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Abstract

Robust principal component analysis (RPCA) has widely
application in computer vision and data mining. However,
the various RPCA algorithms in practical applications need
to know the rank of low-rank matrix in advance, or ad-
just parameters. To overcome these limitations, an adap-
tive double-weighted RPCA algorithm is proposed to re-
cover low-rank matrix accurately based on the estimated
rank of the low-rank matrix and the reweighting strategy in
this paper. More specifically, the Gerschgorin’s disk the-
orem is introduced to estimate the rank of the low-rank
matrix first. Then a double-weighted optimization model
through two weighting factors for the low rankness and
sparsity is presented. Finally an adaptive double weighted
algorithm based on rank estimation is proposed, which can
reweight the singular values of low-rank matrix and the
sparsity of sparse matrix iteratively. Experimental results
show that the proposed double-weighted RPCA algorithm
outperforms the state-of-the-art RPCA methods.

1. Introduction

In the past decades, the word has entered the age of “Big
Data”. The information industry is now facing the fact that
the size and the dimension of the data have reach an un-
precedented scale and are still increasing at an unprece-
dented rate [1]. Although many kinds of data, such as im-
age processing [2], video processing [3] and audio process-
ing [4], are in high dimensions, their distributions still have
low-dimensional manifolds. Low-rank matrix estimation
has attracted increasing attention due to its overwhelming
advantages in correctly and effectively acquiring and retain-
ing such low-dimensional information [2].

One typical low-rank matrix estimation method is the
low-rank matrix factorization (LRMF) [5], which factor-

izes the observed data M ∈ Rm×n into two smaller ones
U ∈ Rr×m and V ∈ Rr×n, where r � min(m,n), such
that M = UTV . A series of LRMF methods have been
developed, such as the classical singular value decompo-
sition (SVD) in `2 − norm [6], robust LRMF methods in
`1 − norm [5] and the probabilistic method [7].

Another research focuses on the rank minimization,
which decomposes the data matrix into a low-rank ma-
trix L ∈ Rm×n and a small perturbation sparse matrix
S ∈ Rm×n, i.e., M = L + S. Classical Principal Com-
ponent Analysis (PCA) [8], which is the most widely tool
to find the best approximation of the underlying low-rank
structure of the observation data, can effectively estimate
the low-rank matrix L by minimizing the rank of the ma-
trix M . However, the PCA processing is sensitive to out-
liers, which limits its applications. In [9], Candès et al. pro-
posed Robust principal component analysis (RPCA) to ad-
dress the robustness and offered a powerful framework for
many practical applications [10, 11]. From an optimization
viewpoint, RPCA is formulated as the following optimiza-
tion problem:

argmin
L,S

rank(L) + λ‖S‖0 s.t. M = L+ S (1)

where M,L,S ∈ Rm×n, rank(L) denotes the rank of
matrix L, ‖S‖0 represents the `0−normwhich is the num-
ber of non-zero elements of S, λ is the balance parameter
between the two terms. Due to the penalty of sparse compo-
nent, RPCA is more robust than PCA in the case of outliers.
The minimization problem (1) is non-convex and is often
relaxed to the following convex surrogate:

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. M = L+ S (2)

where ‖L‖∗ =
∑min(m,n)

1 σi(L) denotes the nuclear norm
of L, σi(L) is the i-th singular value of matrix L, ‖S‖1
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denotes the `1 − norm of matrix S. Thus the nuclear
norm minimization problem is used to replace the rank min-
imization problem, which can recover the low-rank matrix
L efficiently by the Inexact Augmented Lagrange Multipli-
ers (IALM) [12]. In this algorithm, the singular value soft
threshold operator [13] is involved to solve the nuclear norm
approximation problem as follows [14]:

L∗ = argmin
L

‖M −L‖2F /2 + τ‖L‖∗ (3)

where τ is the parameter maintaining the rankness of matrix
L.

