
A. Preliminaries on Convex Envelopes
and Subdifferentials

In this section we review some basic facts about con-
vex envelopes and their sub-differentials that we will
use in our theory. Throughout the section we will as-
sume that any infimum is attained. This is true for
example if the function is lower semi continuous with
bounded level sets, which is the case for our objective
function f(x) = g(card(x)) + ‖x‖2. In addition the
quadratic term grows faster than any linear term of
the type 〈x,y〉 and therefore this is also true when we
add linear terms.

The convex envelope f∗∗ of a function f is the
largest convex function that fulfills f∗∗ ≤ f . For
a convex function we should have f∗∗(

∑
i λix

j) ≤∑
j λjf

∗∗(xj), 0 ≤ λj ,
∑
j λj = 1. At a point

x =
∑
j λjx

j where f(x) >
∑
j λif(xj) we compute

the value f∗∗(x) by minimizing over convex combina-
tions of points using f∗∗(x) =

min


d+1∑
j=1

λjf(xj);

d+1∑
j=1

λjx
j = x,

d+1∑
j=1

λj = 1, λj > 0

 .

(20)

It can be shown (using Caratheodory’s Theorem) that
it is enough to consider combinations of d + 1 points
if x ∈ Rd. Figure 4 shows one example of convex en-
velope. Here the two functions f∗∗ and f coincide at
x = 0 and |x| > 1. If x ∈ (0, 1) where the functions
differ and the value of f∗∗ is computed using the con-
vex combination (1− x)f(0) + xf(1). Note that when
f and f∗∗ differs the function f∗∗ will be affine in some
direction.

An alternative way of computing f∗∗ is using sup-
porting hyperplanes and the conjugate function

f∗(y) = max
x
〈x,y〉 − f(x). (21)

From the definition it is clear that

f∗(y) ≥ 〈x,y〉 − f(x), (22)

for all x. Rearranging terms we get

f(x) ≥ 〈x,y〉 − f∗(y), (23)

which is a an affine function in x and therefore a sup-
porting hyperplane to f . Figure 4 shows three support-
ing hyperplanes for f . Note that these touch f∗∗ in (at
least) one point. For each x we can find a hyperplane
that touches f∗∗(x) which means that

f∗∗(x) = max
y
〈x,y〉 − f∗(y), (24)

that is, the convex envelope is the conjugate of the
conjugate function.

Figure 4: An example of convex envelope. Here
f∗∗(x) = µ−max(

√
µ− |x|, 0)2 + x2 (blue curve) and

f(x) = µcard(x) + x2 (orange curve). Green dotted
lines are supporting hyperplanes of the form xy−f∗(y)
for tree different y.

For a convex function f∗∗ the set of sub-gradients
∂f∗∗(x) at a point x is defined as all vectors y such
that

f∗∗(x′)− f∗∗(x) ≥ 〈y,x′ − x〉, ∀x′. (25)

or equivalently

〈y,x〉 − f∗∗(x) ≥ 〈y,x′〉 − f∗∗(x′), ∀x′. (26)

Since we clearly have equality when x′ = x this
means that 〈y,x〉−f∗∗(x) = maxx′〈y,x′〉−f∗∗(x′) =
f∗∗∗(x) = f∗(x). Rearranging terms shows that

〈y,x〉 − f∗(y) = f∗∗(x) = max
y′
〈y′,x〉 − f∗(y′). (27)

Thus the set of sub-gradients at a point x are all the
vectors y that achieves the maximal value in the second
conjugation. In points where f∗∗ is non-differentiable
the function has several sub-gradients. In a differen-
tiable point the only sub-gradient is the standard gra-
dient.

The following result does not appear to be standard
but is crucial for our main theorem. Therefore we state
it somewhat more formally below.

Lemma A.1. Suppose that for a point x we have
f(x) > f∗∗(x). Then there is a set of points {xj}
such that

x =
∑
j

λjx
j , 0 ≤ λj ≤ 1,

∑
j

λj = 1, (28)



f∗∗(xj) = f(xj) and

f∗∗(x) =
∑
j

λjf(xj). (29)

In addition ∂f∗∗(x) ⊂
⋂
j ∂f

∗∗(xj).

