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Abstract

The broad availability of computational resources and
the recent scientific progresses made deep learning the
elected class of algorithms to solve complex tasks. Besides
their deployment, two problems have risen: fighting bi-
ases in data and privacy preservation of sensitive attributes.
Many solutions have been proposed, some of which deepen
their roots in the pre-deep learning theory. There are many
similarities between debiasing and privacy preserving ap-
proaches: how far apart are these two worlds, when the
private information overlaps the bias?
In this work we investigate the possibility of deploying de-
biasing strategies also to prevent privacy leakage. In par-
ticular, empirically testing on state-of-the-art datasets, we
observe that there exists a subset of debiasing approaches
which are also suitable for privacy preservation. We iden-
tify as the discrimen the capability of effectively hiding the
biased information, rather than simply re-weighting it.

1. Introduction
In the latest years Deep Learning (DL) models have

received a huge interest from the research community. The
determinant factor towards such a huge success certainly
lies in the recent deployment of high-performance hard-
ware resources (like TPUs), the relative easiness of training
complex models by simply minimizing a global objective
function through gradient descent-based approaches, and
the typical broad data availability. Overall, deep models
are considered as “universal problem solving tools” [36].
However, these models show vulnerabilities towards pri-
vacy preservation in data: model-inversion attacks are able
to retrieve sensitive information from models trained to
solve some specific tasks [29]. In order to discipline AI for
data privacy, the European Union is currently drafting the
General Data Protection Regulation (GDPR) [1], defining
a set constraints that DL models must satisfy towards
guaranteeing data privacy.

The problem of data privacy in Artificial Intelli-
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Figure 1: Is there some debiasing technique which is also
privacy-preserving?

gence (AI) based algorithms deepens its roots before
the vast uprising of DL models, providing solutions to
this problem proposing approaches when aggregating
data like K-anonymity [25, 37], at training like differ-
ential privacy [11, 19, 30, 35, 44] and homomorphic
encryption [15, 32] and at inference time like information-
theoretic privacy [17]. Of course, these approaches have
also been successfully deployed in DL scenarios, proposing
a large quantity of variants.

Focusing on guaranteeing privacy at training time, we
find approaches working on the input of the trained model
(meaning that the private features are removed at the source
itself), on the output (meaning that the information is
tentatively hidden at the output of the model) or on the
various update steps of the model itself, introducing noise
which de-correlates the private information. Looking at
this categorization for the approaches guaranteeing privacy
in DL, we observe significant resemblances with state-of-
the-art debiasing approaches: how different debiasing is
from guaranteeing data privacy, when the bias overlaps the
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feature we desire to keep private?

In this work we investigate differences between privacy-
preserving and debiasing techniques, defining conditions
for which a debiasing approach can be also used in a
privacy-preserving scenario. In particular, we conduct
a study on a synthetic dataset where we have direct and
noiseless control on the correlation between features we
desire to keep private and target, comparing four different
debiasing representants. We observe that, despite the
semantic closeness of the the two concepts, not all the
debiasing approaches can also be deployed for privacy
preservation, providing insights for the outcomes. We also
conduct experiments on real dataset, validating the results
achieved on the synthetic dataset. The key point of this
work is not to glorify debiasing strategies over the privacy
preserving ones, but to bridge these two world, showing
that some debiasing techniques can also be used for privacy
preservation (hence, the evaluation of the effectiveness of
debiasing approaching over privacy preservation ones is
out of the scope of this work).

The rest of the work is structured as follows. In Sec. 2 we
provide an overview over some of the most important pri-
vacy preservation approaches. Then, in Sec. 3 we provide
also a review over the debiasing categories of algorithms,
selecting four candidates and addressing our testing setup.
In Sec. 4 we perform an empirical evaluation and we ad-
dress some considerations over the nature of the tested debi-
asing algorithms and, in Sec. 5, the conclusions are drawn.

2. Privacy in deep learning
Privacy-preserving approaches ideally aim at hiding

some information, making it un-recoverable (or difficult
to recover) from a potential attacker. The concept of
privacy-aware learning is not novel in machine learning.
One of the very first works in such an area was published
in the far 1965 by Warner [41]. In particular, they were
suggested privacy-preserving methods for survey sampling.
Following this path, in the 70s many works have been
proposed on different areas, like census taking and analysis
of tabular data by Fellegi [13]. Very recently, thanks to the
increase of computational capabilities, many works have
been proposed on privacy-preserving in computational
frameworks. We can divide these into the following
categories.

