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Abstract

Identifying and mitigating bias in deep learning algo-
rithms has gained significant popularity in the past few
years due to its impact on the society. Researchers argue
that models trained on balanced datasets with good repre-
sentation provide equal and unbiased performance across
subgroups. However, can seemingly unbiased pre-trained
model become biased when input data undergoes certain
distortions? For the first time, we attempt to answer this
question in the context of face recognition. We provide
a systematic analysis to evaluate the performance of four
state-of-the-art deep face recognition models in the pres-
ence of image distortions across different gender and race
subgroups. We have observed that image distortions have a
relationship with the performance gap of the model across
different subgroups.

1. Introduction

Over the past few years, there has been a growing focus
on understanding bias in deep learning models. Researchers
have attempted to realize the sources of bias and analyze
the performance of pre-trained deep models across differ-
ent demographic subgroups in face analysis problems (e.g.,
male and female are subgroups of gender) [5, 28]. It has
been shown that human bias incorporated during the col-
lection and curation of data [13], and imbalance in training
data distribution with respect to a particular subgroup [3]
are some of the potential sources of bias that lead to unfair
predictions. A model performing equally well across differ-
ent subgroups is considered to be an unbiased model [10],
while they are considered biased when the model favors one
subgroup over the other. In this research, we demonstrate
that an initially unbiased model may become biased under
certain scenarios such as distortions which raises the doubts
on models’ robustness.

Several researchers have analyzed the robustness of deep
models under image distortions and designed algorithms

(b)

Score: 0.86 Score: 0.81 Score: 0.74

Score: 0.84 Score: 0.76 Score: 0.64

𝜎 = 0.0 𝜎 = 2.0 𝜎 = 2.4

𝜎 = 0.0 𝜎 = 2.0 𝜎 = 2.4

G
1

, R
2

G
1

, R
1

(a)

Score: 0.85 Score: 0.80 Score: 0.75

Score: 0.84 Score: 0.76 Score: 0.67

𝜎 = 0.0 𝜎 = 2.0 𝜎 = 2.4

𝜎 = 0.0 𝜎 = 2.0 𝜎 = 2.4
G

1
, R

1
G

2
, R

1
V

er
if

ic
at

io
n

A
cc

u
ra

cy
 @

 0
.0

1
 F

A
R

V
er

if
ic

at
io

n
A

cc
u

ra
cy

 @
 0

.0
1

 F
A

R

Sigma Sigma

Figure 1. Effect of Gaussian blur on the performance of ResNet50
model across different (a) gender and (b) race subgroups. Ex-
tracted features of the blurred images are matched with the cor-
responding clear image using cosine similarity (1.0 is perfect
match). Variation in similarity score is shown in the top row. Bot-
tom row shows the verification performance.

to enhance robustness [8, 14, 15, 21]. However, none of
the studies analyze the effect of distortions on the perfor-
mance of deep models across different demographic sub-
groups. With recent incidents of biased prediction of deep
models towards particular demographic subgroups [4, 9],
this analysis is crucial to provide insights towards under-
standing bias in model prediction.

As shown in Figure 1, experiments conducted to eval-
uate the performance of face recognition across different
subgroups in presence of Gaussian blur show that the con-
fidence of recognizing images is lower for some subgroups
compared to others when the same intensity of ‘blur’ is ap-
plied. With the objective to unravel this effect with different
real world distortions, we investigate two key aspects:
1. Do unbiased model predictions become biased in pres-
ence of image distortions?
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2. How does the performance vary across different demo-
graphic subgroups when images undergo distortions?

We perform a detailed analysis to understand the reason
for the difference in the performance of the models across
different subgroups in the presence of distortions. Fur-
ther, we analyze the changes in the regions-of-importance
through feature visualization of the salient regions provided
by the models. Finally, we discuss some of the possible
solutions to overcome the problem of biased prediction of
deep models in the presence of image distortions.

2. Related Work
This section is segregated into studies related to (i) the

effect of image distortions on deep models and (ii) under-
standing bias.