Proof. Consider the convex combination x =
∑
j x

j

that solves the minimization in (20).
We have that f(xj) ≥ f∗∗(xj). Assume further that

f(xj) > f∗∗(xj) for some j. Then we have

f∗∗(
∑
j

λjx
j) = f∗∗(x) =

∑
j

λjf(xj) >
∑
j

λjf
∗∗(xj),

(30)
which contradicts the convexity of f∗∗. Therefore
f(xj) = f∗∗(xj) for all j.

Now consider a subgradient y ∈ ∂f∗∗(x). By defi-
nition we have that

f∗∗(x′) ≥ f∗∗(x) + 〈y,x′ − x〉. (31)

Now assume that

f∗∗(xj) > f∗∗(x) + 〈y,xj − x〉, (32)

for some j. Then we have∑
j

λjf
∗∗(xj)︸ ︷︷ ︸

=f∗∗(x)

>
∑
j

λjf
∗∗(x)︸ ︷︷ ︸

=f∗∗(x)

+
∑
j

λj〈y,xj − x〉︸ ︷︷ ︸
=0

,

(33)
which shows that we must have

f∗∗(xj) = f∗∗(x) + 〈y,xj − x〉. (34)

This gives us

f∗∗(xj)+〈y,x′−xj〉 = f∗∗(x)+〈y,x′−x〉 ≤ f∗∗(x′),
(35)

which shows that y ∈ ∂f∗∗(xj) for all j.

A.1. The Conjugate of f

We now consider our class of functions f(x) =
g(card(x̃)) + ‖x̃‖2. Consider the conjugate (21). Since
f(x) only depends on x̃ and not the signs or order-
ing of the elements it is clear that the elements of x
should have the same sign and ordering as those in y
to maximize the term 〈x,y〉. Therefore we get

f∗(y) = max
x̃
〈x̃, ỹ〉 − g(card(x̃))− ‖x̃‖2. (36)

This can equivalently be written

max
k

max
‖x̃‖0=k

〈x̃, ỹ〉 −
k∑
i=1

(
gi + x̃2

i

)
. (37)

Completing squares gives

max
k

max
‖x̃‖0=k

−‖x̃− 1

2
ỹ‖2 +

1

4
‖ỹ‖2 −

k∑
i=1

gi. (38)

It is clear that the inner maximization is solved by let-
ting x̃i = ỹi

2 if i ≤ k and x̃i = 0 otherwise. After some
simple manipulations this gives the conjugate function

f∗(y) =

n∑
i=1

max(
1

4
ỹ2
i − gi, 0). (39)

Not that the computations for the matrix case are close
to identical. In this case we maximize the scalar prod-
uct 〈X,Y 〉 whenX and Y SVDs with the same U and V
matrices (von Neumann’s trace theorem), in this case
〈X,Y 〉 = 〈x̃, ỹ〉.

A.2. The biconjugate of f

Taking the conjugate once more gives

f∗∗(x) = max
y
〈x,y〉 −

n∑
i=1

max(
1

4
ỹ2
i − gi, 0). (40)

Again the second term only depends on the elements
of ỹ and therefore

f∗∗(x) = max
ỹ
〈x̃, ỹ〉 −

n∑
i=1

max(
1

4
ỹ2
i − gi, 0). (41)

For ease of notation we let ỹ = 2z̃ which gives

f∗∗(x) = max
z̃

2〈x̃, z̃〉 −
n∑
i=1

max(z̃2
i − gi, 0). (42)

The maximization over z̃ does in general not have any
closed form solution but has to be evaluated numer-
ically. Note however that it is a concave maximiza-
tion problem that we can solve efficiently. One ex-
ception where we can find z̃ is for points x where
f∗∗(x) = f(x). In what follows we will derive some
properties of the maximizing z that simplifies the op-
timization.

We first consider the elements of z̃ independently
without regard for their ordering. Each one has an
objective function of the form

ci(z̃i) := 2x̃iz̃i −max(z̃2
i − gi, 0). (43)

Figure 5 shows ci(z̃i) for different values of x̃i. When
x̃i ≥

√
g
i
≥ 0 there is a unique maximizing point in

z̃i = x̃i. If 0 < x̃i ≤
√
g
i

the maximizing point is
z̃i =

√
gi. In the last case where 0 = x̃i ≤

√
gi any



Figure 5: The objective function (43) for gi = 1 and
xi = 0, 1

2 and 2. The maximizing points are shown in
red in each case.

z̃i ∈ [0,
√
gi] is a maximizer. Suppose that we select k

such that

x̃i ≥
√
gi i ≤ k (44)

x̃i <
√
gi i > k. (45)

(46)

Then the unconstrained minimizers u∗i of (43) can be
written

u∗i ∈


x̃i i ≤ k
√
gi i > k, x̃i 6= 0

[0,
√
g
i
] i > k, x̃i = 0

(47)

Before we proceed any further we note that if x̃i /∈
(0,
√
gi) the second case will not occur. We can then

select the elements of z̃ so that each z̃i maximizes ci(z̃i)
without violating the ordering constraint.

