
Convolutional Auto-Encoder with Tensor-Train Factorization

Manish Sharma, Panos P. Markopoulos, Eli Saber
Rochester Institute of Technology

Rochester NY, USA
{ms8515, panos, esseee}@rit.edu

M. Salman Asif
University of California Riverside

Riverside CA, USA
sasif@ece.ucr.edu

Ashley Prater-Bennette
Air Force Research Laboratory

Rome NY, USA
ashley.prater-bennette@us.af.mil

Abstract

Convolutional auto-encoders (CAEs) are extensively
used for general purpose feature extraction, image re-
construction, image denoising, and other machine learn-
ing tasks. Despite their many successes, similar to
other convolutional networks, CAEs often suffer from over-
parameterization when trained with small or moderate-
sized datasets. In such cases, CAEs suffer from excess com-
putational and memory overhead as well as decreased per-
formance due to parameter over-fitting. In this work we
introduce CAE-TT: a CAE with tunable tensor-train (TT)
structure to its convolution and transpose-convolution fil-
ters. By tuning the TT-ranks, CAE-TT can adjust the num-
ber of its learning parameters without changing the network
architecture. In our numerical studies, we demonstrate the
performance of the proposed method and compare it with
alternatives, in both batch and online learning settings.

1. Introduction
Deep learning frameworks such as convolutional neu-

ral networks (CNNs) have emerged as a solution of choice
for computer vision applications, including image classifi-
cation [1], object detection [2, 3, 4], and image segmen-
tation [5], to name a few. Most CNNs are designed for
supervised learning and consider available labels for the

This material is based upon work that was supported in part by NSF
Awards OAC-1808582 and CCF-2046293, AFOSR Awards FA9550-20-1-
0039 and FA9550-21-1-0330, and NGA Award HM0476-19-1-2014.

Cleared for public release by US Air Force Security and Policy Review
on 16 July 2021, case number AFRL-2021-2294.

This research is funded by an academic grant from the National
Geospatial-Intelligence Agency (Award No. # HM0476-19-1-2014,
Project Title: Target Detection/Tracking and Activity Recognition from
Multimodal Data). Approved for public release, 21-812.

training data. In many real-world settings, however, labels
are scarce or unavailable and unsupervised learning meth-
ods are needed. Convolutional Auto-Encoders (CAEs) are
unsupervised CNNs that serve as general-purpose feature
extractors, by learning convolution filters that minimize an
objective loss. CAEs are quite popular for dimensionality
reduction, image compression/reconstruction, and denois-
ing, among other tasks [6, 7].

Deep and wide CAEs have many learning parameters
and, accordingly, high learning capacity that allows them
to identify complex underlying structures in the data. At
the same time, they require large amounts of training ex-
amples for generalizing well to unseen data. In real-world
applications with small to moderate-sized training datasets,
deep and wide networks tend to memorize the training data
(over-fitting), thus compromising their ability to generalize
inference to unseen data. In such cases, limiting the over-
all number of trainable parameters reduces the network ca-
pacity, but can also resolve over-fitting, thus leading to im-
proved performance while also reducing computational and
memory overhead. On the other hand, when more train-
ing data become available in a streaming way, which is a
common case in many real-world applications such as real-
time streaming video frames in computer vision, increasing
the number of parameters can increase the network capac-
ity and, thus, allow to further improve inference [8, 9]. It is
therefore desirable to design CAEs with a tunable number
of parameters that can adjust to the complexity and size of
the available data.

A conceptually simple way to adjust the number of train-
able parameters is by tuning the width and depth of the net-
work, i.e., the number of convolution filters per layer and
the number of layers in the network. Certainly, these ap-
proaches would result in significant changes in the network
architecture which is impractical for on-the-fly adjusting the

198

parameters of AI systems in real-world deployments. In this
work, we propose an alternative approach based on tensor
analysis, which allows one to adjust the number of param-
eters without changing the network architecture. A high-
level description follows.