2.1. Effect of Image Distortions on Deep Models

Karahan et al. [21] provided a systematic analysis to
assess the effect of image quality on face recognition per-
formance using three popular deep models. It is observed
that blur, noise, and occlusion significantly deteriorate the
performance of deep models. Dodge and Karam [8] have
shown that image distortions result in overall degradation in
the classification performance. Grm et al. [15] analyzed the
effect of image distortions on face verification performance
of four deep models using the LFW dataset [20]. The results
indicate that noise, blur, missing pixels, and brightness have
a significant effect on the overall model performance. Later,
RichardWebster et al. [32] studied the behavior of deep
models in the presence of image distortions through visual
psychophysics and have shown that visual psychophysics
makes face recognition more explainable. Two covariate re-
lated problems on unconstrained face verification are stud-
ied by Lu et al. [23]. First, the effect of covariates is ana-
lyzed and then it is utilized to improve verification perfor-
mance. It is observed that pose variations and occlusions
severely affect performance. Also, covariates such as age,
gender, and skin tone have shown impacts on performance.
Recently, Yang et al. [40] provided a detailed study of ob-
ject and face detection in poor visibility conditions.

2.2. Understanding Bias

In the recent literature, several studies have focused on
detection and mitigation of bias present in deep learning
models [12, 24, 37]. However, very few focus on the analy-
sis of this prevalent bias. In [4], the authors unveil the dis-
parity in the performance of commercial-grade gender clas-
sification systems based on phenotypic subgroups- lighter-
skinned males, darker-skinned males, lighter-skinned fe-
males, and darker-skinned females. In [6], analysis of real
and apparent age differences and its correlation with other
attributes is performed. In another work by Nagpal et al.
[28], the authors attempt to answer how bias is encoded in

facial recognition models. They perform analysis based on
state-of-the-art deep learning models and suggest how bias
encoded by models is comparable to human biases. Wang
et al. [38] highlight how balanced datasets are not enough
to ensure unbiased performance in deep learning models.
They further show how existing biases are amplified by
deep learning models in visual recognition tasks. In [5],
the authors analyze latent representation of facial images to
identify sources of bias. They show that protected attributes
like race play a role in biasing latent representations. Re-
cently in [35], the authors provide an in-depth analysis of
the correlation between the quality of face images and bi-
ased facial recognition systems. They show that the current
definition of face quality transfers bias from face quality as-
sessment systems to facial recognition systems for certain
subgroups. In [34], the authors focus on understanding the
feature space generated by deep models. Krishnapriya et al.
[22] highlight the issues related to face recognition perfor-
mance with varying skin tone and race. A detailed survey of
demographic bias in biometric systems is presented in [9].

3. Proposed Evaluation Framework

In this research, we start with the hypotheses that (i) im-
age distortions affect the performance of a model and cause
biased predictions, and (ii) the performance varies differ-
ently across different demographic subgroups when images
undergo real-world distortions. In order to validate and sub-
stantiate these hypotheses, the performance of pre-trained
deep models is evaluated with and without the presence of
distortions across different demographic subgroups. We an-
alyze the regions used by the models for recognition and ob-
serve whether the regions of interest remain consistent un-
der the effect of distortions. For this purpose, experiments
are performed for face recognition across gender and race
subgroups, using data corresponding to gender G1 (Male)
and G2 (Female), and race R1 (light skin color) and R2
(dark skin color). We have also analyzed the performance
of the models across the intersectional subgroups1 of gen-
der and race - {G1,R1}, {G1,R2}, {G2,R1}, and {G2,R2}.
For the experiments, four pre-trained deep face recogni-
tion models: (i) LightCNN-29 [39] (ii) SENet50 [19] (iii)
ResNet50 [18], and (iv) ArcFace [7] are used. Experimental
details are shown in Table 1. The details of the pre-trained
models are given in the supplementary file. This section
discusses the details of the datasets with the corresponding
protocols, image distortions considered in this research, and
the evaluation metrics.

1The performance of the models across the intersec-
tional subgroups is reported in the supplementary file at:
https://github.com/Puspitamajumdariiit/Unravelling-the-Effect-of-Image-
Distortions.
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Table 1. Details of the experiments for analyzing the performance
of face recognition models across gender and race subgroups un-
der the effect of distortions.

