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Abstract

Recent studies demonstrate that respiratory rate can be
estimated from skin videos through analyzing the frequency
domain attributes of their remote photoplethysmography
(rPPG). However, respiration is not always periodic so
the frequency attributes of rPPG may not accurately es-
timate the respiratory rate. In this paper, we proposed
an end-to-end network to estimate both rPPG signals and
respiratory rates from facial videos. Since only breath-
ing waves are available in the Remote Physiological Sig-
nal Sensing track2 competition, to preserve the respiratory
pattern in rPPG estimation, rPPG signals pre-estimated
by chrominace-based methods and modulated by breathing
waves are used as weak labels for supervision. To adapt
to the large differences between training and testing data,
in terms of recording environment and subjects behavior,
we also involved customized adversarial training on feature
extractor to minimize the domain gap. In the competition,
our model achieved 7.56 bpm MAE and ranked the second
place.

1. Introduction
The monitoring of physiological signals like heart rate,

respiratory rate is essential for health condition analysis.
Common medical measurements of heart rate and respi-
ratory rate rely on Electrocardiography (ECG) and Photo-
plethysmograph (PPG). Both ECG and PPG require skin
contact during measurement and may cause uncomfortable
sensation of testees in long-term monitoring. To over-
come this problem, many researchers have been explor-
ing on remote photoplethysmography (rPPG), which can
remotely estimate physiological signals through extract-
ing pulse-induced subtle light absorption variation in facial
videos [3, 15, 2, 19, 13, 12].

Most of the existing methods do not directly estimate
respiratory rate from facial videos but firstly estimate rPPG
signals and then analyze the frequency domain attributes of
rPPG signals for respiratory rate estimation. Because res-
piration is related to frequency and amplitude variation of

Figure 1. Different types of breathing waves. The breathing waves
are provided in the competition as ground truth.

rPPG which is subtle in facial videos, it’s hard to estimate
respiratory rate accurately from facial videos. Accurate re-
mote respiration rate estimation requires to extract respira-
tion patterns from rPPG signals. As shown in the Figure 1.

In fact, respiration can influence heart rate and blood
volume change, which correspondingly modulate the fre-
quency and amplitude of rPPG signals. Both frequency
modulation (FM) and amplitude modulation (AM) in rPPG
signals can be used to estimate respiratory rate [4]. The ex-
traction of the two modulations requires high quality rPPG
signals. For deep learning based approach, ground truth
PPG signals are needed for training. While in the competi-
tion, only breathing waves are available so it is hard to esti-
mate the respiration information directly from facial videos.
Besides, the training dataset and test dataset have large dif-
ference on participants’ behaviours and recording environ-
ments. Different from the well-controlled training dataset,
the participants’ motion and lighting conditions in the test
dataset is more complex.

To address these problems, we proposed an end-to-end
domain adaptive network and an weakly supervised learn-
ing strategy by using the breathing waves modulated rPPG
signals for respiratory rate estimation. Our contributions in-
clude:
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• We proposed an end-to-end network for respiratory
rate estimation via analyzing respiration patterns in
rPPG signals.

• We modulated pre-estimated rPPG signals with breath-
ing waves as weak labels to obtain pseudo rPPG sig-
nals with respiration pattern for rPPG estimator train-
ing. Besides, mask negative Pearson correlation loss
is proposed to enhance the respiration pattern learning
for rPPG estimator.

• An adversarial learning strategy is designed to reduce
the domain gap in terms of recording environment and
motion interference.

2. Related Work
Remote Photoplethysmography Estimation. The re-

mote photoplethysmography (rPPG) can estimate pulse-
induced blood volume change through extracting related
light absorption variations. The rPPG signals contain mul-
tiple physiological signals like heart rate, respiratory rate,
heart rate variability. To estimate rPPG signals from facial
videos, Blind Source Separation (BSS) techniques are ap-
plied to separate rPPG signals from noise [9, 14]. These
methods can extract periodic rPPG signals and effectively
remove the noise in RGB channels. However, subjects’
motion induced noise, especially periodic noise can disturb
BSS-based methods’ estimation. To estimate rPPG signals
under subjects’ motion, a chrominace-based method was
proposed to estimate rPPG through combining RGB chan-
nels under white lighting assumption and utilizing skin stan-
dardization to keep the white lighting [3]. The skin stan-
dardization requires precognition on the skin-tone informa-
tion and skin-tone mismatch may cause inaccurate rPPG es-
timation. [17] proposed to estimate rPPG signals by com-
bining the normalized RGB channels.

