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Abstract

Rank and cardinality penalties are hard to handle in
optimization frameworks due to non-convexity and dis-
continuity. Strong approximations have been a subject
of intense study and numerous formulations have been
proposed. Most of these can be described as separa-
ble, meaning that they apply a penalty to each element
(or singular value) based on size, without considering
the joint distribution. In this paper we present a class
of non-separable penalties and give a recipe for com-
puting strong relaxations suitable for optimization. In
our analysis of this formulation we first give conditions
that ensure that the globally optimal solution of the re-
laxation is the same as that of the original (unrelaxed)
objective. We then show how a stationary point can be
guaranteed to be unique under the restricted isometry
property (RIP) assumption. 1

1. Introduction

Sparsity and low rank priors are common ways of
regularizing ill-posed inverse problems. In the com-
puter vision community they have been employed in
a wide variety of applications such as outlier detec-
tion/removal, face recognition, rigid and non rigid
structure from motion, photometric stereo and optical
flow [46, 38, 43, 5, 47, 19, 2, 20]. The prior is typi-
cally formulated either as a soft penalty, resulting in
a trade-off between data fit and regularization, or as a
hard constraint enforcing a particular cardinality/rank.
In this paper we formulate the general sparsity regu-
larized problem as

G(card(x)) + ‖Ax− b‖2, (1)

1This work has been supported by the Swedish Research
Council (grant 2018-05375), the Swedish Foundation for Strate-
gic Research (Semantic Mapping and Visual Navigation for
Smart Robots), the Wallenberg AI, Autonomous Systems and
Software Program (WASP), eSSENCE and the Crafoord Foun-
dation.

where the function G can be written as

G(k) =

k∑
i=0

gi, (2)

where 0 = g0 ≤ g1 ≤ g2 ≤ ... ≤ gn ≤ ∞. Note that
gi = ∞ is allowed (if i > 0). This formulation covers
both hard and soft priors. If we for example chose
G(k) = µk we get an objective that penalizes but does
not restrict the sparsity of the solution. In contrast, if
we let G(k) = 0 when k ≤ r and ∞ when k > r we get
a hard cardinality constraint. Many other choices for
G are possible. In this paper we will also consider the
corresponding matrix version of (1), formulated as

G(rank(X)) + ‖AX − b‖2, (3)

where A is a linear operator. The theory for the vector
and sparsity formulations are with a few exceptions
very similar, since the rank of a matrix is basically
a sparsity prior on the singular values of the matrix.
We will therefore state our main results in the vector
setting but emphasize that they apply for the matrix
setting as well.

In general G is convex and non-decreasing on the
non-negative integers. However as function of the un-
known x, G(card(x)) is highly non-convex as well as
discontinuous and in general these problems are NP-
hard [34, 21]. Therefore relaxations have to be em-
ployed. In recent years there have been a lot of work
on convex as well as non-convex relaxations for both
sparsity and rank regularized problems. The standard
method is to replace card(x) with the convex `1 norm
‖x‖1 [45, 44, 8, 15]. Furthermore, if the RIP constraint

(1− δr)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δr)‖x‖2, (4)

holds for all vectors x with card(x) ≤ r, asymptotic
performance guarantees can be derived [8]. On the
other hand the `1 approach suffers from a shrinking
bias since it penalizes both small elements of x, as-
sumed to stem from measurement noise, and large el-
ements, assumed to make up the true signal, equally.
Hence the suppression of noise also requires an equal
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suppression of signal [17, 31]. This insight has lead to a
large number of non-convex alternatives able to penal-
ize small components proportionally harder than the
large ones e.g. [17, 31, 4, 3, 13, 41, 50, 28, 49, 48, 30].
With a few exceptions e.g. [28, 29] global optimality
guarantees are generally not available for these formu-
lation. In addition these typically employ separable
formulations, that is, a non-convex penalty is applied
to each element without regarding the joint element
values. Such a formulation can for example not add
hard thresholds on the number of non-zero elements
of the vector. It is important to note that under RIP
the matrix A typically has a nullspace containing dense
vectors. Under such conditions, separable formulations
that don’t have shrinking bias, often have local mini-
mizers, see Section 2. Hence a non-separable G, able
to strongly penalize high cardinality solutions, is likely
to provide better relaxations. On the other hand these
are harder to analyse and less common in the litera-
ture. The k-support norm studied in [1, 32] is a non-
separable surrogate for the rank function. It is however
a convex norm and therefore suffers from a shrinking
bias similar to the `1 norm.