Dataset Demographic Subgroups Pre-trained Models

MORPH
G1, G2, R1, R2, {G1,R1},
{G1,R2}, {G2,R1}, {G2,R2}

LCNN-29, SENet50,
ResNet50, ArcFace

MUCT G1, G2
LCNN-29, SENet50,
ResNet50, ArcFace

3.1. Datasets and Protocols

Two publicly available constrained face recognition datasets
are used to analyze the effect of image distortions on the
performance of pre-trained models across different demo-
graphic subgroups. Constrained datasets are considered to
solely understand the effect of one type of image distortion
on the model performance across different subgroups.
MORPH dataset (Album-2) [31] contains more than 54K
images of 13K subjects. The dataset is pre-labeled with two
gender subgroups, Male (G1) and Female (G2) and six race
subgroups, White (R1), Black (R2), Hispanic, Indian, Asian,
and Other. The dataset is imbalanced with respect to differ-
ent subgroups. Therefore, equal subgroup-wise distribution
is ensured during the experiments.
MUCT dataset [25] consists of 3,755 images of 131 male
(G1) and 146 female (G2) subjects. For the experiments,
equal subgroup-wise distribution is ensured.
Protocol Details: For evaluation, face verification is per-
formed and the results are reported at 0.01 False Accept
Rate (FAR)2. Similar to the LFW dataset [20], we created
10 disjoint splits of image pairs, each having 300 positive
and 300 negative pairs. Here, the positive and negative pairs
in each split are created corresponding to each subgroup of a
demographic group (e.g. male and female are the subgroups
of the demographic group gender). The final evaluation is
performed on 12000 pairs with 6000 positive and 6000 neg-
ative pairs for each demographic group. Also, for analyz-
ing face recognition performance across gender subgroups,
race-wise equal distribution is ensured, and vice versa.

3.2. Details of Image Distortions

To emulate the real-world scenario of matching uncon-
strained probe images with constrained gallery images, dis-
tortions of different levels/intensities are applied to one of
the images in each pair (considering it as probe image) for
the verification experiments. The following six image dis-
tortions are considered for analysis. Sample images of the
MUCT dataset after applying image distortions of different
intensities are shown in Figure 1 of the supplementary file.
Occlusion: Occluded images are generated by occluding
seven facial regions: eyes, nose, mouth, forehead, left
cheek, right cheek, and area typically covered by protective

2Important experimental observations are presented in the main paper
and the remaining results are summarized in the supplementary file.

Table 2. Verification accuracy and DoB (%) across different gen-
der subgroups under occlusion corresponding to the MORPH
dataset. Accuracy of the models degrades significantly on occlud-
ing the eyes, nose, and mask regions.

LCNN-29 SENet50 ResNet50 ArcFace

E
ye

s G1 98.13 70.73 52.26 96.06
G2 92.00 48.43 48.10 86.10

DoB 4.33 15.77 2.94 7.04

N
os

e G1 94.23 74.56 71.11 92.40
G2 79.83 61.26 62.26 74.96

DoB 10.18 9.40 6.26 12.33

M
ou

th G1 99.96 96.83 97.93 99.76
G2 99.36 88.50 90.50 98.10

DoB 0.42 5.89 5.25 1.17

Fo
re

-
he

ad

G1 99.96 94.96 95.33 99.63
G2 99.53 83.30 87.70 99.06

DoB 0.30 8.24 5.40 0.40

L
ef

t
C

he
ek G1 100.00 96.30 96.90 99.80

G2 99.60 84.10 90.00 98.66
DoB 0.28 8.63 4.88 0.81

R
ig

ht
C

he
ek G1 99.96 96.67 97.36 99.86

G2 99.66 87.06 89.20 99.00
DoB 0.21 6.80 5.77 0.61

M
as

k G1 95.23 68.40 66.26 91.96
G2 82.36 54.10 37.06 69.00

DoB 9.10 10.11 20.65 16.24

face masks. We first detect 68 facial keypoints [33] which
are then utilized in selecting the region to be occluded.
Gaussian Blur: Images are blurred using Gaussian filters
with varying standard deviations σ. The size of the filter is
decided as 2× d(2σ)e+ 1. We vary σ from 2.0 to 4.0 with
a constant step size of 0.2.
Brightness: To adjust brightness of images, we apply oper-
ations as in [15]. Each image is multiplied by a brightness
factor β from 1.0 to 3.0 with a constant step size of 0.5 and
the values are subsequently clipped to lie between the image
pixel intensity range (0,255).
Gaussian Noise: To generate images with Gaussian noise,
an additive Gaussian noise vector with dimensions equal to
the size of the image is used. This vector is generated with
values of σ varying from 10 to 40, with a step-size of 10.
Salt and Pepper Noise: To generate images with salt and
pepper noise, an image pixel is set to zero with a probability
of p/2, or set to 255 with a probability of p/2 across all
image channels. The value of p is varied from 0.03 to 0.15
with a step size of 0.03.
Resolution: We reduce the resolution of the images using
cv2 library [27] in Python with INTER AREA interpola-
tion. The resolutions are varied as 96×96, 64×64, 48×48,
32× 32, and 28× 28.