Recently, deep learning based methods have been pro-
posed to learn accurate and robust mapping from facial
videos to rPPG signals. [15] proposed an end-to-end, two-
stage 2D CNN model to estimate rPPG signals and average
heart rates. This method outperforms traditional methods
but also can be affected by video compression. To estimate
rPPG signals accurately, spatial temporal convolution based
methods are proposed to utilize temporal information con-
tained in facial videos to estimate rPPG signals [19, 12]. Be-
sides, [13] proposed the multi-scale spatial-temporal map to
represent the raw facial video and the cross-verified scheme
to adaptively split noise from physiological features.

rPPG-based Respiratory Rate Estimation. The high
quality rPPG signals contain various physiological fea-
tures and rPPG-based respiratory rate estimation is a very
prospective application. [10] proposed to extract inter-beat-
interval (IBI) signals from rPPG signals and analyze IBI
signals’ frequency attributes for respiratory rate estimation.

But IBI-based respiratory rate estimation demands more
strict constraints. The peak positions of rPPG signals should
be accurate. The respiration should be periodic. [2] esti-
mates rPPG signals from facial videos and analyzes peak
values in the power spectrum density (PSD) of rPPG sig-
nals to estimate heart rate and respiratory rate. The two
methods both adopted frequency analysis as the foundation
of respiratory rate estimation, however, for situations with
non-periodic respiration, errors may occur.

Domain Adaptation. Supervised learning can utilize
large-scale data to train powerful models and achieve high
performance on the independent and identical distributed
test dataset. However, when large domain shift exists be-
tween source domain and target domain, only using the
source domain for training may lead to a biased model and
the performance on target domain will severely decrease.
Learning domain-invariant feature representation can effec-
tively reduce the influence of domain shift and decrease the
performance drop on test dataset [20]. [16] proposed the
correlation alignment to minimize the divergence between
source domain and target domain. [6] proposed to train the
encoder to learn domain-invariant features by utilizing the
features for both classification and reconstruct samples to
target domain. [5] utilized adversarial training strategy be-
tween feature extractor and domain classifier which allows
feature extractor to learn domain-invariant features from
source domain and target domain. Normalization layers
like batch normalization [7], group normalization [18] are
widely applied in neural network architecture and their mis-
match in the test time may induce lower performance. [11]
assumes that the normalization layers learn domain infor-
mation and neural network layers learn task-related infor-
mation. Under this assumption, the AdaBN was proposed
to adjust normalization layers’ parameters according to both
the source domain and target domain to overcome the influ-
ence of domain shift. Different from usual domain gap in
image classification like corruption types, picture styles and
so on, domain shift in our case combines lighting variation,
motion variation and the shift of main range of heart rate
and respiratory rate. It increases our difficulty when doing
domain adaptation since the diminishing domain gap may
cause the diminishing physiological information. In this pa-
per we customize the domain adaptation process and reduce
the domain gap of physiological signals between training
dataset and testing dataset, thus reduce the influence of do-
main adaptation to our main objective.

3. Methodology
In this section, we firstly introduce how the proposed

method estimates rPPG signals and respiratory rate from
facial videos, then unveil the pseudo rPPG labels genera-
tion process using breathing wave, and finally depict how
to adapt the complex domain shift in testing data. Figure 2
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shows the whole framework of the proposed method. Our
model adopts both training data and test data as input to
learn domain-variant physiological features for respiratory
rate estimation. And we utilize pre-estimated rPPG sig-
nals, breathing waves and domain information to generate
ground truth for model training.