Albeit the nuclear norm minimization (NNM) success-
fully obtained the low-rank matrix L∗, it still has certain
limitations. As can be seen, nuclear norm minimizes the
rank of the matrix and inevitably reduces the singular val-
ues that exceed τ on the same scale. Therefore, one major
limitation of this approach is that all the singular values are
simultaneously and equally minimized. In other words, this
ignores the prior knowledge in shrinking the signal values
of the data matrix. More specifically, for background mod-
elling, the first singular value represents the background and
provides background information. Obviously, traditional
NNM methods cannot deal with these similar problems.

To improve the flexibility of NNM, Gu et al. [15] pro-
posed a weighted nuclear norm minimization (WNNM)
model. The original nuclear norm is replaced by a weighted
nuclear norm ‖L‖W =

∑min(m,n)
1 wiσi(L), where wi is

the non-negative weight of the ith singular value. This
method improves the accuracy of the recovered low rank
matrix. But the parameters are manually adjusted for differ-
ent applications, the generalization ability is limited in some
applications. On the other hand, the rank of the target low-
rank matrix L is assumed to be known in some applications.
For example, in the most tasks of background separation,
without considering the illumination, the rank of low-rank
matrix is 1. Based on prior rank information, a partial sum
of singular value (PSSV) minimization was given in [16] by

argmin
L,S

‖L‖p=r + λ‖S‖1 s.t. M = L+ S (4)

where ‖L‖W =
∑p

1 σi(L) denotes the sum of partial sin-
gular values after the rank. But it is not able to guaran-
tee that the rank of the decomposed low-rank matrix is
adaptively shrunk to the target rank. To this end, methods
[17, 18] have been proposed to solve the rank estimation of
low-rank matrix and adapatively reduce the singular value
of the input matrix.

For the optimization to the sparse matrix S, inferring by
Hale et al. [19], the optimal solution S∗ to the problem is

S∗ = argmin
S

‖M − S‖2F /2 + τ‖S‖1 = Sτ [M ] (5)

where the soft-thresholding operator Sτ [·] is proved to be
a very effective operator that minimizes the `1norm and
guarantees that the solution S∗ is the global minimum
[16, 20]. However, similar to the deficiencies in the min-
imization of nuclear norms, there is a key difference τ ,
which is the dependence on magnitude, between the `1 −
norm and the `0−norm. In other words, unlike the demo-
cratic penalization of the `0 − norm, larger coefficients are
penalized more heavily in the `1 − norm than the smaller
coefficients. To address the imbalance, Candès et al. [21]
proposed a weighted formulation of `−1−norm designed
to more democratically penalize nonzero coefficients. The
weighted `1 − norm minimization function is defined as:

argmin
S

‖M −L‖2F /2+ τ‖WS ◦S‖1 = SτWS
[M ] (6)

where WS is the weight of the sparse matrix S, ◦ de-
notes the element-wise product of the matrix. Peng et al.
[22] proposed a nonuniform singular value thresholding
(NSVT) operator to enhance low rank in NNM. By prop-
erly reweighting singular values for low-rank matrix and
reweighting `1 − norm for sparse matrix, better matrix re-
covery performance can be obtained.

It is noted that the rank of the low-rank matrix L is al-
ways unknown in many practical applications. By consid-
ering the distribution of singular values of the low-rank ma-
trix, we employ the Gerschgorin estimation method [23]
to estimate the rank of the low-rank matrix. Inspired by
the weighted L1 − norm on the low-rank matrix [24, 17],
we propose an adaptive weighting strategy to improve the
performance of low-rank matrix restoration based on iter-
atively estimated rank. As the singular values contain the
low-rank structure and the proportion of data information
in the corresponding component direction, they are used to
update the weights adaptively, which ensure that the rank
of the recovered low-rank matrix is equal to the target rank.
Motivated by reweighting the L1 − norm of the weighted
sparse signal to enhance the sparsity in [21], we introduced
the reweighting strategy to the weighted L1 − norm of
the sparse matrix. By considering the two weighting fac-
tors for the low rankness and sparsity, we propose an adap-
tive dual-weighted low-rank matrix recovery optimization
model with the estimated rank. This optimization prob-
lem is solved by employing alternating direction method
of multipliers (ADMM) [12]. Experimental results that the
proposed adaptive double-weighted RPCA approach signif-
icantly improves the accuracy and robustness of low-rank
matrix recovery. In short, the main contributions of this
work are summarized as follows:

• The Gerschgorin disc estimation method is introduced
to effectively estimate the rank of the low-rank matrix
without prior knowledge.
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• A new double-weighted optimization model is pro-
posed to recover the low-rank matrix and sparse ma-
trix through incorporating two weighting factors for
the rankness and sparsity.

• Also, an adaptive doube-weighted RPCA algorithm is
proposed by employing ADMM method. This tech-
nique ensure the estimated rank to be equal to the tar-
get rank, and enhance the sparsity.

• A number of experiments are conducted to illustrate
that the proposed method can be applied to various sit-
uations successfully, and outperforms the existing var-
ious RPCA approaches.

2. Double Weighted Low-Rank Matrix Recov-
ery Based on Rank Estimation

2.1. Rank Estimation for Low-Rank Matrix

The rank of low-rank matrix is a vital parameter dur-
ing the low-rank matrix recovery. For example, in back-
ground/foreground separation, the rank of background of
subjects is always 1, while it is 2 sometimes when the illu-
mination changes unevenly. Hence, the uncertainty of rank
of low-rank matrix affects the robustness of the recovery al-
gorithms. In this paper, Gerschgorin disk theorem [23] is
employed to estimate the rank of a low-rank matrix.

According to [17], the received signal M from the sen-
sor array in the noisy environment can be expressed as the
sum of low-rank source signal matrix L and sparse noisy
signal matrix S.

The covariance matrix RM of the matrix M with rank
r can be defined as:

RM = MMT (7)

Eigenvalue decomposition of RM is

RM = URM ΣRMUH
RB

(8)

where URM = [u1,u2, · · · ,um] is the eigenvector matrix,
and ΣRM = diag(σ1, σ2, · · · , σm) is the eigenvalue ma-
trix. Assuming, the rank of RM is r, which is far smaller
than m, RM can be transformed by Gerschgorin disk theo-
rem as follows:

RM =


R11 R12 · · · R1m

R21 R22 · · · R2m

...
...

. . .
...

Rm1 Rm2 · · · Rmm


=

[
RM1 R
RH Rmm

] (9)

where RM1 ∈ R(m−1)×(m−1) is obtained by deleting the
last row and column of RM . Then compute the covariance

matrix RM1 based on eigenvalue decomposition:

RM1 = UM1Σ1U
H
M1 (10)

RM1 can be defined similarly as RM , then a unitary trans-
formed matrix U ∈ Rm×m(UUH = I) is calculated:

U =

(
UM1 0
0T 1

)
(11)

The transformed covariance matrix is obtained by

RT = UHRMU =

(
UH

M1RM1UM1 UH
M1R

RHUM1 Rmm

)

=



σ′1 0 0 · · · 0 ρ1
0 σ′2 0 · · · 0 ρ2
0 0 σ′3 · · · 0 ρ3
...

...
...

. . .
...