The theory of rank minimization is largely analo-
gous that of sparsity. In this context the rank func-
tion is typically replaced with the convex nuclear norm
‖X‖∗ =

∑
i σi(X) [42, 6]. In [42] the notion of RIP was

generalized to the matrix setting. A number of gen-
eralizations that give performance guarantees for the
matrix case have appeared [40, 6, 7] and non-convex
alternatives have also been considered [35, 39, 33, 25].
The analogue of the k-support norm was considered in
[16, 22]. The so called weighted nuclear norm is a popu-
lar choice for vision problems [24, 23, 26]. We are how-
ever not aware of any global recovery guarantees with
this regularizer. (Note that even though the weighted
nuclear norm is linear in the singular value vector it
is not a separable nor convex penalty since the singu-
lar values are non-linear functions of the matrix ele-
ments.) In this work we study the class of non-convex
non-separable relaxations of the objective described in
(1) and (3). The relaxation is obtained when replac-
ing the regularizer with its quadratic envelope [9]. If
f(x) = G(card(x)) +‖x‖2 then the quadratic envelope
Rg can be defined by

Rg(x) = f∗∗(x)− ‖x‖2, (5)

where f∗∗(x) is the convex envelope of f(x). Thus we
first add a quadratic penalty to the regularizer, then
take the convex envelope and subtract the quadratic
function. The intuition behind the choice of regular-
izer is that Rg(x) + ‖x − b‖2 is the convex envelope
of G(card(x)) + ‖x − b‖2, see [27], and therefore any

stationary point is a global minimizer. Under RIP the
term ‖x−b‖2 is likely to behave similarly to ‖Ax−b‖2
for vectors with card(x) < r. In this paper we for-
mally study the properties of stationary points of the
resulting minimizers and give conditions that guaran-
tee global optimality of a stationary point. Note that
our work exclusively deals with properties of the ob-
jective function and do not assume any particular opti-
mization method. Any method that reaches a station-
ary point or a local minimum will suffice. The theory
presented in this paper unifies and makes significant
extensions of the results in [36, 37] where two special
cases of the framework are studied.

1.1. Relaxations

In this section we give a very brief presentation of
the regularizer that we use, which is taken from [27].
The function G(card(x)) only depends on the sorted
magnitudes of the elements in x, and this is also the
case for Rg(x). We will denote these by x̃ and assume
that x = Dsπx̃. Here the vector s contains elements
that are either −1 or 1, Ds is a diagonal matrix with
the elements of s on the diagonal and π is a permuta-
tion matrix. With this notation our regularizer can be
written

Rg(x) = max
z̃

2〈x̃, z̃〉−
n∑
i=1

max(z̃2
i −gi, 0)−‖x̃‖2, (6)

see (42) in the supplementary material for further de-
tails. Evaluation of Rg requires solving the maximiza-
tion over z̃. This can be done very fast (logarithmic
time in the number of elements of x). A simple (linear
time) algorithm is presented in [27].

The relaxation of (1) can then be written

Rg(x̃) + ‖Ax− b‖2. (7)

The theory for the matrix case is largely identical to
that of the vector case. Here the regularizer only
depends on the (sorted) singular values of X which
we will also denote x̃. The relationship between X
and x̃ is now the singular value decomposition (SVD)
X = UDx̃V

T , where U and V are orthogonal matrices.
We will therefore write the relaxation of (3)

Rg(x̃) + ‖AX − b‖2. (8)

Note that the orthogonal matrices U and V are not
unique if x̃ has elements that are zero. In the vector
case we have a similar non-uniqueness in the matrix
Dsπ.