Since CAEs are fully-convolutional networks, all train-
able parameters are in the form of convolution filters, which
are typically modeled as 4-way tensors (modes 1 and 2 are
spatial; modes 3 and 4 correspond to input and output chan-
nels, respectively). Similar to matrices, tensor variables
are often modeled as a product of latent factors. Such ten-
sor factorization is a standard practice in data analysis and
machine learning, with applications including data com-
pression, denoising, multi-modal feature extraction, and pa-
rameter estimation. Standard tensor factorization methods
include Tucker Decomposition (TD) [10], Parallel Factor
Analysis (PARAFAC) [11], and Tensor-Train Factorization
(TT) [12], among others. Among these tensor factoriza-
tions, TT has exhibited top performance in modeling con-
volution filters in supervised convolutional networks, such
as classification CNNs, object-detection CNNs, and con-
volutional long short-term memory networks (LSTMs) for
spatio-temporal learning [4, 13, 14, 15].

In this work, for the first time, we use TT factorization
to model the convolution filters of a CAE for unsupervised
learning. Specifically, we parameterize the convolution and
transpose-convolution filters of CAEs as a product of TT-
cores, which contain all trainable parameters and are trained
in an end-to-end fashion. The number and size of the cores
can be tuned, adjusting the number of trainable parameters,
without changing the size of the convolution filter and, ac-
cordingly, without changing the network architecture. We
refer to the proposed method as CAE-TT.

For a low number of moderately-sized TT-cores, the to-
tal number of parameters is significantly lower than that of
standard CAE and, thus, over-fitting is avoided. On the
other hand, to prevent under-fitting and increase the network
capacity as more training data become available, we can
simply increase the number and size of trainable TT-cores
while, still, the sizes of the filters and the network archi-
tecture remain invariant. We evaluate the efficiency of the
proposed method in image compression and denoising ex-
periments, on the standard MNIST [16] and FMNIST [17]
datasets. The merits of CAE-TT are clearly illustrated for
both batch and online training.

2. Technical Background

2.1. Convolutional Auto-Encoder (CAE)

CAE is a sequential arrangement of convolutional encod-
ing and decoding layers. Based on their convolutional struc-
ture, CAEs are preferred for image data processing over
standard auto-encoders. The encoding convolution layers

𝑰𝒏𝒑࢛𝒕: ૡ ൈ ૡ ൈ
ሺ ൈ ൈ ሻ, ,

ૡ ൈ ૡ ൈ

 ൈ ൈ
ሺ ൈ ൈ ሻ, ,

 ൈ ൈ ૡ
ሺ ൈ ൈ ሻ, ૡ,

ૠ ൈ ૠ ൈ ૢ
ሺ ൈ ൈ ૡሻ, ૢ,

ૠ ൈ ૠ ൈ
ሺ ൈ ൈ ૢሻ, ,

ૠ ൈ ૠ ൈ ૢ
ሺ ൈ ൈ ሻ, ૢ,

 ൈ ൈ ૡ
ሺ ൈ ൈ ૢሻ, ૡ,

 ൈ ൈ
ሺ ൈ ൈ ૡሻ, ,

ሺ ൈ ൈ ሻ, ,
ૡ ൈ ૡ ൈ

ሺ ൈ ൈ ሻ, ,
𝑶࢛𝒕𝒑࢛𝒕: ૡ ൈ ૡ ൈ

ሺ𝒍 ൈ 𝒍 ൈ 𝑪ሻ, 𝑺, 𝒔𝒕𝒓𝒊𝒅𝒆

Figure 1: Schematic of standard CAE with 10 layers. The
top and bottom rectangles present input and output, respec-
tively. The rectangles in between represent the feature maps
between successive layers. In each blue rectangle, we note
the 3-mode dimensions. Between the feature maps, we
present the parameters of the convolution filter in the form:
(l1×l2×C), S, zi. The red and green color font denotes en-
coding (down-sampling) and decoding (up-sampling) layers
respectively. Black color layers are standard convolutional
layers.

(encoder) map the input image
¯
I ∈ RW×H×F (W ×H pix-

els, F channels) to a compact representation
¯
M ∈ Rw×h×f ,

for w < W , h < H , and f < F . The decoding transpose-
convolution layers (decoder) map the latent representation
back to the output

¯
Y ∈ RW×H×F . That is, the encoder

extracts features from the input and the decoder uses these
features to reconstruct it.