Lemma A.2. If x̃i /∈ (0,
√
gi) then the vectors maxi-

mizing (42) are given by

z̃∗i =

{
x̃i i ≤ k
si i > k

, (48)

where si, i = k + 1, ..., n is non-increasing and si ∈
[0,min(x̃k,

√
gk+1)]. In this case we also have

f∗∗(x) =

k∑
i=1

ci(x̃i) =

k∑
i=1

2x̃iz̃i −max(x̃2
i − gi, 0)

=

k∑
i=1

gi + x̃2
i = f(x).

(49)

Before we proceed to the general case we note that
if x̃i ∈ (0,

√
gi) for some i then

ci(u
∗
i ) =


x̃2
i + gi i ≤ k

2x̃i
√
gi i > k, x̃i 6= 0

0 i > k, x̃i = 0

. (50)

Since 2x̃i
√
gi < x̃2

i + gi if xi <
√
gi it is clear that this

implies that

f∗∗(x) <

card(x)∑
i=1

gi + x̃2
i = f(x). (51)

For the general case the unconstrained minimizers
are not non-increasing. To handle this we consider the
best value z̃∗i given values for its neighbors z̃∗i−1 and
z̃∗i+1. It is clear from the figures above that if the un-
constrained minimizer u∗i is unique then the best choice
is of z̃∗i is

z̃∗i =


z̃∗i+1 u∗i ≤ z̃∗i+1

u∗i u∗i ∈ [z̃∗i+1, z̃
∗
i−1]

z̃∗i−1 u∗i ≥ z̃∗i−1

. (52)

Here we have adopted the convention that z̃0 =∞ and
z̃n+1 = 0. In the non-unique case we similarly have
that z̃∗i ∈ [0,

√
gi] ∩ [z̃∗i+1, z̃

∗
i−1] if this intersection is

non-empty or z̃∗i = z̃∗i+1.

Lemma A.3. Suppose that {u∗i } is not monotone for
all i such that x̃i = 0. Let p be defined so that the
sequence {u∗i } is non-increasing for i ≤ p and non-
decreasing for i > p, whenever x̃i 6= 0. The constrained
maximizers z̃∗i will then fulfill

z̃∗i ∈


max(u∗i , z̃

∗
i+1) i ≤ p

z̃∗i+1 i > p, x̃i 6= 0

[0,min(u∗i , z̃
∗
i−1)] i > p, x̃i = 0

. (53)

Proof. We first consider i > k with x̃i = 0. Since x̃i
is non-increasing it is clear we can make ci(z̃i) = ... =
cn(z̃n) = 0 by letting z̃i = ... = z̃n = 0, regardless of
what z̃i−1 is. Any optimal solution therefore has to
have ci(z̃i) = ... = cn(z̃n) = 0, which is achieved when
z̃∗i ∈ [0,min(u∗i , z̃

∗
i−1)].

Since z̃∗0 =∞ we have that u∗1 /∈ [z̃∗0 , z̃
∗
2 ] if and only

if z̃∗2 > u∗1. Therefore it is clear that z̃∗1 = max(u∗1, z̃
∗
2).

Now suppose z̃∗i−1 = max(u∗i−1, z̃
∗
i ) for i ≤ p then

z̃∗i−1 ≥ u∗i−1 ≥ u∗i , which means that either u∗i ∈
[z̃∗i+1, z̃

∗
i−1], in which case z̃∗i = u∗i , or u∗i ≤ z̃∗i+1 which

gives z̃∗i = z̃∗i+1. This proves the first case in (53).
Now suppose that i ≥ p + 1 has x̃i 6= 0. If z̃∗i ≤

u∗i then z̃∗i ≤ u∗i+1 since {u∗i } is not decreasing and
therefore z̃∗i+1 = z̃∗i according to (53). If z̃∗i > u∗i we
again have z̃∗i+1 = z̃∗i according to (53).