2. Motivation
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Being able to use a general prior G has the benefit
that we can design accurate formulations for finding
the correct cardinality. While separable regularization
considers the size of each variable separately the abil-
ity to apply a non-separable prior makes it possible to
heavily penalize unlikely solutions. The extreme exam-
ple, the so called fixed cardinality penalty

G(k) =

{
0 k ≤ kmax

∞ k > kmax

, (9)

rules out solutions with more non-zero elements than
kmax, which cannot be achieved with a separable for-
mulation. Less restrictive variants that regard high
cardinality states unlikely (but not impossible) can also
be used.

The use of a non-separable prior is not only impor-
tant for modelling purposes but also effects optimiza-
tion algorithms since separable formulations more often
get stuck in local minima. To understand this consider
the simple one dimensional problem |x|0 + (x − y)2,
where |x|0 = 0 if x = 0 and 1 otherwise. The goal of
this formulation is recover x = y if y is large enough
not to be considered noise. By taking derivatives it is
easy to see that the solution to this problem is given by
x = y if |y| ≥ 1 and x = 0 otherwise. Now suppose that
|x|0 is replaced by a function f(|x|). It is easy to see
that the minimizer of f(|x|) + (x− y)2 is either x = 0

or a stationary point fulfilling x = y − sign(y) f
′(|x|)

2 .
Hence to really recover x = y when y is large enough
we have to have f ′(|x|) = 0, that is, f has to be con-
stant for large values. If this is not the case f will
favour smaller solutions resulting in a shrinking bias.

On the other hand a separable regularizer of the
form F (x) =

∑
i f(xi), where f is constant for large

values is likely to have local minima even under RIP.
A 2D example depicting the shape of the regularizer is
shown in Figure 1. To the left is Rg with g1 = g2 = 1
which is separable and obtained by applying the func-
tion to the right in Figure 1 to both coordinates.
For general dimensions these types of penalties yield
regularizers that are constant for dense vectors that
are large enough. Suppose now that x∗ minimizes
‖Ax + b‖2, that is x∗ is a least squares solution, and
there is a dense vector y in the nullspace of A. Then
x∗ + λy is also a least squares solution. If we make
λ large enough the elements of the vector x∗ + λy
will be located in the region where the separable re-
laxation is constant while at the same time minimizing
the data term and therefore it is a local minimizer of
the relaxation (as well as the original unrelaxed formu-
lation). In [36] conditions that guarantee uniqueness of
sparse stationary points under the regularization Rg

and g1 = g2 = ... = gn when RIP holds were given.
However, dense stationary points could not be ruled
out. In our experimental section we confirm that op-
timization starting from a least squares solution often
results in convergence to poor dense solutions, see Sec-
tion 4. One way to address this problem is to accept a
modest shrinking bias to make sure that the gradient
of the regularizer does not vanish for large elements
[10]. For the type of local minima described above this
is likely to solve the problem, however it is not clear
if there are other types of dense minima as well. In
this work we instead consider non-separable formula-
tions where dense vectors can be penalized harder. In
the middle of Figure 1 we show Rg with g1 = 1 and
g2 = ∞. In the latter case the G function excludes
dense vectors. This is reflected in the shape of the
relaxation Rg, which will clearly try to discourage car-
dinality 2. For vectors of cardinality 1 (and 0) the
two options (Left and Middle) provide identical penal-
ties. Our main results give conditions that are suffi-
cient for guaranteeing uniqueness of stationary points
among both sparse and dense vectors.

Figure 1: Illustrations of Rg(x). Left: g1 = g2 = 1.
Middle: g1 = 1, g2 =∞. Right: The shape of both the
objectives on one of the axes.

3. Theoretical Results

In this section we will present our main theoreti-
cal results for the relaxations (7) and (8). We will
state our results in terms of the vector case (7). How-
ever identical results hold for the matrix case when the
magnitudes of the vector elements are replaced by the
singular values of the matrix.

3.1. What is our relaxation solving?

The goal of our regularization is to adaptively se-
lect the appropriate rank/cardinality given the data fi-
delity. If the true cardinality had been known it would
be desirable solve the so called ”fixed cardinality” prob-
lem

o = arg min
card(x)≤k

‖Ax− b‖2. (10)

Hence we would like our formulation to determine k
and then to solve (10) exactly. While many regular-
ization methods have been proposed very few of them
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output solutions that are ”fixed cardinality” minimiz-
ers for some k. As discussed in the previous section
most of them add a bias that clearly favors small solu-
tions.