Each layer of the CAE receives as input a tensor fea-
ture map

¯
X of size L

(in)
1 × L

(in)
2 × C. Modes 1 and 2

refer to space and mode 3 refers to channels. Then the
layer convolves

¯
X with a convolution filter tensor

¯
K of size

l1× l2×C ×S. Denoting by ∗ the convolution opearation,
the filter output is

¯
Y =

¯
X ∗

¯
K of size L(out)

1 × L
(out)
2 × S,

where L
(out)
i = (L

(in)
i − li + pi)/zi + 1, zi and pi are

the convolution stride and padding for mode i, respectively,
and S is the number of output channels. Fig. 1 offers a
schematic illustration of a standard CAE with 10 layers.

2.2. Tensor Preliminaries

A tensor is d-way array, each entry of which is addressed
with d indices. For example, a vector is a 1-way tensor

199

¯
C[i1, . . . , ik1−1, j1, . . . , jk2−1, jk2+1, . . . , jd2 , ik1+1, . . . id1]

=

nk1∑
t=1

¯
A[i1, . . . , ik1−1, t, ik1+1, . . . id1]¯

B[j1, . . . , jk2−1, t, jk2+1, . . . , jd2] (1)

while a matrix is a 2-way tensor.
Contraction is the tensor generalization of matrix prod-

uct. Considering tensors
¯
A ∈ Rn1×n2×···×nd1 and

¯
B ∈

Rm1×m2×···×md2 satisfying nk1
= mk2

, their (k1, k2)-
contraction

¯
C =

¯
A ◦k2

k1 ¯
B is defined as in equation (1) and

has size n1×· · ·×nk1−1×m1×· · ·mk2−1×mk2+1×· · ·×
md2×nk1+1×· · ·×nd1 . For simplicity in notation, we de-
note

¯
A◦1d1 ¯

B simply as
¯
A◦

¯
B. For D ∈ Rnk×m, the mode-k

tensor-matrix product
¯
A×k D is equal to (k, 1)-contraction

¯
A ◦1k ¯

D, where
¯
D is the (2-way) tensor representation of

matrix D [18].

3. Proposed Method

In this paper, we parameterize the convolution and
transpose-convolution filters of the CAE by means of TT
factorization. TT factorization of the learning parameters
has already been successfully applied before in neural net-
works [4, 13, 14, 15, 19]. In this work, we extend it for the
first time to a convolutional auto-encoder.

By tuning the ranks of the TT factorization we can limit
redundancy in the number of learnable parameters, avoid
over-fitting, and improve performance in applications where
training data are limited. At the same time, when more
training data become available, we can increase the number
of trainable parameters (and, thus, the network capacity) by
increasing the TT factorization ranks without altering the
filter dimension and the network structure.

In order to TT parameterize a convolution filter
¯
K ∈

Rl1×l2×C×S , we first factorize C and S as C = c1 · · · cd
and S = s1 · · · sd, respectively, for some modeling parame-
ter d ≥ 2. Then, we reshape

¯
K into a (d+1)-way tensor

¯
K′

of size l1l2 × c1s1 × . . .× cdsd and factorize it as a train of
tensor contractions (tensor train) of the form

¯
K′ =

¯
G0 ◦ ¯

G1 ◦ · · · ◦ ¯
Gd. (2)

The proposed TT parameterization of the convolution filter
is presented in Fig. 2.

The tensors {
¯
Gi}di=0 are known as TT-cores of

¯
K and

comprise the trainable parameters of the proposed network.

¯
G0 has size 1 × l1l2 × r1,

¯
Gd has size rd × cdsd × 1 and

for every 0 < i < d,
¯
Gi has size ri × cisi × ri+1. The

modeling parameters {ri}di=1 are known as TT-ranks and
determine the number of learning parameters of the layer.
Specifically, before TT parameterization, this layer would

* =
L(in)

1 × L(in)
2 × C L(out)

1 × L(out)
2 × Sl1 × l2 × C × S

Input

K

Filter
Output

∘ ∘ ∘⋯G0 G1 Gd

1 × l1l2 × r1 r1 × c1s1 × r2 rd × cdsd × 1

Figure 2: TT parameterization of a convolution filter.

