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Abstract

Background-Foreground separation and appearance
generation is a fundamental step in many computer vi-
sion applications. Existing methods like Robust Subspace
Learning (RSL) suffer performance degradation in the pres-
ence of challenges like bad weather, illumination varia-
tions, occlusion, dynamic backgrounds and intermittent ob-
ject motion. In the current work we propose a more ac-
curate deep neural network based model for background-
foreground separation and complete appearance genera-
tion of the foreground objects. Our proposed model, Guided
Attention based Adversarial Model (GAAM), can efficiently
extract pixel-level boundaries of the foreground objects for
improved appearance generation. Unlike RSL methods our
model extracts the binary information of foreground objects
labeled as attention map which guides our generator net-
work to segment the foreground objects from the complex
background information. Wide range of experiments per-
formed on the benchmark CDnet2014 dataset demonstrate
the excellent performance of our proposed model.

1. Introduction

Background-Foreground separation and appearance gen-
eration is a critical step in many applications of computer
vision such as smart cities traffic monitoring [3], human ac-
tivity analysis [22], surveillance, and security [23]. Despite
wide applications, this problem is challenging in the pres-
ence of complex scenes manifesting various conditions like
illumination variations, bad weather, occlusion, intermittent
object motion, and dynamic background.

To address these challenges in background-foreground
separation, prior works have relied on Robust Subspace

Figure 1. Foreground appearance generation by our proposed
GAAM model exploiting guided attention based adversarial net-
work and by an existing GAN based methodology pix2pix [8]. The
video sequence ‘Corridor’ shown in this figure are from bench-
mark CDnet2014 dataset category ‘Thermal’.

Learning (RSL) and Robust Principal Components Analy-
sis (RPCA) techniques. The underlying idea of RSL based
methods is to convert the input data matrix (video frames
processed in batch format) into two components, low-rank
and sparse information. Where the former component
represents the background while the latter represents the
foreground information. The RSL based techniques have
shown promising results for background-foreground sepa-
ration [12, 9, 4]. However, without using spatio-temporal
constraints it is extremely challenging for RPCA based
methods to handle dynamic background variations because
they assume that the foreground is dynamic while the back-
ground is static. However, in the real complex environ-
ments this is a rather restrictive assumption. Despite the
good performance, RSL based techniques cannot faithfully
generate the appearance of foreground objects in complex
scenes. Therefore, exploiting deep neural networks, specif-
ically generative adversarial networks (GANs), to address
this problem is a suitable alternative. For instance, ro-
bust deep auto-encoders can not only segment background-
foreground information but also these methods can generate
the appearance of the foreground objects [14].

In the current work we aim to separate background-
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Figure 2. Overall architecture of our proposed GAAM model using guided attention based adversarial network. The input frame is given
to the modified Unet based primary generator Gθ and vanilla U-net based based secondary generator Gattn. The primary generator outputs
the foreground appearance information while the secondary generator outputs the attention. The Gattn probability map guides our proposed
model to generate accurate foreground appearance by removing artifacts. While the discriminator role is same to perform classification
between paired wise real vs fake samples. The video sequence ‘Corridor’ shown in this figure are from benchmark CDnet2014 dataset
category ‘Thermal’.

foreground information and generate more accurate appear-
ance (see figure 1). To actualize this, we propose a Guided
Attention based Adversarial Model (GAAM) for accurate
background-foreground separation as well as foreground
generation. Our attention module mimics the idea of sep-
arating background-foreground objects in complex scenes
same as RSL based techniques. However, RSL based meth-
ods cannot generate the appearance of the required fore-
ground objects. In contrast to that, our model has the ability
to not only separate the background-foreground objects in
complex scenes but it can also generate the appearance of
foreground objects with high accuracy. This idea is visu-
ally appealing because our model cannot only separate the
background-foreground objects in binary format but it can
also provide the visual appearance of the separated fore-
ground objects in real complex environments. Our main
contributions are summarized as follows:

• We propose a novel approach that can more accurately
separate background-foreground information in com-
plex scenes and it can also generate the complete ap-
pearance of the foreground objects with high accuracy.

• We propose an attention based approach to suppress
background image regions. This key aspect in our
GAAM model separates background-foreground in-
formation and generates appearance in complex scenes
simultaneously (see figure 2).