The following theorem gives conditions that ensure
that a particular ”fixed cardinality” solution is sta-
tionary for our relaxation provided that the noise is
bounded.

Theorem 3.1. Suppose that o solves (10) and õk >√
gk then o is a stationary point (7) if

‖ε‖ ≤
min{√gk+1, õk}

‖A‖
, (11)

where ε = Ao− b are the residual errors.

The proof of this result and its matrix analog is given
in the supplementary material (Appendix B).

There are two essential constraints that ensure that
a fixed carnality solution o is stationary. Firstly, since
õi is decreasing and

√
gi is increasing with i we can

view the constraint õk >
√
gk as a threshold

√
gi which

must be smaller than any non-zero element. The sec-
ond constraint essentially states the remaining residual
error that is not explained by o has to be sufficiently
small. As a simple example we mention the noise free
case b = Ay with card(y) = k. Here ε = 0 and there-
fore x = y would be a stationary point for all choices
of g where the non-zero elements of y are larger than√
gk.
The above result does not rule out the existence of

multiple stationary points. The main results of our pa-
per are dedicated to developing conditions that ensure
uniqueness of a stationary point for appropriate choices
of g. In such cases we therefore obtain a method that
is able to jointly determine the best k and supply us
with the corresponding ”fixed cardinality” solution.

3.2. Element Separation and Optimality

The main result of this section will show that a
sparse stationary point is under certain conditions
unique. The conditions are related to the noise and
whether there is a clear truncation of the data or not.

Consider the stationary points of (7). Since
f∗∗(x) = Rg(x̃) + ‖x̃‖2 we can write the objective
function (1) as f∗∗(x) + h(x), where

h(x) = ‖Ax− b‖2 − ‖x‖2

= xT (ATA− I)x− 2xTAT b+ bT b,
(12)

which has∇h(x) = −2z, where z = (I−ATA)x+AT b.
A point is stationary if and only if 2z = −∇h(x) ∈
∂f∗∗(x). Some properties of the solutions to these

equations can be understood by noting that for a fixed
z the exact same equations are obtained by differenti-
ating the objective

Rg(x̃) + ‖x− z‖2 = f∗∗(x)− 2xTz + ‖z‖2. (13)

This expression can be seen as a local approximation
(ignoring constants) around x, and x is stationary in
(7) if and only if it is stationary in (13). Furthermore,
(13) is the convex envelope of G(card(x)) + ‖x− z‖2.
Therefore the stationary point x is the best low cardi-
nality approximation of z which is obtained by trun-
cating the elements z̃i at

√
gi.

It is the properties of z that decide if there could be
other (sparse) stationary points or not. Loosely speak-
ing, our theory relies on the fact that the directional
derivative of f∗∗ grows faster than that of −h. Hence
if they are equal at some stationary point they cannot
be so again. This is true if the magnitudes z̃i are well
separated from their thresholds. If this is not the case
a small change in z̃i can cause x̃i to switch from x̃i = z̃i
to x̃i = 0 (or vice versa) which may result in the di-
rectional derivative of f∗∗ not growing sufficiently fast.
Note that for noise free recovery, that is b = Ay for
some vector y, we have z = (I −ATA)y+ATAy = y.
Hence as long as the non-zero elements of y are suffi-
ciently separated form 0 we should be able to guarantee
that this is the only sparse stationary point.

We now state the main result:

Theorem 3.2. Suppose that x is a stationary point of
(7), that is, 2z ∈ ∂f∗∗(x) with z = (I−ATA)x+AT b,
and the matrix A fulfills (4). If card(x) = k, x̃i /∈
(0,
√
gi) and z̃ fulfills

z̃i /∈
[
(1− δr)

√
gk,

√
gk

(1− δr)

]
and z̃k+1 < (1− 2δr)z̃k,

(14)
then any other stationary point x′ has card(x′) > r−k.
If in addition k < r

2 then x solves

min
card(x)< r

2

Rg(x̃) + ‖Ax− b‖2. (15)