have P = l1l2CS learning parameters; after TT model-
ing, the number of learning parameters is PTT ({ri}di=1) =

l1l2r1 + rdcdsd +
∑d−1

i=1 riri+1cisi. For any given l, C,
and S, PTT is a function of the TT modeling parameters d
and {ri}di=1. Finding optimal values for these parameters is
an involved task. In this work, we select TT-ranks {rj}dj=1

by means of the method introduced in [4]. That is, we set
rj = zj(b) = bbrmax

j c, where rmax
j is an upper bound for

rj and b ∈ (0, 1) is a tunable coefficient, common across
all ranks, that determines the overall compression of the TT
model. Accordingly, the number of learning parameters for
this layer becomes

PTT (b, d) = l1l2z1(b) + zd(b)cdsd (3)

+

d−1∑
j=1

zj(b)zj+1(b)cjsj

and can be adjusted by tuning only b and d.

To demonstrate how tuning b and d changes the total
number of parameters, we consider the CAE of Fig. 1 and
factorize its filters according to the proposed method, for
varying values of b and d, while keeping the same number
of layers and number of channels per layer. In Fig. 3, we
plot the combined PTT (b, d) vs. d for various values of b.
We notice that, interestingly, the number of parameters is a
monotonically increasing function of b, but not of d. That
is, a lower number of TT-cores could possibly result to a
higher overall number of learning parameters.

200

-90

-71

-52

-33

-14

5

24

43

62

81

1000

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4

Co
m

pr
es

si
on

 (
%

)

#
 P

ar
am

et
er

s

d

b = 0.1 b = 0.3 b = 0.5 b = 0.7 b = 0.9 b = 1 conv

Figure 3: Number of parameters in CAE-TT vs. number of
TT factors d, for various values of compression coefficient
b along with baseline uncompressed CAE (conv).

4. Experimental Studies
In this section, we present the performance of the

proposed CAE-TT with experiments on image compres-
sion/reconstruction and denoising. For our experiments
we employ the standard MNIST [16] and FMNIST [17]
datasets. Both datasets consist of 60, 000 training and
10, 000 testing grayscale images of size 28×28 capturing 10
distinct classes. To demonstrate the parameter-tuning abil-
ity of the proposed method, we also present experiments
with online training. To that end, we partition training data
from MNIST and FMNIST into 5 and 6 streaming batches,
respectively. Each stream batch consists of 1, 000 examples
from each of the 10 classes. All training and testing im-
ages are normalized to take values in [0, 1]. In all our stud-
ies, we consider the basic CAE of Fig. 1 that constitutes of
10 layers that include 2 down-sampling convolution layers
and 2 up-sampling transpose-convolution layers. Our opti-
mizer is ADAM [20] with a learning rate 10−3 and mini-
batch size of 5, 000 images. For the proposed CAE-TT, we
consider d = 2, which means that each filter is factorized
into three TT-cores. Our performance evaluation metrics are
Peak Signal-to-Noise Ratio (PSNR) and the Structural Sim-
ilarity Index Measure (SSIM) [21]. Finally, all the results
are averaged over three experimental realizations.

4.1. Results

4.1.1 Reconstruction

In this first set of studies, we consider simple compression
and reconstruction of images in the MNIST and FMNIST
datasets. The CAE and CAE-TT architectures are as pre-
sented above.

In our first study, we consider that all FMNIST training
data are at-once available (i.e., not streaming) to the net-

10

15

20

25

30

35

40

0 28000 56000 84000 112000 140000

PS
N

R

Parameters

Network Width Tuning TT

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 28000 56000 84000 112000 140000

SS
IM

Parameters

Network Width Tuning TT

Figure 4: PSNR (top) and SSIM (bottom) performance vs.
number of parameters for network-width tuning and the
proposed TT-rank tuning (CAE-TT).

work and we investigate how different numbers of learning
parameters affect the reconstruction performance. As dis-
cussed in Section I, a simple approach to adjust the num-
ber of learning parameters is to tune the network width –
i.e., the number of filters per convolution and transpose-
convolution layer. Alternatively, the proposed approach ad-
justs the number of parameters by tuning the TT-ranks of
the filters. In Fig. 4, we plot the image reconstruction per-
formance (PSNR on the top and SSIM on the bottom) ver-
sus the number of learning parameters, for network-width
tuning and TT-rank tuning. We observe that CAE-TT lies
closer to the top-left corner. This is particularly clear in the
SSIM plots where CAE-TT attains very high performance,
exceeding 0.96, with fewer than 40, 000 parameters, while
network-width tuning needs more than 70, 000 parameters
to reach similar performance.