Data anonymization. These approaches address the
problem of collecting data from many different sources
making impossible to beck-tracing their source. To these
approaches, the most common approach, especially in the
medical domain, we find vanilla data anonymization: this

simple approach consists in simply hiding the sensitive
metadata information consisting the information to be kept
private, according to the most recent GDPR [1]. Such
data cleaning procedure is standard for releasing medical
imaging, where the original DICOM file format, by stan-
dard, contains sensitive information for the patients, like
name, birth date and gender of the patient. However, this is
certainly not sufficient to prevent back-tracing information:
Narayan and Shmatikov, for example, were able to recover
sensitive anonymized information from the Netflix prize
dataset [29].

K-anonymization. More advanced and safe data aggre-
gation approaches consist, for example, in guaranteeing
the so-called k-anonimity. Sweeney proposed a frame-
work for which anonymity of data is guaranteed when
compared to k − 1 others, and it is mainly thought to fight
re-identification, guaranteeing the redundancy of similar
features [37]. A large limit of this technique consists in
its low performance on high-dimensional data, which is a
common setup in DL scenarios.

Homomorphic encryption. This is a special category
of encryption which allows users to perform computation
directly on encrypted data, without the need of decrypting
those [15]. Despite such an approach, by definition, is
able to discourage mining of private information from the
attackers, its computational complexity is also very high,
limiting its deployment in real scenarios [32].

Multi-party computation. A current challenge for
deep learning, especially in the medical field, lies in the
impossibility of publicly sharing data. Due to physical,
ethical and legal constraints, it might happen data can
not leak outside the infrastructure where they have been
created [26]. Towards this end, federated learning-based
approaches are uprising: they consist in having the dataset
distributed across many infrastructures. Each of these train
independently a DL model and occasionally exchange
information about the trained model, which might involve
quantities like the model’s parameters or the gradients [22].
This approach, if achieved in a round-robin fashion,
averages naturally the information related to the private
features. A major drawback of this approach, however,
lies in the need for intensive communication between
the infrastructures, which significantly slows the training
process [28].
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Differential privacy. Differential privacy is a very gen-
eral approach to withhold private information from individ-
uals in a set of data. In general, we can say that if data
belonging to different individuals (or in our context, be-
longing to different private classes) are sufficiently close to
be each other indistinguishable, the private information can
not be retrieved. Behind this very simple yet effective idea,
a number of approaches have been proposed and can be cat-
egorized in four groups.

• Perturbing the input data. Introducing a proper per-
turbation to the data themselves can hide the private
target information. To this class belong centralized ap-
proaches [11] and recently, de-centralized alternatives
have been proposed as well [12, 21].

• Perturbing the output of the trained model. This ap-
proach consists in applying a sufficiently large noise
to the output of the model such that the samples be-
longing to different private classes are each other indis-
tinguishable [19]. However, efficiently computing the
noise to be applied in a high-dimensional scenario is
not straightforward due to the non-convexity of the ob-
jective function: to this end, convex proxies have been
recently proposed to overcome this obstacle [30, 31].

• Perturbing the gradient update. Applying a specific
noise to the update signal for the model is possible
to enhance differential privacy in the model. Towards
this approach, many proposals, ranging from the de-
ployment of a distributed framework [35] to the design
of momentum-based optimizers accounting for the pri-
vate class membership [2] have been proposed. The
main drawback of these strategies lies in the low con-
vergence and high computation complexity required.

• Perturbing the target labels. Finally, deploying noise
to the target labels for the learning task can also be de-
ployed to hide the private information, despite such an
approach is mainly meant to boost gradient perturba-
tion approaches [43, 44].

3. Debiasing in deep learning
In this section we first provide an overview over standard

approaches taken for debiasing, then we bridge debiasing
and privacy preserving algorithms and finally we descrive
the overall test setup to empirically evaluate the effective-
ness of debiasing strategies to also preserve privacy.

3.1. Overview

In the recent years a large number of debiasing ap-
proaches have been proposed: we can categorize them as
follows.

De-biasing from the data source. It is known that
datasets are typically affected by biases. In their work,
Torralba and Efros [40] show how biases affect some of the
most commonly used datasets, drawing considerations on
the generalization performance and classification capability
of the trained ANN models. Following a similar approach,
Tommasi et al. [39] conduct experiments reporting dif-
ferences between a number of datasets and verifying how
final performances vary when applying different de-biasing
strategies in order to balance data. Working at the dataset
level is in general a critical aspect, and greatly helps in
understanding the data and its structure [10].