3.3. Evaluation Metrics

To evaluate the effect of distortions on face recogni-
tion performance for different subgroups, deep features ex-
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Table 3. Verification accuracy and DoB (%) across different race
subgroups under occlusion corresponding to the MORPH dataset.
Occlusion of nose region significantly degrades the performance
of models for subgroup R2.

LCNN-29 SENet50 ResNet50 ArcFace

E
ye

s R1 97.80 62.50 54.03 95.20
R2 93.26 62.13 51.96 90.03

DoB 3.21 0.26 1.46 3.66

N
os

e R1 94.80 77.16 67.66 90.46
R2 85.40 55.36 69.53 80.76

DoB 6.65 15.41 1.32 6.86

M
ou

th R1 99.96 96.23 96.96 99.66
R2 99.86 97.43 97.53 99.46

DoB 0.07 0.85 0.40 0.14

Fo
re

-
he

ad

R1 99.96 95.20 95.83 99.86
R2 99.93 95.53 95.86 99.76

DoB 0.02 0.23 0.02 0.07

L
ef

t
C

he
ek R1 100.00 97.00 97.33 99.83

R2 100.00 99.00 99.00 99.83
DoB 0.00 1.41 1.18 0.00

R
ig

ht
C

he
ek R1 100.00 97.33 97.43 100.00

R2 99.96 98.80 98.93 99.90
DoB 0.03 1.04 1.06 0.07

M
as

k R1 93.23 78.33 49.53 87.76
R2 91.11 64.53 66.43 85.03

DoB 1.50 9.76 11.95 1.93

tracted using pre-trained models are matched using cosine
distance. Results are reported in terms of verification accu-
racy across different subgroups. Further, to measure the bias
in model predictions, we use Degree of Bias (DoB) [12],
which measures the standard deviation of accuracy (Acc)
across different subgroups. It is calculated as:

DoB = std(AccDj
) ∀j (1)

where, Dj represents a subgroup of a demographic group
D. High performance gap of the model across different
subgroups will result in high DoB, indicating higher bias
in the model prediction. DoB is commonly used for evalu-
ating bias in face recognition models [12, 36].

4. Analyzing the Effect of Distortions on Bias
in Model Predictions

In real-world applications of face recognition such as
surveillance, an input image undergoes some form of image
distortion during acquisition, transmission, and storage.
Existing studies have shown that distortions have a signif-
icant impact on the performance of deep face recognition
models. In this study, we move a step forward and try
to find how pre-trained models perform across different
gender and race subgroups under the effect of distortions.
It should be noted that the distortions considered in this
research are not added adversarially but occur due to
common environmental factors.
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Figure 2. Visualization of salient regions of the pre-trained Arc-
Face model for recognition.

Role of facial regions in recognition across subgroups
We occlude different facial regions to investigate their

importance in recognition of a particular subgroup. The ver-
ification performance across different gender subgroups is
shown in Table 2. The results indicate a significant degra-
dation in performance on occluding the eyes, nose, and fa-
cial region covered by a protective face mask. On the other
hand, occlusion of mouth, forehead, and cheeks does not
have a significant effect. Hence, we can conclude that eyes,
nose, and facial mask regions are the most discriminative
regions for recognition across gender subgroups. We also
observe that all the models perform poorly for subgroup G2
resulting in a large performance gap between G1 and G2
upon occluding the discriminative regions.

Similarly, for race subgroups (Table 3), eyes, nose, and
facial mask regions are found to be the most discriminative
regions. It is observed that the difference in performance
between R1 and R2 is maximum when the nose region is
occluded, for most models. The models perform poorly
for subgroup R2 on occluding the nose region. On the
other hand, occlusion of other facial regions almost equally
affects the performance of the models. This indicates
that nose is the most discriminative region for subgroup
R2. To further investigate the underlying reasons for our
observation, we have analyzed the regions used by the
models for discrimination through feature visualization.
The salient regions are obtained by interpolating the final
convolution layer filter responses and superimposing on
the input image. Figure 2 shows the visualization of salient
regions used for feature extraction by the ArcFace model.
It is observed that the model focuses predominantly on the
eyes and nose regions for feature extraction. For subgroup
R2, nose is observed to be the most salient region.