Next, we demonstrate the utility of the proposed method
in online learning, when more training data become avail-
able in a streaming fashion. To that end, we first consider

201

fixed filter TT-ranks (b = 0.1) and, accordingly, a fixed
number of approximately 5, 000 learning parameters. We
consider that a new batch of training data (1, 000 exam-
ples per class) streams in every 300 training epochs (i.e.,
at epochs 1, 301, 601, 901, 1201, and 1501). In Fig. 5 we
observe that the streaming training data help the network
increase its performance. However, since the network ca-
pacity is limited due to the small number of learning pa-
rameters, the performance curves seem to reach a plateau
after 1, 200 epochs. For example, the SSIM performance
plateaus at the low value of 0.6, which demonstrates that
the network has under-fitted the training data. It is therefore
clear that, as new training data become available, the net-
work capacity has to increase in order to allow for higher
performance.

Next, we repeat this experiment, this time increasing
the TT-ranks (and, thus, the network capacity) every time
new training data batch streams in. Specifically, at epochs
1, 301, 601, 901, 1201, and 1501 b is tuned to the values
0.1, 0.3, 0.5, 0.7, 0.9, and 1, respectively. In Fig. 6 we plot
reconstruction performance (PSNR on the left and SSIM
on the right) at each training epoch (gray curve) and after
training on each new/streaming batch (blue curve). The
gray curves naturally exhibit performance dips as training
switches from one streaming batch to another. These dips
result from the newly introduced and randomly initialized
untrained parameters in the TT-cores that have been aug-
mented by the TT-rank increase. The secondary vertical
axis presents the corresponding number of learning param-
eters at each epoch. Comparing Fig. 6 with Fig. 5, it
is clear that the progressive increase of the TT-ranks al-
lows for significantly superior learning. In Fig. 7 we re-
peat the same experiment on the MNIST dataset. This time
we consider just 5 streaming batches, received at epochs
1, 301, 601, 901, and 1201. Once again, tuning the TT-ranks
shows significant performance enhancement.

We observe dips in PSNR (per epoch) and SSIM (per
epoch) for both datasets as training switches from one
streaming batch to the next one. These dips result from
the newly introduced and randomly initialized untrained
parameters in the TT-cores corresponding to the increased
rank values. We also observe an overall increasing trend in
PSNR (per batch) and SSIM (per batch) performance while
testing on the same dataset. This illustrates the ability of the
proposed CAE-TT method to increase the learning capacity
of the network by increasing the ranks of the underlying TT-
cores of the convolution and transpose-convolution filters as
new training data batches are processed.

4.1.2 Denoising

In this study, we repeat the above online learning experi-
ment, but this time for noisy data. Specifically, we consider

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 300 600 900 1200 1500 1800

#
 P

ar
am

et
er

s

SS
IM

Epoch

Parameters SSIM (per epoch) SSIM (per batch)

Figure 5: SSIM at each epoch, for fixed TT-rank compres-
sion coefficient b = 0.1.

Method SSIM Num. Parameters
NLM 0.5440
BM3D 0.5593
CAE-NWT 0.8272 26, 664
CAE-NWT 0.8725 59, 706
Proposed CAE-TT (b = 0.5) 0.8714 39, 304

Table 1: Comparison of SSIM performances in image de-
noising experiment.

that half of the pixels in each training image are additively
corrupted by white Gaussian noise with mean 0 and vari-
ance 0.6 and then clipped back in the range [0, 1]. In Figs. 8
and 9, we plot PSNR and SSIM at each epoch along with
the number of parameters on the secondary vertical axis.
Our observations are similar to those of our reconstruction
studies in Section 4.1.1 but this time the performance curves
plateau to lower values, due to the noise corruption. Inter-
estingly, this plateau can be reached with as few as 70, 000
learning parameters.