Ensembling approaches. A typical debiasing strategy
consists in training a pool of model and evaluating as an
outcome a common score between these. The training strat-
egy in this case can be addressed in many different ways.
For example, ReBias [6] consists in solving a min-max
problem, where the target is to promote the independence
between the network prediction and all biased predictions.
This comes at the cost of training multiple models and to
solve the non-trivial min-max problem.

Identifying the known unknowns. Towards enhancing
robustness in DL models to biases, it is uprising the
challenge of finding the so-called “known unknowns” [5].
These consists in features unintentionally caught by the
DL models which unexpectedly drive the model towards
having a high confidence score over a wrong outcome.
Identifying the “known unknowns” [5] and optimize on
those using a neural networks ensemble is the approach
proposed in LearnedMixin [9].

De-biasing within the deep model. Another approach
attempts to achieve debiasing at training time, within the
trained model itself, without the need to train extra models.
This approach includes the inclusion of some corrective loss
term. This can be exploited at two different levels.

• Correcting the loss. Some specific re-weighting of the
loss function can improve generalization capability of
the model. Recently, RUBi has been proposed [8],
where logit re-weighting is proposed to lower the bias
impact in the learning process.

• Regularizing on the model’s bottleneck. Typically, in
the DL models, it can be identified some bottleneck
layer, where the dimensionality of the extracted fea-
tures is minimal. In such a space, some regulariza-
tion approach on the features is possible: for example,
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Table 1: Similarities between privacy preservation strate-
gies and debiasing approaches.

Privacy preserving Debiasing

Data anonymization Debiasing from data source
K-anonymization Identifying known unknowns
Multi-party Ensembling
Differential privacy Debiasing from data source

Debiasing within the deep model

EnD [38] proposes a regularization term, where biased
features are each other disentangled, while the unbi-
ased target ones are, on the contrary, entangled.

3.2. Relationship between debiasing and privacy
preservation

From a high-level view, there are many resemblances be-
tween the privacy preserving approaches discussed in Sec. 2
and typical debiasing strategies, reviewed in Sec. 3.1.
Let us define xi as the input data for our DL model and
T (xi) as the target class associated to xi. We can identify
further attributes of the data, depending on the context:

• for debiasing purpose, we indicate with B(xi) the bias
label associated to xi. This indicates any attribute (e.g.
gender) which constitutes a bias in the training data;

• for privacy preserving purpose, we indicate with
P(xi) the private class label associated to xi. This
can represent any private attribute (e.g. identity).

Given that in this work we aim at analysing the usage of
debiasing techniques in privacy preserving contexts, we as-
sume that these two notions are equivalent. Hence, from
now on, we will refer to P(xi) only.

Looking at approaches directly working at the data
source xi, data anonymization strategies and differential
privacy (where input is perturbed) share similar concepts to
those exploited within the debiasing at the source ones. In
particular, in both cases the input data xi is altered, preserv-
ing the information related to T (xi) but erasing (in the case
of privacy preservation approaches) or re-weighting (for de-
biasing approaching) the information related to P(xi) .
K-anonymization, in a broad perspective, resembles the
research for unknown unknowns: if non-trivial common
features between biased data can be found, then we can
say there are “known unknowns”, which is solved when
these data are each other confused. Similarly, in K-
anonymization there is an explicit constraint on the number
of samples to be compared to look at these correlations.
Another interesting analogy builds-up between multi-party
computation and ensembling approaches. In both cases, a
pool of models is trained and they are deployed altogether

at inference time. However, while in multi-party computa-
tion data are typically data de-centralized, ensembling ap-
proaches allow data centralization. The two approaches
meet under the federated learning roof, where multiple DL
instances are trained in parallel, and occasionally synchro-
nized.
One of the broadly-used approach for privacy preservation,
differential privacy, meets debiasing within the deep mod-
els approaches with significant similarities. Indeed, adding
regularization constraints at training time for the DL model,
as a general concept overlaps differential privacy strate-
gies, where perturbation on the output/labels/gradients is
applied [7, 20]. In this case, however, the difference is sub-
tle. Differential privacy confuses two examples such that ,
if P(xi) = P(xj), the probability of recovering such an
information is as low as some ε. On the contrary, debiasing
within the DL model strategies reweight/remodel correla-
tions between data, not necessarily wiping-out the informa-
tion related to the bias class membership.
An overview of the resemblances between privacy preserv-
ing strategies and debiasing is visualized in Table 1. Over-
all, we can say that while privacy preserving approaches
erase or hide some information to prevent an attacker can re-
cover it, debiasing approaches reweight it. Are there debias-
ing techniques which completely remove the private infor-
mation? We have selected four debiasing techniques, repre-
senting the macro-categories when deploying a training for
a model, as discussed in Sec.3.1:

• LearnedMixin [9] as a technique to identify known un-
knowns;

• RUBi [8] for debiasing within the deep model, adding
a corrective term to the loss.