Does model performance degrade equally across sub-
groups in presence of Gaussian blur?
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Table 4. Verification accuracy and DoB (%) across different gen-
der subgroups with varying intensities of Gaussian blur corre-
sponding to the MORPH dataset. DoB increases with increasing
intensities of blur. * represents a relatively high disparity in model
performance across different subgroups on undistorted images.

σ LCNN-29 SENet50 ResNet50 ArcFace

0.
0

G1 100.00 97.90 98.27 99.90
G2 99.83 91.97 93.30 99.67

DoB 0.12 4.19* 3.51* 0.16

2.
0

G1 99.83 91.23 94.30 99.70
G2 99.40 79.40 89.80 98.07

DoB 0.30 8.37 3.18 1.15

2.
4

G1 99.73 84.53 91.47 99.30
G2 98.43 73.60 84.33 96.93

DoB 0.92 7.73 5.05 1.68

3.
0

G1 98.83 74.00 82.83 97.07
G2 96.40 61.70 73.40 92.67

DoB 1.72 8.70 6.67 3.11

3.
4

G1 96.87 60.83 74.10 93.70
G2 91.37 49.53 56.83 85.80

DoB 3.89 7.99 12.21 5.59

4.
0

G1 84.70 50.57 52.27 81.07
G2 72.27 35.57 33.77 63.53

DoB 8.79 10.61 13.08 12.40

Table 43 shows the variation in performance with vary-
ing intensities of blur across different gender subgroups. It
is interesting to observe that an initially unbiased model be-
comes biased in the presence of blur. The performance gap
between G1 and G2 increases as we increase the intensity
of blur. For instance, the accuracy for G1 and G2 is 100%
and 99.83%, respectively, on original images, correspond-
ing to the LCNN-29 model. However, it reduces to 84.70%
and 72.27% when degraded with blur with σ = 4.0. As a
result, the DoB increases from 0.12% to 8.79%, which in-
dicates that bias is introduced in model prediction. For the
MUCT dataset, a similar set of observations are drawn re-
garding the incorporation of bias in model predictions (Ta-
ble 3 of supplementary file). It is observed that the majority
of misclassification occurs in subgroup G2. On analyzing
the performance across race subgroups, we observe that the
performance gap increases between R1 and R2 with higher
performance degradation observed for subgroup R1 (Table
4 of supplementary file). We have also analyzed the per-
formance across the intersectional subgroups of gender and
race (Table 5 of supplementary file). A huge disparity in
model performance across different subgroups is observed.

To analyze how blur impacts the model’s ability to
recognize faces across different subgroups, we use feature
visualization of salient regions. Figure 3(a-b) shows the
feature visualization obtained by LCNN-29 on original
and blurred images of varying intensities. It is interesting

3We have not reported the results for all σ values due to the page limi-
tation. However, a similar trend in the results is observed as shown in the
supplementary file.

Table 5. Verification accuracy and DoB (%) across different race
subgroups with varying intensities of brightness corresponding to
the MORPH dataset. Accuracy of the models for subgroup R1
deteriorates significantly in presence of brightness.

β LCNN-29 SENet50 ResNet50 ArcFace

1.
0

R1 100.00 98.53 98.80 99.97
R2 100.00 99.27 99.17 99.93

DoB 0.00 0.52 0.26 0.03

1.
5

R1 99.63 70.77 28.03 91.93
R2 99.83 91.93 79.30 99.40

DoB 0.14 14.96 36.25 5.28

2.
0

R1 87.27 26.50 2.57 43.83
R2 96.37 38.23 3.80 85.50

DoB 6.43 8.29 0.87 29.47

2.
5

R1 52.60 11.33 1.87 16.07
R2 79.40 11.70 0.93 60.07

DoB 18.95 0.26 0.66 31.11
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Figure 3. Visualizing the salient regions of the pre-trained LCNN-
29 model for recognition with varying intensities of (a-b) Gaus-
sian blur and (c-d) brightness. Left block: variation across gender
subgroups and right block: variation across race subgroups. For
gender subgroups, race is kept constant and vice versa.

to observe that the regions of interest change when blur
is applied. The model shifts the focus from nose to eyes
region for subgroup G1 while it shifts from eyes to mouth
region for subgroup G2. Among race subgroups, the focus
shifts from the upper nose region to lower nose region for
subgroup R2, and to mouth region for subgroup R1. As
previously seen, mouth region is less discriminative than
eyes and nose regions. This shows that model shifts the
regions of interest from higher discriminative regions to
lower discriminative regions for subgroups G2 and R1 in
presence of blur. Thus, higher performance degradation is
observed for these subgroups.