3.1. An End-to-End Network for Respiratory Rate
Estimation

The rPPG can reflect blood volume change by analyz-
ing subtle light absorption variation in facial videos, while
the blood volume can be influenced by several physiolog-
ical behaviours. According to previous rPPG-related pa-
pers [10, 2], the information of both heart rate and respi-
ratory rate is contained in the rPPG signal. Because the
rPPG is subtle in the facial video and the respiration infor-
mation is weak or even fuzzy in rPPG, it is hard to directly
estimate respiratory rate from the facial video by a DNN
model. Therefore, we split the respiratory rate estimation
into three steps: (1) extracting features that contain accu-
rate and domain-invariant physiological information, (2) es-
timating rPPG signals with respiration pattern from facial
videos, (3) estimating respiratory rate from estimated rPPG
signals. And the three steps correspond to feature extrac-
tor, rPPG estimator and domain classifier in the model. Be-
fore introducing the model, we first introduce model’s input
which is also important for respiratory rate estimation

In the previous rPPG estimation methods, both raw fa-
cial videos and corresponding multi-scale spatial-temporal
map (MSTmap) [13] are used as input, while in this com-
petition, to protect participants’ privacy, the facial videos
provided in the training dataset contains dynamic mosaics
on eyes and mouth. Besides, 68 landmarks are provided
as auxiliary information. The mosaics’ irregular variation
and movement will disturb rPPG estimation if raw videos
are selected as input. To preserve physiological information
without mosaics’ disturbance, we selected 3 regions of in-
terest in each facial video and generated a MSTmap with
mean values of RGB channels as shown in the Figure 3. We
also smoothed the facial landmarks to reduce the noise and
disturbance caused during their detection . In the test stage,
the MSTmap is generated with the same RoIs’ selection and
the facial landmarks are detected by the open source pack-
age face-alignment1.

To estimate respiratory rate from the MSTmap, we uti-
lized 2D convolution, 2D transposed convolution, fully con-
nected layer and batch normalization layer to build our
model and its architecture is shown in Figure 4. All acti-
vation functions in the model are ReLU [1].

Firstly we used the convolution layers to extract the
physiological features and down-sampling operation is ap-
plied to reduce noise in extraction. To reduce the infor-

1https://github.com/1adrianb/face-alignment

mation loss and keep accurate physiological features, the
convolution with stride equal to 2 is selected for down-
sampling. Different from heart rate estimation, respiration
is related to the modulations of rPPG. Accurate rPPG peaks’
location or amplitude variation is required for respiratory
rate estimation. To obtain rPPG signals with more details,
we used the 2D transposed convolution to up-sample the
physiological features. And a 1 × 1 convolution is applied
to convert physiological features into the rPPG signal. The
labels and loss functions for rPPG estimation supervision
will be introduced in the next sub-section. The respiratory
rate estimator is composed of three fully connected layers
and can globally extract respiration pattern for estimation.
The ground truth respiratory rate is equal to the number of
peaks in the breathing wave. We selected the mean square
error (MSE) as the loss function

LRR =

T∑
i=1

(RRi
pred − RRi

gt)

N
(1)

RRpred is respiratory rate estimated by model, RRgt is
the ground truth respiratory rate and N is the number of
samples in one batch.

3.2. Weak Labels for rPPG Estimation

In the previous deep learning based rPPG estimation
methods, the PPG or ECG is provided for supervision. Es-
pecially adopting PPG as ground truth and the negative
Pearson correlation as loss function, is a common practice
in rPPG estimation tasks. However, in this respiratory rate
estimation competition, only breathing waves are provided.
On one hand, without PPG and ECG deep learning based
methods can can easily diverge or learn nothing but memo-
rize, due to high implicity of our task. On the other hand, it
is hard for traditional methods to estimate accurate rPPG
signals containing respiration pattern in test dataset with
strong motion disturbance. While in the training dataset, the
facial videos are captured under well-controlled environ-
ment with little participants’ motion. So traditional meth-
ods can also estimate the rPPG signal with limited error and
we used [3] to generate pre-estimated rPPG signals from
training dataset.

Therefore, we proposed to utilize breathing waves to
modulate the pre-estimated rPPG signals as the ground truth
to supervise rPPG estimation. Our idea of pseudo rPPG
generation is shown in the Figure 5. In the pseudo labels’
generation, the pre-estimated rPPG signal is firstly normal-
ized to the same amplitude. Then the breathing wave is
normalized and vertical flipped because respiration usually
decreases the amplitude of rPPG signals. The pseudo label
is generated by multiplying the normalized two signals and
presents amplitude variation during respiration. When we
train the model to estimate rPPG signals, we firstly used the
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Figure 2. Overview of proposed method. The training data and test data are both provided for training. The feature extractor is trained to
obtain physiological features for rPPG signal and respiratory rate estimation. The adversarial training is used between feature extractor
and domain classifier for learning domain-invariant physiological features. The rPPG estimator takes Ftrain as input and estimate rPPG
signals which contain respiration patterns. The respiratory rates are estimated by the estimator. The pseudo rPPG is generated through
using breathing waves to modulate pre-estimated rPPG signals.