Corollary A.4. The constrained minimizers z̃∗i can be
written

z̃∗i =


max(u∗i , s) i ≤ p
s i > p, x̃i 6= 0

si i > p, x̃i = 0

. (54)



Here u∗p ≤ s, {si}, i = k + 1, ..., n is non-increasing
and si ∈ [0,min(

√
gi, s)].

Proof. The first two cases in (54) are fairly obvious.
First it is clear that s := z̃∗p = z̃∗i , for all i > p with
x̃i 6= 0, which is the middle case in (54). Next we see
that z̃∗p−1 = max(u∗p−1, z̃

∗
k) = max(u∗p−1,max(u∗p, s)) =

max(u∗k−1, s) since u∗p−1 ≥ u∗p. Repeating the same
argument again shows the first case in (54).

Finally we note that si non increasing and si ∈
[0,min(

√
gi, s)] implies that si ≤ s and there-

fore also that si ∈ [0,min(
√
gi, s)] ∩ [0, si−1] =

[0,min(
√
gi, si−1)], which shows the third case of (54).

To see that u∗p ≤ s we note that all residuals ci are
non-decreasing with s when s < u∗.

B. Proof of Theorem 3.1

In this section we give the proof of Theorem 3.1
which shows that ”fixed cardinality/rank” solutions are
stationary in our relaxation (7). The proofs for vector
and matrix cases are somewhat different and therefore
we treat them separately.

B.1. The vector case

Proof of Theorem 3.1. The objective function of (7)
can be written f∗∗(x) + h(x) where h(x) = −‖x‖2 +
‖Ax − b‖2. A stationary point therefore fulfills
−∇h(x) ∈ ∂f∗∗(x). We have ∇h(x) = −2x +
2AT (Ax− b) which yields

−AT (Ax− b) = z − x, (55)

where 2z ∈ ∂f∗∗(x). Now suppose that o fulfills
the requirements of the theorem and let S be the
set of nonzero elements of o. The sub-differential
∂f∗∗(o) consists of the maximizing z-vectors given in
Lemma A.2. The the vector z−o is zero for every ele-
ment in S. To see that the same is true for AT (Ao−b)
we note that

o = arg min
supp(x)=S

‖Ax−b‖2 = arg min
supp(x)=S

‖ASx−b‖2, (56)

where AS is constructed by taking A and setting the
columns no in S to zero. Therefore the normal equa-
tions ATS (ASo−b) = ATS (Ao−b) = 0 hold which shows
that the elements of AT (Ao−b) that are in S all vanish.

It now remains to show that the elements in the com-
plement of S are smaller than min{x̃k,

√
gk+1}. This is

however clear since by assumption

‖AT (ATo− b)‖ ≤ ‖A‖‖ε‖ ≤ min{x̃k,
√
gk+1}. (57)

We remark that estimating the size of the elements by
the vector norm is a simple but very crude estimation
and the result is therefore likely to hold under much
more generous conditions.

B.2. The matrix case

Proof of Theorem 3.1. Similar to the vector case we
need to show that

−A∗(AO − b) = Z −O, (58)

where 2Z ∈ ∂f∗∗(O). The matrix Z is in the sub dif-
ferential of f∗∗(O) if we can find orthogonal matrices U
and V such that O = UDõV

T and Z = UDz̃V
T . Here

õ and z̃ are the singular values of O and Z respectively.
The matrices Dõ and Dz̃ are diagonal matrices with el-
ements õ and z̃. Note that O is typically of low rank
Dõ and Dz can be partitioned into block matrices

Dõ =

[
Σ 0
0 0

]
and Dz̃ =

[
Σ 0
0 ∆

]
. (59)

Here Σ contains the k non-zero singular values of O.
Due to Lemma A.2 the Dz̃ also contains this block.
The matrix ∆ contains the singular values of z̃ that
correspond to zeros in õ. We can make a corresponding
partition of the U and V matrices into

U =
[
Ū Ū⊥

]
and V =

[
V̄ V̄⊥

]
, (60)

where Ū and V̄ are the first k columns of U and V
respectively. Note that only Ū and V̄ are uniquely
determined by O. The matrices Ū⊥ and V̄⊥ can be
selected arbitrarily as long as they are orthogonal to Ū
and V̄ respectively. Any choice of Ū , V̄ and ∆, where
the elements of ∆ are less than min{õk,

√
gk+1} gives

us a Z that is in the sub differential. Consequently we
have

Z −O =
[
Ū Ū⊥

] [0 0
0 ∆

] [
V̄ T

V̄ T⊥

]
= Ū⊥∆V̄ T⊥ . (61)

We now consider term A∗(AO − b). We have

‖A(O + tH)− b‖2 =t2‖AH‖2 + 2t〈H,A∗(AO − b)〉
+ ‖AO − b‖2.