...
0 0 0 · · · σ′m−1 ρm−1
ρ∗1 ρ∗2 ρ∗3 · · · ρ∗m−1 Rmm


(12)

where ρi = q′i
H
R. The eigenvalues of RT can be esti-

mated using Gerschgorin disk theorem. Thus, the radii of
the first (m-1) Gerschgorin’s disk can be written as:

ri = |ρi| = |q′i
H
R| (13)

where the radius ri of the ith Gerschgorin’s disk depends
on the size of q′i

H
R. If q′i, is the eigenvector in the sparse

space, ri will be significantly small and close to zero. If
q′i, is the eigenvector of the low-rank part, ri will be far
from zero. Hence, the rank can be estimated by the heuristic
decision rule:

GDE(k) = rk −
D(n)

m− 1

m−1∑
i=1

ri (14)

where k = 1, 2, · · · ,m − 2, the adjustment factor D(n) is
a constant related to n. In this paper, we define D(n) =
2.3/log(n). The rank of low-rank matrix is r = k − 1
when GDE(k) is negative the first time. After estimating
the rank based on Gerschgorin disk theorem, we propose
a double weighted low-rank matrix factorization algorithm
based on rank estimation in the next section.

2.2. Double Weighted Low-Rank Matrix Recovery

In this section, an adaptive weighting RPCA algorithm is
proposed to recover the low-rank matrix and the corrupted
measurements by solving the following double-weighted
optimization problem:
argmin

L,S
‖L‖WL

+ λ‖WS ◦ S‖1 s.t. M = L+ S

(15)
where ‖L‖WL

=
∑
i ωL,iσi(L), WL =

diag({ωL,i}1≤i≤min(m,n)) is the weight of low-rank
matrix L, WS is the weight of sparse matrix S, the
operator ◦ denotes the element-wise multiplication. WL

and WS are determined in the iterative recovery algorithm.
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Before solving the optimization problem (15), we intro-
duce the following important theorem.
Theorem 1 [17] Given Z ∈ Rm×n, WL =
diag({ωi}1≤i≤min(m,n)), where 0 < ωi ≤ ωi+1, τ > 0.
Z is decomposed by SVD as Z = UΣZV

T , where
ΣZ = diag({ωi(Z)}1≤i≤min(m,n)). Then the optimiza-
tion

argmin
X

‖X −Z‖2F /2 + τ‖X‖WL
(16)

has solution is X̂ = UΣ̂XV T with Σ̂X = SτWL
[ΣZ ],

where SτWL
[ΣZ ] is the element-wise application of the

soft-threshold operator:
S(y) = sign(y)max(|y| − ρ, 0) (17)

Now we apply ADMM to solve the problem (15). The
augmented Lagrangian function is:

L(L,S,Y ) = ‖L‖WL
+ λ‖WS ◦ S‖1

+ 〈Y ,M −L− S〉

+
µ

2
‖M −L− S‖2F

(18)

where 〈., .〉 denotes matrix inner product, µ represents a
positive penalty scalar, and Y is the Lagrangian multiplier.

In ADMM, an alternating method is used to solve the
minimization of (18), which optimizes one variable while
fixing the others. Thus, three sub-problems are formulated
for three variables L,S,Y .

L sub-problem: Fixed S and Y , it follows from (18) that
L can be obtained by

L∗ = argmin
L

‖L‖WL
+ 〈Y ,M −L− S〉

+
µ

2
‖M −L− S‖2F

= argmin
L

∥∥(M − S + µ−1Y )−L
∥∥2
F
/2

+ µ−1‖L‖WL

(19)

By defining YL = M − S + µ−1Y , the SVD of YL is
YL = UY ΣY V T

Y with ΣY = diag{σi(YL)}.
According to the theorem 1, the solution to (19) is L∗ =

UY Σ∗
Y V T

Y , where Σ∗
Y = diag{σi(L∗)} with

σi(L
∗) = max(σi(YL)− µ−1ωi, 0) (20)

Weighted kernel norm in non-uniform soft threshold is
Sµ−1 [Σ]ii = max(σi − ωiµ−1, 0). It is noted that the sin-
gular value sequence is arranged in non-negative descend-
ing order. In order to make the rank of the optimal low-rank
matrix L∗ equal to the target rank, we hope that the rth sin-
gularity of the low-rank matrix obtained after the solution
of the soft threshold operator is greater than zero, and the
r + 1th singular value is less than zero. In the process of
solving the optimal low-rank matrix L∗ with the same rank
as the target rank, we hope to reduce the interference of the
sparse matrix to the low-rank matrix as much as possible.

