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Abstract

Computer vision for remote physiological measurement
is novel and uniquely challenging task, which enables non-
contact monitoring of the blood volume pulse (BVP) us-
ing a commonly accessible camera. This paper intro-
duces Time Lab’s approach presented at the 2nd chal-
lenge on Remote Physiological Signal Sensing (RePSS)
organized within ICCV2021. We propose an end-to-end
rPPGNet for remote photoplethysmographyraphy (rPPG)
signals estimation. A improved design of spatial-temporal
map is also made, which is an an efficient representa-
tion of the rPPG signal by removing most of the irrel-
evant background content. Furthermore, our approach
achieved first place on the 2nd RePSS Challenge Track
1 and has outperformed the methods of other partici-
pants as we have achieved M_IBI = 117.25(4.51% im-
provement compared to the challenge top-2 result)) R_HR
= 0.62(8.77% improvement). The codes are publicly avail-
able at https://github.com/yuhangl070/2nd_
RePSS_Trackl_Topl_Solution.

1. Introduction

The 2nd Challenge of Remote Physiological Signal
Sensing in ICCV2021 was organized by X.Li ef al. Remote
measurement of physiological signals from face videos is
an emerging, challenging and promising topic. Hence, both
scholars and companies have paid more attention to this
topic and the number of published papers is growing every
year.

However, many previous studies[2 | ] only focused on the
measurement of average heart rate (HR) from face videos,
which is not sufficient for many medical applications (e.g.,
atrial fibrillation detection). Thus, more detailed informa-
tion such as heart rate variability (HRV) features are needed,
which requires accurate measurement of the time location
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of each heartbeat, i.e., the IBI curve. 2nd RePSS Chal-
lenge Trackl requires participants to reconstruct the IBI
curve from raw face videos, which can be then processed to
achieve detailed cardiac activity analysis. Raw face videos
and corresponding BVP/ECG curves will be provided for
training.

The training set of Trackl contains 2500 pieces of
10s videos of 500 persons, sampled from VIPL-HR-V2
database[13]. VIPL-HR-V2 database is a large-scale multi-
modal database for remote HR estimation from face videos,
the second version of VIPL-HR database[16]. This dataset
was collected under less-constrained situations same as be-
fore. The testing set of Track 1 contains two parts, OBF[12]
and VIPL-HR, with 1000 videos of 200 subjects in total.
OBF is provided by the Center for Machine Vision and Sig-
nal Analysis (CMVS), University of Oulu, Finland.

2. Related Work

Conventional Methods. rPPG is the monitoring of
blood volume pulse from a camera at a distance. Verkruysse
et al. [24] proved, for the first time, that plethysmogra-
phy (PPG) signals can be measured remotely (>1m) from
human face videos using ambient light. After that, many
scholars have devoted their efforts in this challenging hot
topic. Poh et al. [20] introduced a new methodology which
applied independent component analysis (ICA) to recon-
struct rPPG signals from raw RGB facial videos. Similarly,
Lewandowska et al. [11] proposed a new rPPG signals
estimation method based on principal component analysis
(PCA). In comparison to ICA, PCA reduces computational
complexity greatly. For improving motion robustness, Haan
et al. [5] proposed a CHROM method, which linearly
combines the RGB channels to separate pulse signal from
motion-induced distortion. Wang et al. [26] proposed a
”plane-orthogonal-to-skin”’(POS) method. Both CHROM
and POS are based on the skin reflection model.

Deep-learning based Methods. In order to overcome
the conventional methods’ limitations, scholars have tried
to employ deep learning technology for remote physiolog-

2398



Video

o 100 200 300 300 500

Peak Binary Signal

Spatial Temporal Map

rPPGNet E

rPPG Signal

Figure 1. Time Lab’s solution pipeline.

ical measurement in recent years. The first deep-learning
based remote physiological measurement method is Deep-
Phys, which was originally proposed by Chen et al. [3].
DeepPhys is an end-to-end convolutional neural network
(CNN) for video-based heart rate measurement. Spetlik
et al. [22] proposed the HR-CNN which predicts remote
HR from aligned face images using a two-step CNN. Niu et
al. [17] designed a novel and efficient spatio-temporal map,
which is mapped by a CNN to its HR value.

3. Methodology

As shown in Fig. 1, our pipeline can be divided into
three steps: STmap generation, deep learning-based rPPG
signal estimation and post-processing. In this section, we
elaborate on each in detail.