(62)

Recall that O minimizes the left hand side over all ma-
trices with rank at most k. Since the linear term dom-
inates the quadratic one for small t we must have

〈H,A∗(AO − b)〉 ≥ 0 (63)

for all H such that rank(O+ tH) ≤ k. Since Σ has full
rank it is clear that any matrix of the form

H =
[
Ū Ū⊥

] [H11 H12

H21 0

] [
V̄ T

V̄ T⊥

]
(64)



fulfills this requirement. It is now easy to see that

−A∗(AO − b) = U⊥MV T⊥ , (65)

whereM is some matrix. Furthermore since U⊥ and V⊥
can be selected freely (as long as they are perpendicular
to U and V respectively) we can assume that M is
diagonal. What remains is therefore to estimate its
singular values, which similarly to the vector case is
done by

‖A∗(AO − b)‖2 ≤ ‖A‖‖ε‖ ≤ min{õk,
√
gk+1}. (66)

C. Proof of Theorem 3.2

In this section we prove our main theorem. The
proof requires a growth estimate of the subgradients of
f∗∗ which we give in the following lemmas.

Lemma C.1. If z ∈ ∂f∗∗(x) and z′ ∈ ∂f∗∗(x′) and
d ≤ 1 then

〈z′ − z,x′ − x〉 > d‖x′ − x‖2, (67)

if
〈πz̃′ − z̃, πx̃′ − x̃〉 > d‖πx̃′ − x̃‖2, (68)

for all permutation matrices π.

Proof. We have that (67) can be written

C − 〈z′ − dx′,x〉 − 〈z − dx,x′〉 > 0, (69)

where
C = 〈z′ − dx′,x′〉+ 〈z − dx,x〉. (70)

Note that since the elements of z′ and x′ have the same
signs and z̃′i ≥ x̃′i for all i the term C is independent
of signs. For fixed magnitudes and permutations the
term 〈z′ − dx′,x〉 + 〈z − dx,x′〉 is clearly maximized
when z′ and z have the same signs. In which case we
have

〈z′ − z,x′ − x〉 = 〈πz̃′ − z̃, πx̃′ − x̃〉 (71)

and ‖x′ − x‖2 = ‖πx̃′ − x̃‖2 for some permutation
π.

In the matrix case we have Z ∈ ∂f∗∗(X) and Z ′ ∈
∂f∗∗(X ′). Recall that here x̃, z̃, x̃′, z̃′, are the singular
values of the matrices X,Z,X ′,Z ′ respectively. The
corresponding statement is then that

〈Z ′ − Z,X ′ −X〉 > d‖X ′ −X‖2 (72)

holds whenever (69) holds. The proof is however more
complicated than the vector case. We therefore refer
the reader to Proposition 4.5 [11] from which it is clear
that the above statement holds.

We are now ready to establish the growth estimates
on the directional derivatives needed to prove Theo-
rem 3.2. We will first consider directional derivatives
between points where the relaxation is tight, that is
fg(x) = f∗∗g (x). In the subsequent result we then
relax this assumption to only be valid for one of the
points (namely the stationary point we want to prove
is unique).

Lemma C.2. Suppose that 2z ∈ ∂f∗∗(x) and 2z′ ∈
∂f∗∗(x′), and that neither x̃ nor x̃′ have values in
(0,
√
gi). If the elements of z̃ fulfill

z̃i /∈
[
(1− d)

√
gk,

√
gk

(1− d)

]
and z̃k+1 < (1− 2d)z̃k,

(73)
where k is defined so that x̃i ≥

√
gi for i ≤ k and x̃i = 0

if i > k, then

〈z′ − z,x′ − x〉 > d‖x′ − x‖2. (74)

Proof. We need show that

〈πz̃′ − z̃, πx̃′ − x̃〉 > d‖πx̃′ − x̃‖2, (75)

where π is a permutation. For ease of notation let
z′ = πz̃′ and x′ = πx̃′. We let the Ĩ = {i; x̃i 6= 0} =
{i; i ≤ k} and I ′ = {i; x′i 6= 0}. Then

〈z′ − z̃,x′ − x̃〉 =
∑

i∈Ĩ,i∈I′
(x′i − x̃i)2 +

∑
i∈Ĩ,i/∈I′

x̃i(x̃i − z′i)

+
∑

i/∈Ĩ,i∈I′
x′i(x

′
i − z̃i).