• We propose an efficient formulation of various loss
functions to claim high accuracy in this task.

The rest of the paper is organized as follows: Sec-
tion 2 explains related work in the domain of background-
foreground separation in complex scenes. Our proposed
GAAM method, including the details of model architecture,
is explained in Section 3. The implementation details and
the experimental results are briefly discussed in Sections 4
and 5, respectively. Finally, the conclusion of this study is
presented in Section 6.

2. Related Work
Background-Foreground separation in complex scenes

has remained an important research topic over the past two
decades and so many studies have been conducted to ad-
dress this challenging problem [5]. Whereas foreground
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appearance generation is a relatively new domain in this re-
search problem and is attracting attention [17]. The clas-
sical algorithms for background-foreground separation are
based on robust subspace learning [15, 16, 10]. Javed et
al. [11] proposed a RPCA based efficient technique to
handle spatio-temporal information in complex scenes for
background-foreground separation. The method performed
well in many complex scenes however, it is a hybrid RPCA
based methodology that addresses the offline data process-
ing limitation. Wipf et al. [7] proposed a study based on
the fusion of classical robust subspace learning approach
with deep learning methodology. The technique presents
the idea that Variational autoencoders can be considered as
the natural evolution of RPCA with the potential to learn the
nonlinear manifolds of unknown dimension cloak by entire
data corruptions. Despite the excellent performance of RSL
methods the limitations of high computational cost and of-
fline data processing makes them unsuitable for real-time
applications. Moreover, RSL based approaches can only
segment foreground objects in binary format and lacks the
ability to generate foreground appearance information.

Recently, robust deep learning based methods includ-
ing generative adversarial networks have shown signifi-
cantly high-performance in background-foreground separa-
tion and appearance generation [8]. For instance, Isola et
al.[8] proposed a technique using conditional generative ad-
versarial network that has the ability to generate appearance
of the foreground objects. The training is done using cross-
entropy loss term and `1 distance between generated output
and the original image sample ground-truth. Sultana et al.
[19] proposed a method called ‘CcGAN’ using conditional
generative adversarial network as well. The model has the
ability to not only segment the occluded foreground objects
but also it can generate the missing information caused by
the occlusion. Sultana et al.[18] also proposed a technique
‘BslsGAN’ that works using conditional least squares gen-
erative adversarial networks. The model has the potential
to efficiently segment the foreground objects from com-
plex background information. In comparison to above men-
tioned existing works our proposed method has an attention
module with efficient loss terms and an effective generator
network that has the potential to segment as well as generate
the appearance information simultaneously.

3. Proposed Guided Attention Adversarial
Model (GAAM)

Our proposed GAAM as shown in Figure 2 is a super-
vised learning technique for background-foreground sep-
aration and appearance generation. In order to generate
the full appearance our goal is to train a generator network
G : X → Y . We are given paired input samples x ∈ X and
y ∈ Y , and the supervised setting assumes that x and y are
drawn from distributions PxvX (x) and PyvY (y). The paired

image samples are the given input video frames with its cor-
responding foreground objects. The model learns a transfor-
mation of input data to foreground appearance generation.
Therefore, based on the requirements described above, we
propose to learn θ by minimizing the following objective
functions described in the following section.

3.1. Loss Functions

For the generator G combined loss function is given be-
low:

min
G

(Ladv(x,G(x),D)+α1Lhinge(x,G(x))

+α2Lapp(x,G(x))+α3Lstyle(x,G(x))),
(1)

where G(x)=Gattn(x)⊗Gθ(x), and Gθ is the modified Unet
based generator and Gattn is the attention based secondary
generator (architectural details are provided in section 3.2).
The output of Gθ is a transformed image in terms of fore-
ground appearance generation. While Gattn predicts a prob-
ability map that guides our proposed model to generate ac-
curate foreground appearance by removing artifacts. In the
final training objective function mentioned in Eq. (1) the
loss term Ladv is the least squares adversarial loss given by
Eq. (2), Lhinge is the hinge loss given by Eq. (5), Lapp given
by Eq. (6) is the appearance loss and Lstyle given by Eq.
(7) is the feature matching neural style transfer loss in the
image domain to make sure that G(x) learns to not only sep-
arate the background-foreground objects but also generates
its appearance with better accuracy. In the proposed sys-
tem, all the three networks are trained jointly in end-to-end
manner. The details of the adversarial loss are as follows:

Ladv(x,G(x),D) =
1
2
Ex[(D(x,G(x))−1)2]. (2)

The corresponding adversarial loss term for the discrimina-
tor is given by:

min
D

Ladv(x,y,G(x),D) =
1
2
Ex,y[(D(x,y)−1)2]+

1
2
Ex[(D(x,G(x)))2].