Does performance gap between subgroups increase for
brighter images?

In this experiment, we analyze the effect of brightness.
The performance is shown across gender (Table 6 of supple-
mentary file) and race (Table 5 of main paper) subgroups of
the MORPH dataset. Increasing the intensity of brightness
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Table 6. Verification accuracy and DoB (%) across different gen-
der subgroups with varying intensities of Gaussian noise corre-
sponding to the MORPH dataset. * represents a relatively high dis-
parity in model performance across different subgroups on undis-
torted images.

σ LCNN-29 SENet50 ResNet50 ArcFace

0

G1 100.00 97.90 98.26 99.90
G2 99.83 91.96 93.30 99.66

DoB 0.12 4.19* 3.51* 0.16

20

G1 99.93 96.36 97.13 99.73
G2 99.70 90.86 89.63 98.03

DoB 0.16 3.89 5.30 1.20

30

G1 99.83 94.56 93.60 99.23
G2 99.36 86.46 82.80 96.66

DoB 0.33 5.73 7.64 1.82

40

G1 99.63 89.93 79.40 94.10
G2 98.53 84.46 73.06 90.66

DoB 0.78 3.87 4.48 2.43

significantly affects the performance of deep models for
subgroups G2 and R1. The score distribution correspond-
ing to the SENet50 model shown in Figure 2 of the supple-
mentary file further validates this fact. It is observed that
the overlap increases with increasing intensity of bright-
ness. However, subgroups G1 and R2 still show more dis-
tinct margins compared to G2 and R1, respectively. This
indicates that subgroups G1 and R2 are still recognizable
when exposed to high brightness as compared to G2 and
R1, respectively. On analyzing the bias in model predic-
tion, we observe that DoB increases from 4.19% to 10.25%,
and 0.52% to 8.29% for gender and race subgroups, respec-
tively at β = 2.0. Similar observations are noted for the
MUCT dataset as well (Table 7 of supplementary file).

We observe that subgroup R1 is highly susceptible to the
effect of brightness. On increasing the brightness factor, the
facial features of subgroup R1 are heavily affected, which
in turn affects the overall performance. The accuracies of
all the models for subgroup R1 drop below 20% beyond
the brightness factor β = 2.5. We further strengthen the
observation using the feature visualization shown in Figure
3(d), where we observe that the model is unable to extract
features for subgroup R1 while it focuses on the nose region
for subgroup R2 with increasing intensities of brightness.
Similarly, for gender subgroups, the model’s focus changes
from eyes to nose region for subgroup G1, while it shifts
from nose to right cheek as shown in Figure 3(c). Cheeks
are observed to be less discriminative in our occlusion
experiment and thus, performance degradation is higher for
subgroup G2.

Do models perform differently across subgroups in pres-
ence of noise?

The effect of Gaussian Noise and Salt and Pepper Noise
are analyzed in the next set of experiments. Table 6 shows
the effect of Gaussian noise on the performance of pre-

Table 7. Verification accuracy and DoB (%) across different gen-
der subgroups with varying intensities of salt and pepper noise cor-
responding to the MORPH dataset. The performance of subgroup
G2 gets severely affected with increasing intensities of noise. *
represents a relatively high disparity in model performance across
different subgroups on undistorted images.

p LCNN-29 SENet50 ResNet50 ArcFace

0.
00

G1 100.00 97.90 98.26 99.90
G2 99.83 91.96 93.30 99.66

DoB 0.12 4.19* 3.51* 0.16

0.
03

G1 99.83 92.83 94.16 71.70
G2 98.80 82.83 83.16 55.86

DoB 0.73 7.07 7.78 11.20

0.
06

G1 99.46 83.90 81.06 16.73
G2 96.23 72.13 63.20 10.13

DoB 2.28 8.32 12.63 4.67

0.
09

G1 98.26 71.03 55.60 3.66
G2 94.00 58.30 35.73 3.66

DoB 3.01 9.00 14.05 0.00

trained models across different gender subgroups. It is ob-
served that the overall performance decreases as the inten-
sity of noise increases, but the performance gap between
different subgroups is not significant. For example, the
DoB of ResNet50 model increases from 3.51% to 4.48%
when σ is increased to 40. This indicates that model perfor-
mance is equally affected for gender subgroups by Gaussian
noise. Similar conclusions are drawn on observing the per-
formance across race subgroups (Table 9 of supplementary
file). For the MUCT dataset, a similar set of observations
are drawn.