(76)

Note that

d‖x′−x̃‖2 =
∑

i∈Ĩ,i∈I′
d(x′i−x̃i)2+

∑
i∈Ĩ,i/∈I′

dx̃2
i+

∑
i/∈Ĩ,i∈I′

dx′i
2
.

(77)
We first consider pairs of terms from the second and
third sums of (76). If i ∈ Ĩ , i /∈ I ′ and j /∈ Ĩ , j ∈ I ′ we
have

x̃i(x̃i−z′i)+x′j(x
′
j− z̃j) = x̃2

i +x′j
2− x̃iz′i−x′j z̃j . (78)

Since j /∈ Ĩ and i ∈ Ĩ we have z̃j < (1 − 2d)z̃k ≤
(1 − 2d)z̃i = (1 − 2d)x̃i. Similarly, since j ∈ I ′ and
i /∈ I ′ we have z′i ≤ z′j = x′j . Therefore

x̃iz
′
i ≤ x̃ix′j ≤

x̃2
i + x′i

2

2
(79)

x̃jzj < (1− 2d)x̃jxi ≤ (1− 2d)
x2
i + x̃2

i

2
(80)



which gives

x̃i(x̃i − z′i) + x′j(x
′
j − z̃j) < d(x̃2

i + x′i
2
). (81)

If the number of elements in Ĩ and I ′ are the same the
two last sums of (76) have the same number of terms.
Then (81) shows that (76) larger is than (77) since
clearly (x′i− x̃i)2 > d(x′i− x̃i)2. It therefore remains to
consider the two cases when I has more elements than
I ′ and vice versa.

Let k′ be the number of elements in I ′. Suppose first
that Ĩ has more elements than I ′, that is, k > k′. Then
the middle sums of (76) and (77) have more terms than
the third ones. Therefore we need to show that

x̃i(x̃i − z′i) > dx̃2
i , (82)

for i ∈ Ĩ and i /∈ I ′. Suppose that πij = 1, that
is element j of z̃′ is moved to element i of z′ by the
permutation π. By Corollary A.4 we have that z′i =
z̃′j ≤ x̃′k′ ≤

√
gk′ ≤

√
gk. Since i < k we have by

assumption (73) that x̃i = z̃i >
√
gk

(1−d) . Therefore

x̃i − z′i = (1− d)x̃i + dx̃i − z′i >
√
gk + dx̃i − z′i ≥ dx̃i,

(83)
which gives (82).

Now suppose instead that Ĩ has fewer elements than
I ′, that is, k′ > k. Then we need to show that

x′i(x
′
i − z̃i) ≥ dx′i

2
, (84)

for i /∈ Ĩ and i ∈ I ′. Suppose again that πij = 1, that
is element j of z̃′ is moved to element i of z′ by the
permutation π. By Corollary A.4 we have x′i = z̃′j >
z̃′k′ = x̃′k′ ≥

√
gk′ . Furthermore by assumption (73)

we have z̃i < (1 − d)
√
gk ≤ (1 − d)

√
gk′ since k < k′.

Therefore

x′i−z̃i = (1−d)x′i+dx
′
i−z̃i ≥ (1−d)

√
gk′+dx

′
i−z̃i > dx′i.

(85)
which gives (84).

Lemma C.3. Suppose that x fulfills the assumptions
of Lemma C.2. If 2z′ ∈ ∂f∗∗(x′) (without any addi-
tional assumptions on the values of x′ or z′) then (74)
holds.