• ReBias [6] as ensembling approach;

• EnD [38] for debiasing within the deep model, regu-
larizing the bottleneck.

3.3. Testing framework

In order to assess the presence/absence of private in-
formation on the trained DL models, we design a model
inversion-like and membership inference strategy. In such a
frame, the attacker attempts to infer some attributes or pri-
vate class membership from the output of a DL model, or
to exactly reconstruct the input [42]. Hence, our general
framework consists of two main steps.

1. Train the model. In this step, we train the DL model
(Fig. 2a). In this phase, standard learning strategy is
used, and eventually a debiasing strategy can be de-
ployed besides training, attempting to hide the infor-
mation related to P(xi)∀i. In this work, we name the
accuracy measured on the target classes Target Accu-
racy.
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Figure 2: Standard training on some target feature, like hair
color recognition (a), gender membership recovery (b) and
input reconstruction (c). In the image, in green are the
layers deployed at training time (where parallelograms are
convolutional layers while the rectangular box is a fully-
connected layer), in red the layer trained by the attacker to
obtain the private information from the bottleneck layer and
in blue a plain reshaping layer.

2. Attack. After train is completed, an attacker attempts
to recover the information of P(xi). This is typically
conducted at the output of the model. Considering that
most of the typically deployed DL models do not ex-
plicitly have a non-linear activation function at their
output (softmax’s effect is of mere normalization in
range (0; 1), hence to retrieve the top-1 class it is suf-
ficient to find the maximum value of the logits), the
classification fully-connected layer is a linear mapping
from the previous layer’s output (we name it bottle-
neck layer). Hence, we extract the output zi from the
bottleneck layer and we train a classifier to retrieve
P(xi) (Fig. 2b). We choose to address the attack on
zi because its features are typically richer and the di-
mensionality is still sufficiently low. We indicate the
accuracy measured on the private classes with Private
Class Accuracy. Besides the private class membership,
we can also attempt to recover the original input xi us-
ing a similar approach as proposed in [14] (Fig. 2c).

Figure 3: Biased-MNIST dataset: the background col-
ors highly correlate with the digit classes, according to the
value of ρ ∈ [0.1; 1.0] (the higher, the most the correlation).

4. Experiments

In this section, we present the experiments we con-
ducted using different debiasing techniques in order to as-
sess whether they can also prevent private information leak-
age. We perform our experiments on four datasets: Biased-
MNIST, CelebA, IMDB Face dataset, SIIM-FISABIO-
RSNA.1

Setup All the following setups are taken from the cited
known literature, which we also take as as a reference.
For Biased-MNIST, we use the network architecture pro-
posed by Bahng et al. [6], consisting of four convolutional
layers with 7× 7 kernels. We use the Adam optimizer with
a learning rate of 10−4, a weight decay of 10−4 and a batch
size of 256. We train for 80 epochs. We do not use any data
augmentation scheme.
For CelebA and IMDB, we deploy a ResNet-18 model [16],
trained with a learning rate of 10−4 and a batch size of 256.
We train for 50 epochs. On IMDB, we follow [23, 38] by
binning the age values in the intervals 0-19, 20-24, 25-29,
30-34, 34-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-
100, proposed by Alvi et al. [3].
For SIIM-FISABIO-RSNA we split the dataset in a train-
ing set comprising the 85% of the scans, a validation set of
5% scans and a test set of the remaining 10%. We train
a DenseNet-121 model [18] to classify over two classes:
“Negative for Pneumonia” and “Typical Appearance”. The
training has been performed using SGD, with an initial
learning rate of 0.1, decayed by a factor 10 after no im-
provement over the validation set loss has been detected for
5 consecutive epochs. The training stops when the learning
rate drops below 10−3. We use batch size 16 with momen-
tum of 0.9 and weight decay of 10−4.