The performance of models under the effect of salt and
pepper noise across gender subgroups is shown in Table
74. Here, we observe that unlike the models’ performance
in presence of Gaussian noise, the performance gap be-
tween subgroups increases under the effect of salt and pep-
per noise. For the ResNet50 model, the DoB increases from
3.51% to 14.05%. Similar observations are drawn for race
subgroups (Table 11 of supplementary file). Earlier studies
[21, 15] have shown that deep models behave similarly for
both types of noise. But, in this study, we have observed
that salt and pepper noise affect the performance of most
of the deep models for subgroups G2 and R1 more severely
than subgroups G1 and R2, respectively. In order to investi-
gate the difference in behavior of the models for both types
of noise across different subgroups, we use the t-SNE visu-
alization for gender subgroups, as shown in Figure 4. For
Gaussian noise, it is observed that on increasing the inten-
sity of noise, the overlap in the feature distribution of in-
dividual subgroups increases, making the clusters of each
subgroup dense. The dense clusters indicate a high misclas-
sification rate and overall performance degradation for each

4We have reported the values upto p = 0.09 due to the page limitation.
However, a similar trend in the results is observed for higher values of p.
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Figure 4. t-SNE visualization of ResNet50 features across gender
subgroups under the effect of Gaussian noise and salt & pepper
noise corresponding to MORPH dataset.
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Figure 5. Visualization of salient regions used by the pre-trained
LCNN-29 model for recognition with varying intensities of (a-b)
Gaussian noise and (c-d) salt and pepper noise. Left block - vari-
ation across gender subgroups and right block - variation across
race subgroups. For gender subgroups, race is kept constant and
vice versa.

subgroup. On the other hand, with increasing intensities of
salt and pepper noise, the cluster of subgroup G2 becomes
denser compared to G1. Similar observations are obtained
for race subgroups, where the cluster of subgroup R1 be-
comes denser compared to R2. This indicates high misclas-
sification in subgroups G2 and R1, which in turn affects the
performance of these subgroups.

We also analyze the salient regions used by the models
for recognition under the effect of noise, as shown in Figure
5. It is observed that when Gaussian noise is applied, the
region of interest shifts from nose to eyes region. Both
these regions are observed to be discriminative in our oc-
clusion experiments, and therefore, minimal performance

Table 8. Verification accuracy and DoB (%) across different
gender subgroups with varying resolution corresponding to the
MORPH dataset. A significant degradation in performance is ob-
served at low resolution.

LCNN-29 SENet50 ResNet50 ArcFace

9
6
×

9
6 G1 99.97 97.57 98.33 99.90

G2 99.87 91.30 93.57 99.07
DoB 0.07 4.43 3.37 0.59

6
4
×

6
4 G1 99.97 96.83 97.60 99.87

G2 99.80 91.50 92.53 98.70
DoB 0.12 3.77 3.59 0.83

4
8
×

4
8 G1 99.93 94.80 94.60 99.37

G2 99.67 87.00 90.10 95.80
DoB 0.18 5.52 3.18 2.52

3
2
×

3
2 G1 99.70 82.87 81.40 69.43

G2 98.63 65.80 67.93 62.00
DoB 0.76 12.07 9.52 5.25

2
8
×

2
8 G1 98.93 65.13 63.83 9.63

G2 95.17 44.50 45.30 13.87
DoB 2.66 14.59 13.10 3.00

degradation is observed across different subgroups for
the LCNN-29 model. On the other hand, when salt and
pepper noise is applied, the model’s focus shifts from nose
to eyes for subgroup G1 and to the left side of forehead
for subgroup G2. Similarly, among race subgroups ,the
focus changes from eyes to hair for subgroup R1, and nose
to eyes for subgroup R2. As a result, higher performance
degradation is observed for G2 and R1 in the presence of
salt and pepper noise.

Does model performance differ across subgroups with
varying image resolution?

