the default settings and hyperparameters pro-

vided by KernelGAN [1] and ZSSR [5]. For KernelGAN,

the estimated downscaling kernel size is set to 13× 13 and

the input image is cropped to 64× 64 before kernel extrac-

tion. The kernel is extracted after 3000 iterations using the

Adam [3] optimizer with learning rate set to 0.0002, β1 set

to 0.5 and β2 set to 0.999. For ZSSR, the input LR im-

age and the provided estimated kernel is used to generate a

downsampled variant of the LR image. The resulting image

pair is then used to train the model using the Adam opti-

mizer starting with learning rate set to 0.001 with β1 = 0.9
and β2 = 0.999. For more details, please refer to the pro-

vided repository1.

2. Architecture of DAN & EDVR

A more detail architecture of our model experimented

in Sec. 5 of the main paper is shown in Fig. 1. Notably,

the features of the HR frames are concatenated with the LR

features in each CRB block of DAN [4] and we utilized

the existing channel attention layer (CALayer) for tempo-

ral kernel estimation. During the last iteration, the LR

features, which were conditioned on the input frames and

their estimated kernel, were fed into the temporal blocks of

EDVR [6] for temporal alignment, fusion, and restoration.

In particular, the PCD module follows a pyramid cascading

structure, which concatenates features of differing spatial

sizes and uses deformable convolution at each respective

pyramid level to the aligned features. The TSA module then

fused these aligned features together through both temporal

and spatial attention. Specifically, temporal attention maps

are computed based on the aligned features and applied to

these features through the dot product before concatenating

and fusing them using a convolution layer. After which, the

*Equal contributions.
1https://github.com/sefibk/KernelGAN

fused features are then used to compute the spatial attention

maps which are then applied to these features. For more

details, please refer to EDVR [6].

3. Implementation Details of DAN & EDVR.

For training, we used scaling factor ×4, input patch size

of 100×100, and set N = 1, i.e. considering sequences of

3. We set N = 2 to highlight the kernel mismatch on mo-

tion compensation as shown in Fig. 4. The batch size was

set to 4, and all models were trained for 300 epochs, using

the Adam optimizer [3] (β1 = 0.9 and β2 = 0.999). The

initial learning rate was set to 1 × 10−4, and decayed with

a factor of 0.5 at every 200 epochs. Following DAN [4], we

ran for 4 iterations (J = 4) and used L1 loss for both ker-

nel estimation and video restoration across all our models

in every iteration. When multiple frames were utilized for

temporal alignment, we applied a scaling factor of 1/2N to

weight the loss from supporting frames. Following previ-

ous works [6, 8], PSNR and SSIM [7] were computed after

converting each frame from RGB to Y channel and trim-

ming the edges by the scale factor. All experiments were

run on NVIDIA 1080Ti and 2080Ti GPUs. Temporal ker-

nel consistency of our test benchmark, REDS10, is shown

in Fig. 2. Similar to Fig. 1 in the main paper, we quantified

kernel temporal change by measuring the sum of absolute

difference between consecutive kernel PCAs. In particular,

video sequences such as 016 and 018 have high temporal

kernel consistency and sequences such as 000 and 014 have

low temporal kernel consistency.

4. Additional Results

We provided additional results here due to space limita-

tions in the main paper. Fig. 3 provides additional examples

for Fig. 3 of the main paper, highlighting that using a fixed

kernel to upscale all the frames in a video can result in infe-

rior restoration outcomes as compared to using a per-frame

kernel even without incorporating temporal frame informa-

tion. Likewise, Fig. 4 shows the additional examples for
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Figure 1: Detailed architecture of our model experimented in Sec. 5 of the main paper.
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Figure 2: Temporal kernel consistency of videos in our

REDS10 benchmark, measured by kernel PCA changes for

adjacent frames in the videos. Kernel changes are repre-

sented by solid dots while boxplots show distributions.

Fig. 4 of the main paper, underlining that the use of ex-

plicit motion compensation in previous works for temporal

alignment results in more errors when applied to real-world

videos. Fig. 5 and Fig. 6 provides additional qualitative

examples comparing our multi-frame SR model with pre-

vious multi-frame SR and blind image-based SR models on

REDS10 and real-world videos respectively. Lastly, we pro-

vided a sample video along with this document.
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Figure 3: Additional Examples of consecutive frames in real-world videos taken from Something-Something [2] dataset

upscaled using a fixed kernel (top in each example), and a different per-frame kernel (bottom in each example). Kernels are

estimated using KernelGAN [1] and the frames are restored using ZSSR [5].
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Figure 4: Additional example aligned frames at time step t− 2, t− 1, t+ 1, t+ 2 with their reference frame at time step t.
The aligned frames are oversmoothed and blurred due to kernel mismatch for per-frame kernels found in real-world videos.

In comparison, using a fixed downsampling kernel at every time step, which does not hold for real-world videos, leads to

better motion compensation. Zoom in for best results.
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Figure 5: Qualitative comparison among existing models, along with bicubic upscaling, on our benchmark test sequences.

Zoom in for best results.
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Figure 6: Real-world qualitative comparisons among existing models, along with bicubic upscaling. Zoom in for best results.

Note that there is no ground-truth available.