3.1. Spatial Temporal Map

Many previous methods[10, 27] focused on direct ap-
plying CNNs to the human facial videos with good re-
sults. However, due to the low PSNR of rPPG signals
in facial videos, those methods are expensive and time-
consuming. In order to avoid high computational complex-
ity and time-consuming, we choose to use Spatial Temporal
Map (STMap) as the input of CNN. STmap is an efficient
representation of the pulse signal by removing most of the
irrelevant background content.

Unlike the previous design of STmap[ | 7], we have made
the following improvements: (1) We detect faces using

Figure 2. An example of ROI visualisation.

RetinaFace[6] with MobileNet[8] backbone, which can get
more precise face landmarks. (2) We appropriately reduced
the region of interest (ROI) area by discarding non-skin fa-
cial areas such as eyes and mouth region. An example of
ROI is shown in the Fig. 2. (3) Skin segmentation is ap-
plied to the defined ROI to remove the non-skin area such
as hair region and background area by open source Bob[!]
with threshold=0.05.

3.2. rPPGNet

The network architecture of rPPGNet is shown in Fig.
5. In order to balance computational complexity and per-
formance, we adapt the strategy of appropriately reducing
the number of channels and increasing the number of net-
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Figure 3. Attention Block. “Conv” denotes one convolution layer.
“GAP” denotes global averaging pooling. “FC” denotes one linear
layer.

work layers. The architecture of Attention Block and Basic
Block are shown in Fig. 3 and Fig. 4 respectively. In our
experiments, all dropout rates of rPPGNet are set to 0.2.

3.3. Loss function

In this article, the rPPG signal estimation is regarded as
a regression problem. The following three loss functions
are used to constrain the relationship between the predicted
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Figure 4. Basic Block. “Conv” denotes one convolution layer.

rPPG signals and the real rPPG signals.

Negative Pearson correlation coefficient loss[27]
proved to be an effective loss function for rPPG signal pre-
diction, which is calculated between the ground truth rPPG
signals and the estimated rPPG signals.

Ly=1-
Ve

Y, (XY - X)W -Y)

ey

(X0 -T2 S (v - P2

where X denotes the ground-truth rPPG signals and Y de-
notes the estimated rPPG signals.

L1 loss|
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]is also used for rPPG signal estimation in our
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Figure 5. Network Architecture of rPPGNet. “UpBlock” denotes one transposed convolution layer followed by Batch Normalization and
ELU activation[4]. “Conv” denotes one convolution layer. “GAP” denotes global averaging pooling.

method.

1< , ;
Ln=— S 1rPPGY —rPPGY)| )

i=1

where rPPG.; indicates the estimated rPPG signal and
rPPG g, indicates the ground-truth rPPG signal.

SNR loss[18] is a frequency domain loss constraining
the relationship between the predicted rPPG signals and the
ground-truth heart rate values.

Efre = CE(PSD(TPPGes))vHRQt) (3)

where PSD(-) indicates the power spectral density of
rPPG.s, HRy indicates the ground-truth heart rate, and
CE(-) indicates the cross-entropy loss.

The overall loss function of our rPPG signal estimation
pipeline is

L= Ep + )\llﬁll + )\frcﬁfre (4)
For our experiments, we set \;; = 1 and Ap.. = 1.

3.4. Training procedure

First, we pre-processed the ground truth rPPG signal us-
ing a 4th-order Butterworth band-pass filter with cutoff fre-
quency [0.6, 3] Hz for restricting outliers like [25]. Then,
we normalized the ground truth rPPG signal to have a min-
imum value of zero and a maximum value of 1.

After that, we train rPPGNet for 20 epochs, using kaim-
ing initialization[7]. Adam optimizer[9] is used while learn-
ing rate is set to 0.01 and batch size is set to 256. In order to
make our model more robust, we adapt following four data
enhancement strategies: 1) randomly erase part of STmap;
2) randomly add random noise to part of STmap; 3) ran-
domly reverse STmap and the ground truth rPPG signal at
the same time; 4) randomly flip facial video horizontally.

Finally, the network was trained on 1 NVIDIA GeForce
GTX 3090 GPU. Our rPPG signal estimation pipeline was
implemented using PyTorch framework[19].

3.5. Post-processing

We post-processed the estimated rPPG signal using
a 4th-order Butterworth band-pass filter with cutoff fre-
quency [0.6, 3] Hz for restricting outliers.  Then,
scipy.signal. find_peaks was used to find peaks of rPPG
signal.