0 200 400 600 800 1000 1200
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Fig. 1. The value of EL, ES and EM with the number of it-
erations. Assuming that M ∈ Rm×n, m = 10000, n = 20,
rank(L) = 3, and the corrupted rate ρ = 0.05.

Thus, we define the threshold of the soft threshold operator
by σ′r+1 = Sρ(σr+1) = 0.

If the estimated rank of the low-rank matrix is r in the
last iteration, then the weight WL is updated by

ωi =
µσr+1(YL)

2

σi(YL)
(21)

By combining Eqs. (20) and (21), it is derived

σi(L
∗) =

{
σi(YL)− σr+1(YL)2

σi(YL) , if i ≤ r
0, if i > r

(22)

Thus, the rank of the optimization solution L∗ =
UY Σ∗

Y V T
Y is conformed to the estimated rank r. We

use the re-weighted strategy ωi = µ(σr+1(YL))2

σi(YL) , but
(σr+1(YL))

2 and µ are fixed during every iteration. Ac-
cording to the reference in [21], our weighted stratege in
Eq. (21) also makes the weighted kernel norm greatly ap-
proach the rank function. The optimization solution to the
minimization (19) can be directly obtained by Eq. (22).
S sub-problem: Fixed L and Y , the following optimization
problem is obtained from (16):
S∗ = argmin

S
λ‖WS ◦ S‖1 + 〈Y ,M −L− S〉

+ µ ‖M −L− S‖2F /2

= argmin
S

∥∥(M −L+ µ−1Y )− S
∥∥2
F
/2

+ λµ−1‖WS ◦ S‖1

(23)

This problem can be solved by the element-wise soft-
threshold operation:
S∗ = Sλµ−1WS

[M −L+µ−1Y ] = Sλµ−1WS
[YS ] (24)

where YS = M−L+µ−1Y , and Sρ(·) is the soft-threshold
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function as in (15).
In order to enhance the sparsity and by adopting the

reweighting skills in [25], the weight WS can be updated
by

WS,i,j =
µ

λ(|Si,j |+ ε)
(25)

WS,i,j is the ijth element of matrix WS .
Y sub-problem: The updated function of Y is written as:

Yk+1 = Yk + µ(M −Lk+1 − Sk+1) (26)

The entire procedure to solve problem (15) is summa-
rized in Algorithm 1.

Algorithm 1
Input: M ∈ Rm×n, λ = 1/

√
max(m,n)

1: Initialization: S0 = Y0 = 0 ∈ Rm×n, k = 0, kmax,
r is estimated by Eq. (14), ω(S,0),i,j = 1, ε = 10−7,
h = 0, hmax.

2: while ‖M − L − S‖F /‖M‖F ≥ ε or k is less than
the maximum number of iterations do

3: while h < hmax do
4: compute YL,k = M − Sk−1 + µ−1Yk−1

and its SVD YL,k = UY,kΣY,kV
T
Y,k with ΣY,k =

diag{σi(YL,k)};
5: update the weight WL,k by ωi,k =

µσr+1(YL,k)
2

σi(YL,k)
;

6: compute σi(Lk) = max(σi(YL,k)−µ−1ωi, 0)
and Lk = UY,kΣL,kV

T
Y,k with ΣL,k =

diag{σi(Lk)};
7: compute YS,k = M −Lk + µ−1Yk−1;
8: compute Sk = Sλµ−1WS,h

[YS,k];
9: compute Yk = Yk−1 + µ(M −Lk − Sk);