Proof. By Lemma A.1 we have f∗∗(x′) =∑
j λjf

∗∗(xj), where xj are points where

f∗∗(xj) = f(xj), that is xj has no elements
in (0,

√
gi). Then by Lemma C.2, for any

z′ ∈ ∂f∗∗(x′) ⊂
⋂
j ∂f

∗∗(xj) we have

〈z′ − z,xj − x〉 > d‖xj − x‖2. (86)

By convexity of ‖(·)−X‖2 we now get

〈z′ − z,x′ − x〉 > d
∑
j

λj‖xi − x‖2

≥ d‖
∑
j

λjx
j − x‖2 = d‖x′ − x‖2.

(87)

Proof of Theorem 3.2. We will show that ∇h(x′) =
2(I −ATA)x′ + 2AT b /∈ ∂f∗∗(x′). Suppose that 2z′ ∈
∂f∗∗(x′). Since x is stationary we have 2z+∇h(x) = 0

〈z′+∇h(x′),x′−x〉 = 〈z′−z,x′−x〉+〈∇h(x′)−∇h(x),x′−x〉.
(88)

For the second term we have

〈∇h(x′)−∇h(x),x′ − x〉 = ‖x′ − x‖2F − ‖A(x′ − x)‖2

≤ δr‖x− x′‖2,
(89)

if rank(x − x′) ≤ r, which clearly holds if card(x′) ≤
r − k. On the other hand we also have by Lemma C.2
that

〈z′ − z,x′ − x〉 > δr‖x′ − x‖2, (90)

and therefore (88) is positive and x′ cannot be a sta-
tionary point.

Suppose now that x is a point that has card(x) < r
2 .

We will consider the directional derivatives along the
line x + tv, where v = x′−x

‖x′−x‖F . Since f∗∗ is convex

(and finite) the directional derivative of the objective
function exists and is given by

sup
z′∈∂f∗∗(x+tv)

〈z′ +∇h(x+ tv),v〉. (91)

Since the card(v) ≤ r it is clear by the arguments above
that this is positive.

D. Proof of Theorem 3.3

Proof. We will let x be a global solution to
mincard(x)≤k ‖Ax − b‖ and show that this point will
be stationary under the conditions above. To do this
we need to show that 2z ∈ ∂f(x) for z = (I−ATA)x+
AT b. We first note that since ‖A‖ < 1 the vector x will
be the global minimizer of (7) for the fixed-cardinality
relaxation, that is, the special case gi = 0 if i ≤ k and
gi =∞ if i > k. This shows that x is stationary in (7)
for this particular choice of g. In particular x = Dsπx̃
and z = Dsπz̃ with the same s and π. (In the matrix
case the corresponding statement is that the SVD’s of
X and Z have the same U and V matrices.) Further-
more, since card(x) ≤ k and gi = 0 when i ≤ k it is
clear from Lemma A.2 that the z̃i = x̃i for i ≤ k.



To show that x is stationary for a general choice of
g fulfilling (18) it is enough to show that

√
gi ≤ x̃i for

i ≤ k and
√
gi ≥ x̃k for i > k by Lemma A.2. This

is however implied by the stricter constraints (14) and
we therefore proceed by proving these directly.

First we show that x̃i is close to ỹi. Since ‖Ax−b‖ ≤
‖Ay − b‖ = ‖ε‖ we have√

1− δ2k‖x− y‖ ≤ ‖A(x− y)‖
≤ ‖Ax− b‖+ ‖Ay − b‖
≤ 2‖ε‖.

(92)

Therefore

|xi − yi| ≤
2√

1− δ2k
‖ε‖. (93)

Furthermore

‖z − x‖ = ‖ATA(x− y)−AT ε‖
≤ ‖AT ‖‖A‖‖x− y‖+ ‖AT ‖‖ε‖
≤ ‖x− y‖+ ‖ε‖

≤ 3√
1− δ2k

‖ε‖.

(94)

And since x̃k+1 = 0 this means that

z̃k+1 ≤
3√

1− δ2k
‖ε‖. (95)

Now inserting the above estimates in zk+1 < (1 −
2δk)zk shows (after some simplification) that this con-
straint holds if

ỹk >
5− 4δk√

1− δ2k(1− 2δ2k)
‖ε‖, (96)

which is implied by (17) since δk ≥ δ2k > 0. Further-
more since

√
g
i

is non-decreasing (18) and (93) implies

that z̃i = x̃i >
√
gk

1−δk for i ≤ k, while (18) and (95)

implies that zi < (1− δk)
√
gi for i > k.


	Recovery_with_convex_card_funk