Figure 3. We selected three RoIs for MSTmap generation to re-
duce the influence of dynamic facial mosaics contained in training
dataset.

negative Pearson correlation as a loss function

LrPPG = 1− Cov(est , gt)√
Cov(est , est)Cov(gt , gt)

(2)

the est presents the rPPG signal estimated model and gt
presents the corresponding pseudo label. Cov in the equa-
tion is the function. Meanwhile, to increase the amplitude
modulation’s weight in training, we proposed the mask neg-

Figure 4. The figure presents the details of our proposed method.
The Ksize represents kernel size, C represents output channel
number, and S represents the stride of convolution operation.

ative Pearson correlation loss function

Ltrend = 1− Cov(estm, gtm)√
Cov(estm, estm)Cov(gtm, gtm)

(3)

the estm presents the masked estimated rPPG signal and
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Figure 5. An example of pseudo labels’ generation. Both the rPPG signal and the breathing wave are required to normalized into a fixed
range. Through multiplying normalized two signals, the generated pseudo rPPG contains respiration-induced amplitude modulation. In the
generated pseudo rPPG signal, the respiration-related amplitude variation can be clearly captured.

gtm presents the masked pseudo label. The binary masks
are generated according to the vertical flipped normalized
breathing waves and only top 20 percent values are 1 in
the masks. The binary masks preserve the correlation be-
tween peak regions in rPPG and optimizing the correlation
can emphasize respiration-induced amplitude modulation in
rPPG. The final loss for rPPG and respiratory rate estima-
tion is

Lphys = LRR + αLrRRG + βLtrend (4)

where α and β are hyperparameters.

3.3. Domain Adaptation

In this respiratory rate estimation competition, the train-
ing dataset and test dataset have large difference on both
respiratory rate range and disturbance contained in facial
videos. Resampling of training data can effectively reduce
the influence of respiratory rate range difference. To over-
come the influence of different disturbance, ordinarily, ap-
plying adversarial training between the feature extractor and
domain classifier can help feature extractor learn domain-
invariant features. However, when the main task related
features can be classified, the domain classifier may disturb
the feature extractor’s learning but not help to learn domain-
invariant features.

In our case, the respiratory rate distributions in training
dataset and test dataset are different. Because, the partici-
pants in the training dataset are just staying still while the
participants in test dataset are exercising in the gym. To
adapt to the higher respiratory rate in exercise, test dataset
has larger respiratory rate range than training dataset. The

Figure 6. The example of domain distribution of training dataset,
test dataset and augmented training dataset. The training dataset
and test dataset have different respiratory rate range which can
be used for domain classification. The decision boundary of do-
main classifier on training dataset and test dataset may be similar
to boundary 1 and the feature extractor may not adapt to the dis-
turbance difference. While the augmented training dataset cannot
be differentiated from test dataset by respiratory rate range and the
disturbance-induced domain shift can be reduced in the physiolog-
ical feature space.

example of domain distribution is shown as the Figure 6.
Therefore, we up-sampled the MSTmaps in the training
data with both 1.5 and 2 times for frequency augmentation.
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And this kind of augmentation can reduce the respiratory
rate and heart rate difference between the two datasets. Af-
ter the frequency augmentation, the domain classifier forces
the feature extractor to learn a domain invariant feature
that can adapt the difference between training and testing
dataset. The domain classifier is trained by the Binary Cross
Entropy (BCE) function

Ldc = y log x + (1−y) log(1− x ) (5)

x presents the predicted domain class and y presents the
domain label.

4. Experiments

In this section, we experimented our method on the
track2 competition and some ablation studies are provided
to validate the effectiveness of our method.

4.1. Datasets

In the track2 competition, a large scale training dataset
and a challenging test dataset are provided for remote res-
piratory rate estimation. The training dataset contains 995
one-minute facial videos captured from 100 participants and
all the videos are recorded with 1920 × 1080 resolution
at 30 FPS. To protect the privacy of participants, all facial
videos in the training dataset are covered by two mosaics
on the eyes’ region and mouth region as shown in the Fig-
ure 3. And all facial videos in the training dataset have 68
facial landmarks’ coordinates provided. Each video has a
corresponding breathing wave recorded at 256Hz provided
as the ground truth and the ground truth respiratory rate can
be gained by counting the peaks in the breathing wave.