4.1. Color leakage in Biased-MNIST

As base benchmark, we employ the synthetic dataset
Biased-MNIST, recently proposed by Bahng et al. [6]. In
these experiments, our goal is to assess whether the color-
related information is leaked by the models. By using syn-
thetic data, which we have full control over, we are able to
perform an in-depth comparison of different techniques un-
der varying level of difficulty. This dataset is constructed

1The code is available at https://github.com/EIDOSlab/
bridging-debiasing-privacy-deep-learning.
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Figure 4: Biased-MNIST private class accuracy. The
closer a curve is to the origin of the polar plot, the better
the corresponding technique is at preventing private infor-
mation leakage.

from the MNIST dataset [24] by injecting a color into the
images background, as shown in Fig. 3. Each digit is as-
sociated with one of ten pre-defined colors, which will be
our bias/private feature. The correlation between a digit
and a background color is determined by the hyperparam-
eter ρ. For example, a value of ρ = 0.99 means that
a digit will have the same color 99% of the times. To
vary the level of difficulty in the dataset, we select ρ ∈
{0.990, 0.995, 0.997, 0.999}, as done in [6]. An unbiased
testing set is constructed following the same criterion, with
ρ = 0.1. Given the low correlation between color and digit
class in the unbiased test set, models must learn to classify
shapes instead of colors in order to reach a high accuracy.

Results First of all, we measure the accuracy on the digit
classification for all the techniques. As expected, the re-
sults obtained by a vanilla model heavily suffer from the
color bias, especially when ρ is higher (10.4% with ρ =
0.999, 33.4% with ρ = 0.997). All of the debiasing tech-
niques show an improvement with respect to the baseline
model, with EnD and ReBias showing the highest gap in
the most difficult setting (52.30% and 22.7% respectively,
with ρ = 0.999). We expect an attack to be trivial on a
vanilla model, and we also hypothesize that it could be pre-
vented by some of the debiasing techniques. Fig. 4 shows
the private class accuracy obtained by the linear classifier at
the different values of ρ. The vanilla model shows in fact
a significant leakage of color-related information, as the at-
tack reaches almost 100% accuracy in the higher range of ρ.
Surprisingly, not even RUBi manages to prevent an attack,
obtaining performances even worse than vanilla. Consider-
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Figure 5: Private class accuracy vs target accuracy.
Larger markers indicate higher values of ρ.

ing all of the difficulty settings, the techniques which better
prevent privacy leakages are LearnedMixin and EnD. In or-
der to rank the different techinques, in Fig. 5 we compare
the private class accuracy and the target accuracy. Debias-
ing algorithms which are able to avoid leakages while re-
taining (or improving) the target accuracy are found in the
top left portion of the plot. From this analysis, we find EnD
to be the best performing technique, followed by Learned-
Mixin and Rebias.

We now concentrate on the best technique (EnD), and we
further assess the absence of a privacy leakage by conduct-
ing a model attack, as pictured in Fig. 2c. Fig. 6 shows the
reconstructed images. When using a vanilla encoder, the
color is fully preserved (and the digit is transformed into
the corresponding training class). On the other hand, with a
EnD-regularized encoder, the digit information is preserved
while the color information is almost completely removed,
as it seems to be randomly guessed by the decoder.

4.2. Gender leakage from face images

Next, we focus on gender information leakage on real
facial images on two different tasks: face attributes classi-
fication and age prediction. For the first task, we employ
CelebA [27], a dataset of 202,599 images, which provides
40 binary attributes for every image. As target attributes,
we use the hair color and the presence of makeup. As pri-
vate class membership we use the gender attribute (male or
female). This choice is dictated by the fact that there is a
high correlation between these attributes (i.e. most women
have blond hair or wear heavy makeup in this dataset). For
age prediction, instead, we use the IMDB Face dataset [33].
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(a) (b) (c)

Figure 6: attack on Biased-MNIST: (a) ground truth images (b) decoder trained from a privacy leaking encoder (c) decoder
trained with a EnD-regularized encoder.

Even though CelebA provides an age attribute (Young), we
prefer IMDB as it provides a real age value, allowing for re-
gression tasks. This dataset contains 460,723 face images,
which besides age, are also annotated with gender informa-
tion. Conforming to [23, 38], 20% of the IMDB dataset
is used as test set, selecting samples with age 0-29 or 40+.
To introduce some kind of bias in the training data, the re-
maining data is then split into two training subset, named
extreme-biased (EB): EB1 which contains women aged 0-
29 and men with aged 40+, and EB2 which contains men
aged 0-29 and women 40+. An example of the EB1 and
EB2 training sets is shown in Fig. 7.