The proof of this theorem is given in the supple-
mentary material (Appendix C). To gain some more
understanding of the conditions (14) we recall that the
sequence

√
gi is non-decreasing, while x̃ and z̃ are non-

increasing. Therefore the first condition in (14) ensures
that none of the elements z̃i are close to any of their
thresholds

√
gi. The second condition is to prevent a

change of the permutation π, since this may result in
two or more elements in x to switch from non-zero to
zero and vice versa. This can happen if z̃k and z̃k+1 are
close to each other. In other cases changes in ordering
does not cause changes in the support of x.
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The assumption x̃i /∈ (0,
√
gi) is equivalent to

f∗∗(x) = f(x), see supplementary material (Ap-
pendix A). In principle there could be stationary points
where this assumption is not fulfilled if the regularizer
is not strong enough to force such elements to be zero.
For example, if the data term is of the form µ‖x−b‖2,
increasing µ will eventually lead to the optimal solu-
tion being b regardless of the size of its elements. One
way to ensure that the regularization is strong enough
is to require that ‖A‖ < 1. Then any local minimizer
of (7) will have f∗∗(x) = f(x) by Theorem 4.7 in [9].
In addition any local minimizer of (7) will be a local
minimizer of (1) (but not the other way around) and
the global minimizers with coincide.

Before proceeding we also note that since f∗∗ ≤ f
the stationary point in Theorem 3.2 will also solve

min
card(x)< r

2

G(card(x)) + ‖Ax− b‖2, (16)

if it solves (15), meaning that in some sense it is the
best possible sparse solution to the problem. In what
follows we will therefore assume that r = 2k.

We conclude the section by giving results that are
sufficient to guarantee the existence of a stationary
point fulfilling the constraints of Theorem 3.2 in the
presence of noise, that is, b = Ay + ε for some clean
vector y. The following result shows that as long as
the noise level is not too high there will be a stationary
point fulfilling the constraints of Theorem 3.2. More-
over, this is true for a whole range of objectives as
long as the thresholds

√
g
k

are not selected too close
to the elements in ỹ. Note that this result relies on
worst case bounds in terms of the noise vector ε. The
proof basically assumes that a single element of the sta-
tionary point x is affected by the full noise magnitude
‖ε‖ rather than evenly distributing the noise among
the elements of x. This makes the statement weaker
than what can be expected in practice with for example
Gaussian noise.

Theorem 3.3. Suppose that b = Ay + ε, for some y
with card(y) = k, ‖A‖ < 1, δ2k <

1
2 . If

ỹk >
5

(1− 2δ2k)
√

1− δ2k
‖ε‖, (17)

then (7) has a stationary point x, with card(x) = k,
that fulfills (14) for all choices of G where

√
gk < (1− δk)

(
ỹk −

2‖ε‖
√

1− δ2k

)
and
√
gk+1 >

3(1− δk)
√

1− δ2k
‖ε‖.

(18)

Note that the proof, which is given the supplemen-
tary material (Appendix D), shows that regardless of
the choice of G the stationary point is always the best

cardinality k approximation of y (in a least squares
sense). Hence if we know the cardinality beforehand
we might as well use the fixed-cardinality relaxation
gi = 0 if i ≤ k and gi = ∞ if i > k. In many practi-
cal cases the cardinality is not known before hand but
needs to be determined through a suitably selected G
function. The above estimates show that a solution
that is close to the original noise free vector y (and has
the correct support) can often be recovered.

3.3. Regularizers with Hard Constraints

The theory presented in the previous section shows
uniqueness of sufficiently sparse stationary points, but
cannot rule out dense stationary points. The main dif-
ficulty in this respect is that the RIP constraint only
gives information about low cardinality vectors, and
typically there are dense vectors in the nullspace of A.
As illustrated in Section 2 unbiased separable regular-
izers don’t penalize these vectors sufficiently.

In this section we assume that we know an up-
per bound kmax on the cardinality. This means that
gi = ∞ for all i ≥ kmax. The next result shows that
relaxations resulting from such regularizers turn out to
be strong enough to exclude the existence of high car-
dinality local minimizers and giving global optimality
of a solution fulfilling the assumptions of Theorem 3.2.
Note that this prior is by construction non-separable
since it counts the number of non-zero element.