(3)

The over all discriminator loss consist of two terms includ-
ing adversarial loss and hinge loss:

min
D

(Ladv(x,y,G(x),D)+α1Lhinge(x,y,G(x),D)) (4)

The hinge loss in our proposed model is formulated as fol-
lows [13]:

Lhinge(x,y,G,D) =−E(x,y)∼pdata
[min(0,−1+D(x,y))]−

E(x)∼pdata
[min(0,−1−D(x,G))],

Lhinge(x,G,D) =−E(x)∼pdata
[(D(x,G)−1)].

(5)
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Figure 3. Generator network architecture in our proposed model is
a Modified Unet. The video sequence ‘Corridor’ shown in this fig-
ure are from benchmark CDnet2014 dataset category ‘Thermal’.

The appearance loss is visual difference between the
ground-truth information and output of the model:

Lapp(G) = Ex,y[||G(x)− y||1]. (6)

The style loss is calculated between all convolutional layers
of the discriminator network fed with generated output and
the ground-truth:

Lstyle(G) = Ex,y

nd

∑
i=0

[||Ψi(G(x))−Ψi(y)||1], (7)

where nd are the discriminator layers. All loss terms con-
strain the generator model to learn foreground details and
ignore the background clutter while maintaining the realis-
tic touch of the foreground objects.

Figure 4. Discriminator network architecture in our proposed
model is a PatchGAN. The video sequence ‘Corridor’ shown in
this figure are from benchmark CDnet2014 dataset category ‘Ther-
mal’.

3.2. Model Architecture

Our proposed GAAM model consists of a primary and
a secondary generator and a single discriminator. The pri-
mary generator is a modified version of Unet model (Gθ) as
shown in the Figure 3, while a vanilla Unet generator is ex-
ploited to generate attention (Gattn). The aim of the Gθ is to
generate the appearance of the foreground objects whereas
Gattn predicts the probability map that is considered as the
attention mask. The output resolution of Gattn is the same
as that of the input x where each pixel has a probability
value between 0.00− 1.00, where 1.00 means foreground
and 0.00 means background. The architecture of the Gθ

is similar to Unet formulation but with added max-pooling
layers in the down-sampling path and within block short-
circuit connections. More specifically, in the encoding part,
convolution with stride 1 is performed on original image
samples as well as its resized version. The feature maps
from both convolutional layers are concatenated within each
block and input to the next block till the bottle-neck layer.
Afterwards, in the decoder part we perform transposed con-
volutions with stride 1 and 2 to match the exact dimen-
sions of feature maps for creating skip-connections between
encoder-decoder as shown in the Figure 3. This modified
version of Unet model helps in the blending of local as well
as global features necessary for accurate foreground appear-
ance generation. All the weights are randomly initialized
and LeakyReLU activation is used. The discriminator net-
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Algorithm Algorithm Type Challenge Categories
Baseline Dynamic Bg Thermal Bad Weather IOM* Camera Jitter Shadows Average

MSCL [11] RSL 0.87 0.85 0.82 0.83 0.80 0.83 0.82 0.83
DECOLOR [24] RSL 0.92 0.70 0.70 0.76 0.59 0.77 0.83 0.75

TVRPCA [6] RSL 0.84 0.55 0.69 0.78 0.57 0.63 0.71 0.68
SPRCA [10] RSL 0.82 0.84 0.79 0.75 0.80 0.78 0.77 0.79
DeepBS [2] DL 0.95 0.87 0.75 0.83 0.63 0.89 0.93 0.83