In Table 1, we compare the SSIM performance of Non-
Local Means (NLM) [22], Block-Matching and 3D filter-
ing (BM3D) [23], CAE with network-width tuning (CAE-
NWT), and the proposed CAE-TT (for b = 0.5) on the
MNIST dataset. NLM and BM3D are standard and pop-
ular non-deep learning methods for image denoising. We
observe that both CAE methods outperform the non-deep
learning counterparts. Also, we observe that CAE-TT of-
fers similar performance to CAE-NWT, but for far fewer
learning parameters.

In Figs. 10 and 11, we show examples of clean and
corrupted MNIST and FMNIST images, respectively, as
well as denoised reconstructions by means of NLM, BM3D,
CAE-NWT (59, 706 parameters), and the proposed CAE-

202

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
3
6
9

12
15
18
21
24
27
30

0 300 600 900 1200 1500 1800

#
 P

ar
am

et
er

s

PS
N

R

Epoch

Parameters PSNR (per epoch) PSNR (per batch)

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 300 600 900 1200 1500 1800

#
 P

ar
am

et
er

s

SS
IM

Epoch

Parameters SSIM (per epoch) SSIM (per batch)

Figure 6: PSNR (left) and SSIM (right) at each epoch, for increasing TT-ranks (reconstruction on the FMNIST dataset).

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
3
6
9

12
15
18
21
24
27
30

0 300 600 900 1200 1500

#
 P

ar
am

et
er

s

PS
N

R

Epoch

Parameters PSNR (per epoch) PSNR (per batch)

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 300 600 900 1200 1500

#
 P

ar
am

et
er

s

SS
IM

Epoch

Parameters SSIM (per epoch) SSIM (per batch)

Figure 7: PSNR (left) and SSIM (right) at each epoch, for increasing TT-ranks (reconstruction on the MNIST dataset).

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
3
6
9

12
15
18
21
24
27
30

0 300 600 900 1200 1500 1800

#
 P

ar
am

et
er

s

PS
N

R

Epoch

Parameters PSNR (per epoch) PSNR (per batch)

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 300 600 900 1200 1500 1800

#
 P

ar
am

et
er

s

SS
IM

Epoch

Parameters SSIM (per epoch) SSIM (per batch)

Figure 8: PSNR (left) and SSIM (right) at each epoch, for increasing TT-ranks (denoising on the FMNIST dataset).

203

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
3
6
9

12
15
18
21
24
27
30

0 300 600 900 1200 1500

#
 P

ar
am

et
er

s

PS
N

R

Epoch

Parameters PSNR (per epoch) PSNR (per batch)

0
14000
28000
42000
56000
70000
84000
98000
112000
126000
140000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 300 600 900 1200 1500

#
 P

ar
am

et
er

s

SS
IM

Epoch

Parameters SSIM (per epoch) SSIM (per batch)

Figure 9: PSNR (left) and SSIM (right) at each epoch, for increasing TT-ranks (denoising on the MNIST dataset).

TT (39, 304 parameters). The CAE methods exhibit similar
performance (with the proposed CAE-TT using 34% fewer
parameters than CAE-NWT), significantly outperforming
the non-deep-learning counterparts.

4.2. Conclusion

We introduced CAE-TT: a convolutional auto-encoder
the filters of which have tunable Tensor-Train (TT) struc-
ture. The proposed method allows for tuning the learning
parameters of the network without changing its architec-
ture. The number of parameters can be reduced in the case
of limited data in order to avoid over-fitting. They can also
increase, as more training data become available, in order
to increase the network capacity and facilitate learning im-
provements. Our numerical studies demonstrate that adjust-
ing the number of learning parameters by means of TT-rank
tuning can attain higher performance than adjusting them
by means of network-width tuning.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” Ad-
vances in neural information processing systems, vol. 25,
pp. 1097–1105, 2012.

[2] M. Dhanaraj, M. Sharma, T. Sarkar, S. Karnam, D. G.
Chachlakis, R. Ptucha, P. P. Markopoulos, and E. Saber,
“Vehicle detection from multi-modal aerial imagery us-
ing YOLOv3 with mid-level fusion,” in Proc. SPIE De-
fense Commercial Sens., (Anaheim, CA), pp. 1139506:1–
1139506:11, May 2020.