Corollary 3.4. Suppose that x is a stationary point
of (7) that fulfills the assumptions of Theorem 3.2 with
r = 2k. If ‖A‖ < 1 and gi =∞ for i ≥ k then x is the
unique local minimizer of (7) and a global minimizer
of (1).

Proof. According to Theorem 4.7 of [9] a local mini-
mizer x of (7) has f∗∗(x) = f(x). If card(x) > k then
G(card(x)) = ∞ but f∗∗(x) is finite. Therefore any
local minimizer has to have card(x) ≤ k. However, ac-
cording to Theorem 3.2 x is the only stationary point
with card(x) ≤ k.

With the assumptions of Theorem 3.3 we get the
following somewhat stronger result which also ensures
existence.

Corollary 3.5. Under the assumptions of Theo-
rem 3.3 the problem (7) has a unique local minimizer
which is also a global minimizer of (1).

4. Experiments

In this section we illustrate the behaviour of the pro-
posed penalty using a range of numerical experiments,
both synthetic and from real applications. We are in
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particular interested in differences between the two re-
laxations obtained with gi = µ for all i versus

ḡi =

{
µ i ≤ kmax

∞ i > kmax.

We denote the functions obtained with these choices
Gµ(card) and Ḡ(card) respectively and their relax-
ations Rµ and Rḡ respectively. Both of these attempt
to estimate an unknown cardinality based on a trade-off
between data fidelity and sparsity. However the second
option Rḡ should be more robust to local minima with
high cardinality as outlined in our theory.

4.1. Synthetic data

4.1.1 Robustness - random matrices

To test the robustness with respect to noise we gen-
erated 10 different problem instances - i.e. different
100× 200 Gaussian random matrices A (with normal-
ized columns), sparse real ground truths x0 and noise ε
- for each noise level ‖ε‖/‖b‖ ∈ {0.025i : i = 0, . . . , 10}
and averaged the output distances ‖x̃−x0‖/‖x0‖, with
x̃ approximated solution computed by the minimizing
algorithm. Each x0 was chosen with random cardi-
nality between 10 and 18 and with the property that
mini |x0,i| > 2

√
2. To approximately recover x0 we use

the formulation gi = 2 for i ≤ kmax = 20 and gi = ∞
otherwise, and refer to it as Rḡ in the results. We used
0 as starting point and the Forward-Backward Split-
ting as minimizing algorithm.

For comparison we also test the Least Absolute
Shrinkage and Selection Operator (LASSO), `p with
p = 1/2, 2/3, and the Smoothly Clipped Absolute De-
viation (SCAD) which are popular approaches from the
literature. To avoid issues with parameter selection
and achieve the best possible performance for these
competing methods their parameters were picked us-
ing a line search for each problem instance. So, for
each problem instance A, ε and x0, we computed
‖x̃ − x0‖/‖x0‖ for several choices of the involved pa-
rameters and stored the best outcome. The result is
shown in the top left graph in Figure 2. Here Rg out-
performs the other relaxations consistently giving the
best fit to the ground truth data. The behaviour that
all methods approach the ground truth solution when
the noise decreases is due to the fact that the parameter
is exactly tuned to the noise level for each problem. We
emphasize that in real applications such a strategy is
normally not feasible when the noise level is unknown.

A more realistic scenario is to use the same param-
eter setting for all noise levels. Therefore we also per-
formed a second batch of experiments where one single
parameter for each competitor method was used. The

parameters chosen minimize the average error through
all the noise levels and all trials. The outcome (second
row of Figure 2) highlights the benefits of the noise-
invariance of the bias-free methods (Rg and SCAD).
These can handle varying noise levels with a single pa-
rameter setting.