BSUV-net [20] DL 0.96 0.79 0.85 0.87 0.74 0.77 0.92 0.84
DeepDC [1] DL N/A N/A N/A N/A N/A N/A N/A 0.91

GAAM DL 0.96 0.90 0.93 0.95 0.82 0.91 0.94 0.91
Table 1. Background-Foreground separation: Quantitative performance comparison of our proposed GAAM model with RSL as well as
Deep learning (DL) based existing methods on benchmark CDnet2014 dataset using F measure. The highest and the second highest results
are shown in red and blue colors, where IOM* is category ’Intermittent Object Motion’.

work, as shown in Figure 4, in our proposed GAAM sys-
tem works on the formulation of PatchGAN [8]. The goal
of this formulation is to classify real vs fake over-lapping
image patches. PatchGAN is a Fully Convolutional Neu-
ral Network (FCN) that has fewer parameters as compared
to full image discriminator and it has the ability to process
arbitrarily sized input images.

4. Implementation

In this study, we implement our proposed GAAM system
using Tensorflow and execute the system on a single TitanX
GPU. Different blocks in our proposed networks maintain
the arrangement of convolution-BatchNorm-LReLu mod-
ules [8]. The training and testing samples are fixed to the
resolution 256×256×3. We use the Adam optimizer with
a learning rate of 0.0002 and β = 0.5. We also exploit data
augmentation in the training of our proposed model by ran-
dom flipping of image samples. During testing the model is
given input video frames from complex scenes to generate
foreground appearance with high accuracy.

5. Experiments

Experiments are performed on ‘Change Detection 2014
(CDnet2014)’ [21] benchmark dataset. Seven challenging
categories are selected including ‘Baseline’, ‘Bad Weather’,
‘Camera Jitter’, ‘Dynamic Background’, ’Intermittent Ob-
ject Motion’, ‘Shadows’ and ‘Thermal’. For the training
of our GAAM model we exploited 70% of video frames
from each category while remaining 30% are used for the
testing of scene-specific models. The qualitative and quan-
titative comparisons of our proposed model are done with
various existing RSL based techniques such as MSCL [11],
DECOLOR [24], TVRPCA [6], SRPCA [10], and deep
learning based techniques including DeepBS [2], BSUV-
net [20], DeepDC [1], pix2pix [8], CcGAN [19], BsLsGAN
[18]. In our experiments we did two kinds of evaluation one
for the binary background-foreground separation (attention
maps) and the other is the foreground appearance genera-
tion. For the former we exploited F measure calculated as:

R =
TP

TP +FN
, P =

TP

TP +FP
, (8)

F =
2(P ·R)
P+R

. (9)

In the above equations FN is False Negatives, FP is False
Positives, TP is True Positives, P is precision and R is Re-
call. Therefore, to achieve high accuracy the model should
have high value of F measure and low value of L1 distance
as shown in tables 1 and 2. For the appearance genera-
tion we used L1 distance for comparison with existing state-
of-the-art methods. More details about the results are dis-
cussed in the following sections.

5.1. Background-Foreground Separation Evalua-
tion

We converted attention maps into binary format for the
ease of quantitative comparison of our proposed GAAM
model with RSL as well as deep learning based techniques.
It can be seen in Table 1 that our proposed model has
achieved best results in all challenging categories of CD-
net2014 dataset. The quantitative results also show that
RSL based methods are affected by the challenging con-
ditions in the complex scenes. For instance, in the condi-
tions like camera jitter, the background is dynamic and it
leads RSL based techniques towards performance degrada-
tion. However, our proposed model is not affected by static
or dynamic background scenes, hence achieved good per-
formance. The visual results presented in Figure 5 shows
that our GAAM model has excellent performance as com-
pared to RSL and deep learning based methods.

5.2. Foreground Appearance Generation Evalua-
tion

For the evaluation of foreground appearance generation,
we exploited L1 distance to calculate error between the gen-
erated output and ground-truth information. It can be seen
in Table 2 that our proposed GAAM model has achieved
best results in all challenge categories of CDnet2014 dataset
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Figure 5. Background-Foreground separation performance visual comparison with existing methods on benchmark CDnet2014 dataset.
The qualitative results show the performance degradation of RSL based technique DECOLOR [24] while deep learning based methods
including our proposed GAAM has better results.