4. Experiments
4.1. Datasets

Three external datasets were used for training(VIPL-HR,
PURE, UBFC-rPPG).

Before generating STmap, all face videos and the cor-
responding rPPG signals were resampled to 30 fps using
cubic spline interpolation like [15].

UBFC-rPPG dataset[2] is a database for remote heart
rate estimation, which contains 42 uncompressed RGB
videos. The videos were recorded with a low cost web-
cam at 30 frames per second. The ground-truth heart rate
values and rPPG signals are provided, which were collected
by a pulse oximeter finger clip sensor. In order to make this
dataset cover a wider range of heart rate values, all subjects
were asked to play a time sensitive mathematical game that
supposedly raises their heart rate.

VIPL-HR dataset[16] is a challenging large-scale
multi-modal database, which contains 2,378 visible light fa-
cial videos of 107 subjects. In order to simulate real world
conditions as realistic as possible, this dataset was collected
under less-constrained scenarios, which contains various
variations such as different head movements, illumination
condition variations, and acquisition device changes. Due
to different recording scenarios and devices, the frame rates
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of the videos vary from 25 fps to 30 fps. In addition, the
ground-truth HR is recorded using a CONTEC CMS60C
BVP sensor (a FDA approved device).

PURE dataset[23] is a public available database for re-
mote heart rate estimation, which comprises 60 RGB videos
from 10 subjects(8 male, 2 female) in 6 different setups.
The videos were recorded using an eco274CVGE camera
at 30 fps and a resolution of 640 x 480. The ground-truth
rPPG signals were captured using a finger clip pulse oxime-
ter (pulox CMS50E).

4.2. Evaluation Metrics

The following five metrics were used to evaluate the per-
formance of our approach on the 2nd RePSS Challenge
Trackl] test dataset.

1. M_IBI(mean of IBI error)

For two IBI curves Ry (t) and Rz (t), the IBI error and
M_IBI can be defined as,

T
AE =" |Ri(t) — Ro(t)] (5)
1 K
M_IBI = % ,;) AFEy (6)

where 7' is the time length of the IBI curves, and K is
the number of videos.

2. SD_IBI(standard deviation of IBI error)

K
1
SDIBI = | - > (AE, - M_IBI) (1)

k=0

3. MAE_HR(mean absolute error of heart rate)

1 i
MAE_HR = ~ Z [HRS). et = HRighal ~ ®)

predict
i=1

where H R,y qict 1s the estimation of H R and H R;pe;
is the ground-truth of H R.

4. RMSE_HR(root mean squared error of heart rate)

1 & i i
RMSEHR= | =Y (HR. s — HRig})?
i=1
)]
5. R_HR(Pearson correlation coefficient of heart rate)
nox@) _ Yo Yy
R i (X0 - T )
\/Zz 1 X(l \/Z )2
(10)
where X () denotes HR(r)edZ(‘f’ Y () denotes HRZ((?bel,

X denotes the mean value of X vector, Y denotes the
mean value of Y vector.

Table 1. Public Leaderboard of 2nd RePSS Challenge Track1

Rank Team Name MBI | SD.IBI | MAE_HR | RMSE_HR | R_HR
1 TIME 117.25 | 153.18 7.31 11.44 0.62
2 Dr. L 122.80 | 153.91 7.29 11.05 0.57
3 The Anti-Spoofers | 168.08 | 162.82 11.84 14.51 0.02
4 shankejinjiboy 22441 | 163.98 15.44 18.75 -0.05
5 ZJUT-WTCrPPG | 273.53| 171.13 23.89 27.96 -0.03
6 ZIJUT-ASTrPPG |295.70 | 175.24 29.24 33.69 -0.10

4.3. Results

As shown in Table 1, our team(Team Name TIME)
achieved first place on the 2nd RePSS Challenge Track 1.

Our approach has outperformed the methods of other
participants as we have achieved M_IBI = 117.25(4.51%
improvement compared to the challenge top-2 result),
R_HR = 0.62(8.77% improvement).

5. Conclusion

In this paper, we have proposed Time Lab’s approach
to IBI estimating from facial video. We propose an novel
and efficient rPPGNet for rPPG signals estimation and a
improved design of spatial-temporal map. IBI data esti-
mated with this method was submitted for the 2nd Chal-
lenge Trackl on RePSS organized within ICCV2021. Our
method achieved first place on the 2nd RePSS Challenge
Track 1. Due to the limited time available for this chal-
lenge, we didn’t perform well enough. Our method still has
a lot to improve.
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