Results Results for the CelebA dataset are presented in
Tab. 2. As for the Biased-MNIST experiments, we ob-
serve an increase of the target accuracy when employing
EnD for both of the classification tasks. Compared to the
baseline, we also observe a significant decrease in the ac-
curacy of the attack. Considering that the provided gender
attribute is binary, an accuracy of 50% represents a random
guess by the attacker, meaning that there is no private in-
formation leakage. The same considerations apply to the
age regression task on the IMDB dataset. Tab. 3 shows
the results. Here, we obtain an accuracy of around 50%
on both the training sets. We further investigate the ef-
fect of the debiasing technique on the model, by analyz-
ing the distribution of the latent space of a vanilla model
compared to a regularized model. We fit a gaussian distri-
bution on the principal component of the embeddings com-
puted on the IMDB dataset. Fig. 8 shows the distributions.
We observe that, while in the vanilla model the two distri-
bution Nm (−0.42, 0.27), Nf (0.42, 0.47) are clearly sepa-
rate, they are almost overlapping in the regularized model
(Nm (−0.09, 0.93), Nf (−0.09, 0.91)).

Table 2: CelebA target accuracy (higher is better) and
private class accuracy (lower is better).

Task Method Target Private Class

Hair Color Vanilla 70.25 59.20
EnD [38] 91.21 50.00

Makeup Vanilla 62.00 80.56
EnD [38] 75.93 63.89

(a)

(b)

Figure 7: IMDB train splits: EB1 (a) and EB2 (b).

Table 3: IMDB target accuracy (higher is better) and pri-
vate class accuracy (lower is better). On age detection,
gender is guessed correctly 50% of the times, which is equal
to random guessing.

Split Method Target Private Class

EB1 Vanilla 77.17 82.36
EnD [38] 80.15 49.95

EB2 Vanilla 61.97 63.74
EnD [38] 78.80 50.05
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Figure 8: Gaussian fit on the principal component (PC) of the IMDB embeddings using a vanilla model (a) and a EnD-
regularized model (b).

Table 4: SIIM-FISABIO-RSNA target accuracy (higher
is better) and private class accuracy (lower is better).

Method Target Private Class

Vanilla 78.12 87.1
EnD (low) [38] 78.21 63.4
EnD (high) [38] 78.02 55.3

4.3. Gender leakage in medical data

We also test the capability of removing information
considered private on a medical dataset. SIIM-FISABIO-
RSNA is a dataset2 comprising more than 6k chest X-ray
(CXR) scans in DICOM format, anonymized according to
the current GDPR guidelines. For study purposes, however,
the metadata associated to these scans comprises informa-
tion about the gender, which will be used as private class.
The scans are converted using the meta-information con-
tained in the DICOM files, and rescaled to 448× 448 reso-
lution.

Results Results are provided in Tab. 4. In this case, for
EnD, we provide two different results: one is achieved with
a small weight for the regularization (specifically, it weights
over the 1% on the total objective function minimized - low)
while another has a higher weight (10% - high). Also in this
case we observe that from a vanilla approach we are able

2https://www.kaggle.com/c/
siim-covid19-detection/data

to recover the information about the gender with a good
accuracy (above 87%) while the effect of EnD drops as
the weight of the regularization term increases. Differently
from the previous scenarios, the performance in this case is
not significantly affected: this is explained from the natu-
ral disentanglement between gender and the given medical
task (presence of pneumonia and typical COVID presence).
However, the gender information is still naturally forwarded
to the bottleneck layer, which is postulated as plausible by
some works in the literature [4, 34].

5. Conclusion
In this work we have shed some light over the pos-

sibility of bridging debiasing and privacy-preserving ap-
proaches for deep learning. In particular, we have reviewed
some salient privacy preserving approaches and categoriz-
ing the most popular debiasing approaches, evidencing re-
semblances naturally rising between the two worlds. To
address our investigation, we have considered the special
case in which debiasing algorithms consider the private in-
formation as the bias for the learning problem. We have
conducted some empirical evaluations from which we evi-
denced that, under our constraint, there exists a non-empty
class of debiasing algorithms which can be deployed for
both purposes. In particular, if the given debiasing algo-
rithm is also able to hide the private information rather than
simply re-weighting it, then it can be successfully deployed
for privacy preservation. The investigation on whether the
sufficient condition also hold is left as future work.
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