4.1.2 Robustness - concatenation between
Fourier transform and identity

For a matrix A ∈ Cm×N , the quantity

µ(A) = max
1≤i6=j≤N

|〈ai,aj〉|

is known as mutual coherence of A. In compressive
sensing a small mutual coherence is desirable because
it controls all the restricted isometry constants from
above (cfr. Prop. 6.2 in [18]); the matrix A = [F |I]
with F being the 1D Fourier transform matrix and I
the identity matrix, is known to have mutual coherence
= 1/

√
m and it is often used in compressive sensing

algorithms or techniques benchmarking.
We ran a similar set of tests as in Section 4.1.1 using

A of dimensions 100×200 instead of random matrices:
we generated 10 different problem instances - i.e. dif-
ferent sparse real ground truths x0 and noise ε - for
each noise level ‖ε‖/‖b‖ ∈ {0.025i : i = 0, . . . , 10} and
averaged the output distances ‖x̃ − x0‖/‖x0‖, with x̃
approximated solution computed by the minimizing al-
gorithm. Each x0 was chosen with cardinality 10 and
with the property that mini |x0,i| > 2

√
2. In our for-

mulation we selected gi = 2 for i = 1, . . . , kmax = 20;
the competitor methods are the same as in Section 4.1.1
and their parameters choices were again made via the
same technique(s). The outcome mostly mirrors that
in Section 4.1.1, see the second columns of Figure 2.

4.1.3 Sparsity

In a second batch of experiments we studied the cardi-
nality of the retrieved approximation when a starting
point not too far from the ground truth is employed.
For a fixed noise level ‖ε‖/‖b‖ = 0.15 we fixed a triplet
A (Gaussian, with normalized columns), ε and x0 with
card(x0) = 10 and again mini |x0,i| > 2

√
2, and we

generated 250 different random (with uniform distri-
bution) starting points xS with 0.2‖x0‖ ≤ ‖xS‖ ≤
3‖x0‖. In Table 1 we display mean and standard devi-
ation of Sm(x̃,x0) = card(supp(x̃)4 supp(x0))2 and
normalized distance to ground truth ‖x̃ − x0‖/‖x0‖
in the scenario 75 × 200. The parameter choice
for the competing methods was made with a line

24 is the set-theoretic symmetric difference.
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Random matrices, line-searched parameters [F |I], line-searched parameters

Random matrices, fixed parameters [F |I], fixed parameters

Figure 2: Normalized error vs normalized noise level. The first column experiments with random matrices, see
Section 4.1.1; the second, concatenation of Fourier matrix with identity, see Section 4.1.2.

search for each single problem instance (as in the
previous section). To achieve a the correct support
as well as a good fit to the ground truth solution
we selected the parameter that minimized the quan-
tity 0.8 card(supp(x̃)4 supp(x0))/‖x0‖0 + 0.2‖x̃ −
x0‖/‖x0‖. The proposed regularizer (indicated in the
legend as “Rḡ”) displays a solid behaviour.

Table 1: Random starting point, 75× 200 scenario

‖x̃− x0‖/‖x0‖ Sm(x̃,x0)
Mean St. dev. Mean St. dev.

Rḡ 0.0768 1.96 · 10−7 0 0
Rµ 0.0768 2.20 · 10−6 0 0

SCAD 0.0898 2.03 · 10−7 0 0
LASSO 0.7290 1.09 · 10−7 2 0

`1/2 0.1465 0.1626 0.4840 1.6915

`2/3 0.1147 0.0052 0 0

4.1.4 Local minima suppression

In [12] was numerically shown that the algorithm min-
imizing the functional Rµ(x) + ‖Ax − b‖2 tends to
get stuck in high cardinality local minima when the

Table 2: A†b as starting point, 100× 200 scenario

‖x̃− x0‖/‖x0‖ Sm(x̃,x0)
Mean St. dev. Mean St. dev.

Rḡ 0.0643 0.1079 0.1080 0.3273
Rµ 0.0636 0.1343 0.2360 2.9772

SCAD 0.0885 0.0582 0.1240 0.3758
LASSO 0.3863 0.1490 1.2800 1.5734

`1/2 0.0856 0.1449 0.4560 2.4658

`2/3 0.0650 0.0157 0 0

Table 3: Local minima counter

Rḡ Rµ ‖ · ‖1/2 ‖ · ‖2/3
Loc. min. detected 0 100 1 0

least square solution is used as starting point. The
present paper can be also seen as an attempt to over-
come that issue and in this section we numerically con-
firm that those high cardinality local minima seem to
be suppressed when our new penalty is employed. We
again generated 250 different problem instances with
the same specs as in Section 4.1.3 and used a least
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Drink Pickup Stretch Yoga