Table 8 shows the effect of varying the resolution of the
images on the performance of deep models across differ-
ent gender subgroups. A sharp drop in accuracy is ob-
served beyond 48 × 48 resolution for most models. It is
also observed that a significant amount of bias is incorpo-
rated in predictions of SENet50 and ResNet50 models. As
the resolution of the images is reduced to 28× 28, the DoB
reaches upto 14.59% and 13.10%, respectively. Similarly,
for race subgroups, the DoB increases at lower resolutions
for SENet50 and ResNet50 models (Table 13 of supplemen-
tary file). A huge performance gap of these models is also
observed across the intersectional subgroups (Table 14 of
supplementary file). On the other hand, a lesser amount of
bias is introduced in the LCNN-29 and ArcFace models.

From Table 8, it is observed that ArcFace significantly
degrades the performance at low resolution. On varying the
resolution of the images from 48× 48 to 28× 28, the accu-
racy of ArcFace drops by 89.74% and 81.93% for subgroup
G1 and G2, respectively. For the race subgroups, it results
in 87.73% and 86.70% degradation for R1 and R2, respec-
tively. This shows the vulnerability of ArcFace for low reso-
lution image recognition. Figure 6 shows the shift in the re-
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Figure 6. Visualization of salient regions used by the pre-trained
ArcFace model for recognition with varying resolution across (a)
gender and (b) race subgroups. For gender subgroups, race is kept
constant and vice versa.

gion of interest under the effect of resolution. It is observed
that at low resolution the model is not able to focus on the
facial region. Instead, the focus shifts to non-facial regions
such as hair, which in turn leads to poor performance.

5. Discussion on Unbiased Model Predictions
in the Presence of Image Distortions

The detailed experimental evaluation performed in this
research highlights the idea of gender and racial bias as a
consequence of degraded image quality. The results also
provide important insights and we believe that the observa-
tions drawn from the experimental evaluation can open new
research threads. To facilitate research in this direction, we
discuss some of the possible solutions in the following sub-
sections to ensure reliable and unbiased model predictions
in the presence of real-world image distortions.

5.1. Image Quality Enhancement

Enhancing the quality of the images before providing
to the face recognition models may reduce the disparity in
model predictions. Generative approaches [17, 29] and de-
noising techniques [1] can be used to enhance image qual-
ity. We assert that matching high-quality images will de-
crease the performance gap of the model across different
subgroups and enhance the overall model performance.

5.2. Improving Generalizability of Deep Models

Training deep models for generalized solutions is an im-
portant approach for bias mitigation [2, 30]. In this con-
text, we believe that training deep face recognition models
to extract discriminative features from different facial re-

gions instead of focusing on specific facial regions (e.g.,
eyes, nose, mouth) for recognition can reduce the bias in
model prediction. In other words, different facial regions
must be equally discriminative for the models during recog-
nition. In our occlusion experiments, we have observed that
the nose is the most discriminative region for recognizing
subgroup R2. The disparity in the discriminative regions
used by models for recognition across different subgroups
should be reduced for bias mitigation.

5.3. Utilizing Image Quality during Recognition

The quality of the images should be considered during
recognition. In the past, various quality assessment metrics
[26] and methods [11, 41] have been proposed to determine
the image quality. Recently, the NTIRE challenge orga-
nized in CVPR 2021 focused on perceptual image quality
assessment [16]. In the literature, researchers have shown
the improvement in recognition performance by utilizing
the quality score with model predictions [42, 43]. It is our
assertion that fusing the quality score with the model pre-
diction will impact the confidence of the model prediction,
which may reduce the disparity of the model for recognition
across different subgroups.

6. Conclusion

This paper analyzes the interplay and effect of bias and
real-world image distortions on the performance of face
recognition algorithms. The paper contributes in under-
standing how seemingly unbiased models produce biased
predictions in the presence of real-world image distortions.
We observe that eyes, nose, and mask are the most discrim-
inative regions for recognition across race and gender sub-
groups. However, in the presence of distortions, the regions
of interest used by the models shift towards less discrimina-
tive regions, thus resulting in unequal performance degra-
dation. For instance, we observe that the models are biased
against gender subgroup G2 and race subgroup R1. More-
over, different models introduce different amounts of bias
in the predictions, and they largely favor (or disfavor) the
same demographic subgroups. We assert that these under-
standings are important in building deep learning models
that are unbiased under different scenarios.
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