[3] M. Sharma, M. Dhanaraj, S. Karnam, D. G. Chachlakis,
R. Ptucha, P. P. Markopoulos, and E. Saber, “YOLOrs: Ob-
ject detection in multimodal remote sensing imagery,” IEEE
JSTARS, vol. 14, pp. 1497–1508, 2020.

[4] M. Sharma, P. P. Markopoulos, and E. Saber, “YOLOrs-lite:
A lightweight CNN for real-time object detection in remote-
sensing,” in IEEE IGARSS, p. accepted to appear, 2021.

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-Decoder with atrous separable convolution for se-
mantic image segmentation,” in Proc. ECCV, pp. 801–818,
2018.

[6] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao,
“Stacked convolutional denoising auto-encoders for feature
representation,” IEEE trans. on cybernetics, vol. 47, no. 4,
pp. 1017–1027, 2016.

[7] A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard,
P. Perez, and C. Theobalt, “MoFA: Model-based deep convo-
lutional face autoencoder for unsupervised monocular recon-
struction,” in Proc. IEEE ICCV Workshops, pp. 1274–1283,
2017.

[8] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine
learning for data streams: with practical examples in MOA.
MIT press, 2018.

[9] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep
learning: Learning deep neural networks on the fly,” arXiv
preprint arXiv:1711.03705, 2017.

[10] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin,
“Compression of deep convolutional neural networks for
fast and low power mobile applications,” arXiv preprint
arXiv:1511.06530, 2015.

[11] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky, “Speeding-up convolutional neural net-
works using fine-tuned CP-decomposition,” arXiv preprint
arXiv:1412.6553, 2014.

[12] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci-
entific Comput., vol. 33, no. 5, pp. 2295–2317, 2011.

[13] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ul-
timate tensorization: compressing convolutional and FC lay-
ers alike,” arXiv preprint arXiv:1611.03214, 2016.

204

(a)

(b)

(c)

(d)

(e)

Figure 10: (a) Examples of MNIST images. (b)-(e) Im-
age denoising examples (top row: corrupted; bottom row:
denoised) using methods: (b) NLM; (c) BM3D; (d) CAE-
NWT (59, 706 parameters); (e) CAE-TT (39, 304 parame-
ters).

[14] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A.
Nicolaou, A. Anandkumar, and S. Zafeiriou, “Tensor meth-
ods in computer vision and deep learning,” Proceedings of
the IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[15] J. Su, W. Byeon, J. Kossaifi, F. Huang, J. Kautz, and
A. Anandkumar, “Convolutional tensor-train LSTM for
spatio-temporal learning,” arXiv preprint arXiv:2002.09131,
2020.

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

(a)

(b)

(c)

(d)

(e)

Figure 11: (a) Examples of FMNIST images. (b)-(e) Im-
age denoising examples (top row: corrupted; bottom row:
denoised) using methods: (b) NLM; (c) BM3D; (d) CAE-
NWT (59, 706 parameters); (e) CAE-TT (39, 304 parame-
ters).

Howard, W. Hubbard, and L. D. Jackel, “Backpropagation
applied to handwritten zip code recognition,” Neural compu-
tation, vol. 1, no. 4, pp. 541–551, 1989.

[17] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a
novel image dataset for benchmarking machine learning al-
gorithms,” arXiv preprint arXiv:1708.07747, 2017.

[18] L. Li, W. Yu, and K. Batselier, “Faster tensor train decom-
position for sparse data,” arXiv preprint arXiv:1908.02721,
2019.

205

[19] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A tensor-train
deep computation model for industry informatics big data
feature learning,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 7, pp. 3197–3204, 2018.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980v9 (ICLR, May
2015, San Diego, CA), Jan. 2017.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to struc-
tural similarity,” IEEE Trans Image Process, vol. 13, no. 4,
pp. 600–612, 2004.

[22] A. Buades, B. Coll, and J.-M. Morel, “Non-local means de-
noising,” Image Processing On Line, vol. 1, pp. 208–212,
2011.

[23] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3-d transform-domain collaborative fil-
tering,” IEEE Trans Image Process, vol. 16, no. 8, pp. 2080–
2095, 2007.

206