10: update r according to Eq. (14)
11: end while
12: update ω(S,h),i,j =

µ
λ(|Sk,i,j |+ε) , Sk → S0, Yk →

Y0, k = 0
13: end while
Output: L∗,S∗

Remark1: Although the mathematical proof of the con-
vergence of the proposed algorithm is challenging, the ex-
perimental results shown in Fig.1 lead to the following
claim.
Claim1: The sequences {L} and {S} generated by Al-

gorithm 1 satisfy:
EL = lim

k→∞
‖Lk+1 −Lk‖F = 0 (27)

ES = lim
k→∞

‖Sk+1 − Sk‖F = 0 (28)

EM = lim
k→∞

‖M −Lk+1 − Sk+1‖F = 0 (29)

3. Experimental Results
In this section, we report the performance of the pro-

posed algorithm on the scene background initialization
problem, and compare with several the state-of-the art
RPCA algorithms: RPCA[9], WNNM[15], PSSV[16], and
AccAltProj[26].

3.1. Visual Effects

Without considering the effects of illumination, in the
background modeling task the rank is usually unchanged,
so the rank r = 1 of low-rank matrix representing the
background is known. In this experiment, Scene Back-
ground Initialization (SBI) dataset1 [27] is considered. In
particular, the sub-datasets CAVIAR1 and Hall & Moni-
tor are studied, where the former contains 610 frames with
size 384×256 and the latter contains 296 frames with size
352×240. Each data can be expressed by a matrix and
we use various RPCA algorithms to decompose the matrix
as the low-rank part representing the background and the
sparse one representing the moving object.

CAVIAR1 dataset shows the scenario that persons walk
slowly along with the corridor, whose initial state is shown
in Fig.2. We show the background recovery results of 5-
th, 127-th, 249-th, 371-th and 493-th in the dataset. The
first column is the original video frame, the second one is
the ground truth, and the other columns are the results of
RPCA, PSSV, WNNM, AccAltProj and ours. As shown
in Fig.2, RPCA can’t restore the background well. PSSV
performs better than RPCA, but it is still bad at separat-
ing the background. WNNM presents good results, on the
condition that the parameters are adjusted continually. It is
observed that our algorithm and AccAltProj can recover the
background well, while AccAltProj has the problem that the
rank of low-rank needs to be known in advance.

Hall&Monitor dataset describes the scenario that peo-
ple are walking in the aisle and passers-by turn up in the
same region during most frames, which is a big challenge
to the low-rank matrix recovery. We show the recovered
background results of 5-th, 64-th, 123-th, 182-th and 241-th
frames in Fig.3. It is shown that RPCA and PSSV cannot
obtain good background results. After adjusting the param-
eters, WNNM performs better than PSSV, but worse than
AccAltProj and the proposed algorithm. According to the
visual effects the proposed method looks better than Ac-
cAltProj.

We compared more datasets shown in the supplemen-
tary materials. Similar to Hall & Monitor dataset which
is a big challenge to the low-rank recovery, our algorithm
achieves much better results than other algorithms on the
other datasets.

When the environment exists obvious illumination

1https://sbmi2015.na.icar.cnr.it/SBIdataset.html
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5-th frame

127-th frame

249-th frame

371-th frame

493-th frame

(a)Original Frame (b)Ground Truth (c)RPCA (d)PSSV (e)WNNM (f)AccAltProj (g)Ours

Fig. 2. Comparison of different algorithms with different frames on CAVIAR1 dataset

5-th frame

64-th frame

123-th frame

182-th frame

241-th frame

(a)Original Frame (b)Ground Truth (c)RPCA (d)PSSV (e)WNNM (f)AccAltProj (g)Ours

Fig. 3. Comparison of different algorithms with different frames on Hall&Monitor dataset

change, such as the Arch dataset2, the rank of the back-
ground low-rank matrix r 6= 1. At this time, the rank of
low-rank matrix r = 2. Both PSSV and AccAltProj need

2http://alumni.soe.ucsc.edu/ orazio/deghost.html

to input the rank information in advance. The accuracy of
the prior rank on the performances of PSSV, AccAltProj
and our algorithm through the Archdataset with illumina-
tion changes are shown in Fig.4.