Figure 6. Visual performance comparison of foreground generation on benchmark CDnet2014 dataset. It can be seen in the figure that
both pix2pix [8] and CcGAN [19] have shown performance degradation due to the fact that they lack attention module to estimate better
foreground appearance. In contrast to that, GAAM has the potential to generate good quality foreground appearance information.

with lowest values of L1 distance. The visual results pre-
sented in Figure 6 show that our proposed model is efficient
in terms of foreground appearance generation. For instance,

in the category ‘Baseline’ the video sequence ‘Office’ (first
row Figure 5) the existing method like pix2pix [8] has ar-
tifacts in its generated foreground appearance. The reason
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Challenge Categories Algorithm
pix2pix [8] CcGAN [19] BslsGAN [18] GAAM

Baseline 0.0167 0.1114 0.0890 0.0089
Dy Bg* 0.2987 0.1753 0.0765 0.0035
Thermal 0.1334 0.2000 0.0999 0.0125

Bad Weather 0.1770 0.1041 0.1480 0.0097
IOM** 0.2901 0.2228 0.1300 0.0131

Camera Jitter 0.1040 0.2165 0.1689 0.0052
Shadows 0.0212 0.1040 0.1190 0.0043

Table 2. Foreground Appearance Generation: Quantitative per-
formance comparison of our proposed model with Deep learning
(DL) based existing methods on benchmark CDnet2014 dataset
using L1 distance. The highest and the second highest results are
shown in red and blue colors, where Dy Bg* is category ‘Dynamic
Background’ and IOM** is category ’Intermittent Object Motion’.

Training loss Terms F measure
Ladv 0.83
Ladv + α1 Lhinge 0.84
Ladv + α1 Lhinge + α2 Lapp 0.84
Ladv + α1 Lhinge + α2 Lapp + α3 Lstyle 0.91
Generator Network Formulation L1 Distance
Without Attention 0.2943
With Attention 0.0052

Table 3. Ablation study: performance comparison of different loss
terms in our proposed objective function on CDnet2014 dataset,
category ‘Camera Jitter’.

behind this fact is, although pix2pix is an efficient adversar-
ial learning based technique, however, only cross-entropy
loss term and vanilla Unet lacks the ability to generate the
accurate pixel-level appearance information of foreground
objects. On the other hand, our proposed model, working
with guided attention based modified Unet formulation and
efficient loss terms enhances the quality of the generated
image.

5.3. Ablation Study

We performed two kinds of ablation studies to evaluate
the significance of different components in the proposed
objective function. First part of the ablation study high-
lights the importance of various loss terms, while the second
term is about the effect of attention module in our proposed
GAAM model. The analysis is performed as follows:

• It can be seen in Table 3 that adding hinge loss in the
least square adversarial objective function improves
the results. Moreover, the additional regularization in
terms of image and feature domain that are actually
appearance and style losses further improve the qual-
ity of the generated image. Note that in this category of
ablation study, the network architecture is kept fixed.

• The second part of the ablation experiments are to
highlight the significance of the attention module. It
can be seen in Table 3 that adding the attention module
improves the results of foreground appearance gener-
ation. In practice without attention module the fore-

Figure 7. Effects of attention module in our proposed GAAM
method output for foreground appearance generation on bench-
mark CDnet2014 dataset. The visual results show that without
the attention module there could be missing information in the ap-
pearance generation of the foreground objects. Nonetheless, the
attention guided module generates better quality foreground infor-
mation.

ground appearance generation suffer from perturba-
tions of background texture/color and artifacts around
the region of interests. While with the predicted at-
tention maps our GAAM model learns to segment the
foreground objects accurately, thus maintaining the
high visual quality of the results as shown in Figure
7. Note that in this category of ablation study, the final
objective function is kept fixed as Eq. (1).

6. Conclusion
In this work a deep learning based algorithm is pro-

posed for background-foreground separation as well as
foreground generation. The proposed model works with
guided attention based adversarial module that has the effi-
ciency to extract pixel level boundaries of the background-
foreground region separation. Unlike RSL methods our
model extracts binary information of foreground objects
which are labeled as attention maps. The attention maps
guide the generator network to segment the foreground ob-
jects from the complex background scenes. Experiments
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performed on benchmark CDnet2014 dataset demonstrated
excellent performance of the proposed model compared
with various existing state-of-the-art RSL methods as well
as deep learning based techniques.
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