Figure 3: Rank of X# (x-axis) versus data fit ‖RX −M‖F (y-axis) for the MOCAP sequences, drink, pickup,
stretch and yoga, used in [14]. Blue -Rg, red - ‖·‖∗, yellow - SCAD, purple - Schatten-2/3 and green - Schatten-1/2.

square solution to the linear system Ax = b as start-
ing point for the algorithm. Note that since A has
a nullspace there are in general multiple least squares
solutions. In Table we 2 used A†b. The results show
that while A†b seems like a sensible starting point it
often gives sub-optimal results. This is in particular
true for the bias free regularizer Rµ that has difficulty
recovering from a high cardinality starting point. The
proposed Rḡ is in general much less affected than the
other bias free methods. We also remark that strictly
speaking deviations from the ground truth x0 may not
be a result of local minima since x0 is not a minimizer.

The point A†b is an intuitive initialization and in-
deed it is a bit surprising that it produces local minima.
A less intuitive choice is what is described in Section 2,
that is, points of type A†b + xk where xk ∈ ker(A) is
dense such that mini |(A†b + xk)i| > 2

√
2, which we

consider in Table 3. These are still least square so-
lutions and they are located in the region where the
penalty Rµ(x) is constant; thus they are local min-
ima for the functional Rµ(x) + ‖Ax − b‖2. For a
100 × 200 random matrix A we generated 100 lin-
early independent xk and tested whether the points
A†b + xk are local minima or not for the functionals
Rµ(x) + ‖Ax − b‖2, (7) and ‖x‖p + ‖Ax − b‖2 (for
p = 1/2, 2/3); we here picked kmax = 16 > card(x0) ∈
{9, 10, . . . , 14} chosen randomly. Table 3 displays the
results of our experiment: it shows that all those points
are (as expected) local minima for Rµ(x) + ‖Ax− b‖2
but not for (7) and motivates one more time the con-
structions in the present manuscript.

4.2. Rank Regularization for NRSfM

We conclude our experiments by considering an ap-
plication of the matrix version of our framework. Non-
rigid structure from motion (NRSfM) is a classical com-
puter vision problem where object dynamics is modeled
using a rank constraint. In this section we follow [14]
and extract a deforming model from point tracks ob-
tained with a moving camera. Under the linear de-
formation assumption [5, 14] the deforming 3D point

cloud can be represented using a low rank matrix S
where row i contains x−, y− and z− coordinates of the
point cloud when image i was captured. To recover S
we solve

min
S
Rg(S) + ‖RS# −M‖2. (19)

Here R is a matrix containing camera rotations and
S# is a matrix where the elements of S have been re-
ordered, see [14] for detailed definitions.

In Figure 3 we use data from [14] to test our regu-
larizer Rg, with gk = 0 if k ≤ kmax and ∞ otherwise,
against the nuclear norm, SCAD and the Schatten-
norms. Only Rg can directly penalize the rank. The
other competing methods have different parameters
that needs to be tuned to indirectly obtain a certain
rank. Not that while a small parameter change may
not change the rank it can still change the solution
since the bias is affected. For a fair comparison we
therefore sample parameters over a whole range of val-
ues to see what data fit can we achieve with settings
that give particular rank. Note that since the opera-
tor S 7→ RS# has low rank matrices in its null-space
it therefore does not fulfill RIP, therefore our method
could have local minima. For ranks between 2 an 6 Fig-
ure 3 shows error bars covering the best and the worst
data fit for each method. The bias is most clearly visi-
ble for the lowest rank (2) where the methods have to
suppress more noise. Our method (blue) consistently
gives the lowest data fit for each rank.

5. Conclusions

In this paper we have presented and analysed a
general framework for sparsity and rank regulariza-
tion of linear least squares problems. Our regularizers
are bias free an non-separable which admits increased
modeling power compared to standard separable ver-
sion. Our theoretical analysis shows that under the
RIP constraint stationary points are often unique even
though our framework is non-convex. Our empirical
results further demonstrate that we outperform com-
peting methods in terms of accuracy and robustness.
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