We find that when PSSV and AccAltProj are affected by
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(a)Original Frame (b)AccAltProj,r=1 (c)AccAltProj,r=2 (d)PSSV,r=1 (e)PSSV,r=2 (f)ours

Fig. 4. Comparison of different algorithms with different frames on Arch dataset

CAVIAR1 dataset AGE pEPs% pCEPS% MSSSIM PSNR CQM
RPCA 5.9288 4.8319 4.0517 0.8515 24.5148 23.8925
PSSV 5.8004 4.718 3.9408 0.8566 24.8261 24.1782

WNNM 2.6332 0.353 0.2502 0.9906 34.689 33.5397
AccAltProj 2.1352 0.3225 0.2177 0.9913 35.2311 34.0159

Ours 2.1507 0.3113 0.2014 0.9912 35.2972 34.0723

Table 1. Performance of one frame from CAVIAR1 dataset among different algorithms

the wrong rank prior, their accuracies of recovered low-rank
matrix are not good. As shown in the areas with red squares

in Fig.5, when the rank r = 1 is used as the prior rank
of Arch dataset, obvious shadows exist in AccAltProj and
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Hall&Monitor dataset AGE pEPs% pCEPS% MSSSIM PSNR CQM
RPCA 4.1655 2.5829 1.3767 0.9384 28.0271 28.0838
PSSV 4.0974 2.3828 1.2157 0.9425 28.3952 28.4093

WNNM 3.3357 1.2109 0.5575 0.9623 29.9583 29.8644
AccAltProj 3.2426 1.2334 0.5942 0.9634 30.1149 29.9813

Ours 3.1563 0.9387 0.3007 0.9666 30.2977 30.1575

Table 2. Performance of one frame from Hall&Monitor dataset among different algorithms

shallow shadows in PSSV. If the accurate rank information
is given, we can see that PSSV and AccAltProj have good
results. By comparing the second and third columns and
the fourth and fifth columns, it can be seen that AccAltProj
is more dependent on the accuracy of the prior rank than
PSSV. Our algorithm doesn’t need the prior rank and is not
affected by the accuracy of the prior rank, which verifies
that our algorithm has better robustness.

Through the above two experiments, it can be seen that
when the accurate prior rank is known, AccAltProj can
achieve good results in both large-sample dataset Hall &
Monitor dataset and small-sample Archdataset. But when
an accurate prior rank cannot be obtained, the performance
of AccAltProj will be severely affected. PSSV has supe-
rior performance in the case of small samples, and it can
still maintain a certain performance in the case of inaccu-
rate prior rank. But in large sample dataset, the performance
of PSSV algorithm is insufficient. Our algorithm can guar-
antee superior performance in both large dataset and small
one, and is not affected by the prior rank accuracy, making
the algorithm more robust.

3.2. Performance Evaluation

Six metrics for background estimation are used for eval-
uating results provided by SBI dataset: AGE, pEPs, pCEPs,
PSNR, MS-SSIM and CQM. We select a frame picture
hardest to be recovered to compare with the GT from the
dataset, whose results for two datasets are shown in Table
1 and 2 and the best ones are marked boldly. For some of
pictures, the visual effects between our algorithm and oth-
ers differ little, but it is observed that ours is best among the
evaluation metrics.

4. Conclusion
In this paper, we propose an adaptive double-weighted

RPCA algorithm based on the rank estimation. The pro-
posed algorithm can estimate the rank of low-rank ma-
trix according to the Gerschgorin’s disk. In addition,
based on the estimated rank estimation, an adaptive double-
weighting strategy is presented to recover the low-rank and
sparse matrices accurately and efficiently. Experimental re-
sults over the background initialization shows that the pro-
posed adaptive double-weighted RPCA algorithm outper-

forms other existing RPCA approaches.
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