In our experiments, we divided the training dataset into a
subtraining dataset and a validation dataset. The subtraining
dataset contains the first 90 participants’ facial videos and
the validation dataset contains the last 10 participants’ facial
videos.

The test dataset contains 283 one-minute facial videos
captured from 10 participants and all the videos are
recorded with 1280 × 720 resolution at 30 FPS. The videos
are captured in the gym under running and cycling exercis-
ing modes and contain disturbances from subjects’ motion
and complicated ambient lighting.

4.2. Implementation Details

Pseudo rPPG label generation. As mentioned in sec-
tion3, the pseudo rPPG labels are generated by modulating
pre-estimated rPPG signals with the corresponding breath-
ing wave. The pre-estimated rPPG signals are estimated by
CHROM [3] with the mean RGB values of RoI3. The land-
marks for mean RGB values’ calculation are all smoothed
by the mean filter. The changing range of peak amplitude in

the pseudo rPPG labels is 1.0-1.2. The breathing waves are
down-sampled to 30Hz.

Data augmentation. To reduce the difference between
training dataset and test dataset, we firstly generated 1.5
times and 2 times up-sampled MSTmaps by resampling the
MSTmaps extracted from two adjacent facial videos. We
also flipped all the training samples in the time dimension
to increase the diversity while training.

Domain adaptation. To reduce the domain gap induced
performance drop on target domain, we utilized adversar-
ial training between feature extractor and domain classi-
fier. The domain labels are generated according to belong-
ing dataset. As an auxiliary task for respiratory rate esti-
mation, the domain adaptation training has smaller learning
rate than the main task.

Training setting. In the training stage, the model is im-
plemented with PyTorch and trained on Nvidia V100. We
used Adam optimizer [8] with weight-decay equals 1e-4.
The learning rate for physiological model is 1e-4 and the
learning rate for domain adaptation model is 1e-6. The
model is trained on the subtraining dataset for 20 epochs
and the model weight with lowest validation error is se-
lected for test submission. To keep the numerical stability
of loss functions based on Pearson correlation in the train-
ing stage, we added a small number 1e-8 to the denominator
to prevent NaN loss values. In the loss function Lphys, we
set α = 0.1 and β = 2.

4.3. Results and Analysis

We trained our proposed method with different settings
and the results are shown in the Table 1. In settings col-
umn, 1x, 1.5x and 2.x represent the resampling times of
MSTmap. The mean absolute error (MAE), root mean
square error (RMSE), and Pearson correlation coefficient
(R) are provided.

From the results, we can find that upsampling can help
learning information from high respiratory rate samples and
improve the performance on the test dataset. In fact, the dif-
ference of respiratory ranges between training dataset and
test dataset can influence model’s performance to a large ex-
tent. In the physiological signal’ estimation, resampling the
training dataset covers the whole reasonable range, which
can help improve performance on unseen application sce-
narios.

Besides, the test results also show that the domain adap-
tation under data augmentation can help the model adapt
to the test samples and estimate respiratory rate robustly.
We only use the domain adaptation strategy on augmented
training dataset. Because when training dataset and test
dataset respiratory ranges have little or no interaction, do-
main classifier may intend to utilize respiratory rate as do-
main classification criterion and feature extractor may not
adapt to the disturbance in test dataset.
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Table 1. The test results of our proposed method under different
settings.

Settings
MAE
(bpm)

RMSE
(bpm) R

1x 11.84 14.45 0.07
1x + 2x 8.70 10.86 -0.003
1x + 2x + DA 8.00 9.73 0.15
1x + 1.5x + 2x + DA 7.85 9.56 0.14
Fusion 7.55 9.04 0.01

Finally, we merged the results from two models with the
domain adaptation strategy by calculating the mean of two
test results and achieved our best result.

5. Conclusion
In this paper, we proposed an end-to-end convolution

neural network for respiratory rate and rPPG estimation.
To estimate rPPG signals with respiratory pattern, we mod-
ulated pseudo rPPG with pre-estimated rPPG signals and
breathing waves. We also utilized domain adaptation mech-
anism to reduce the influence of domain shift between train-
ing dataset and test dataset when the information related
to the main task is indistinguishable after data augmenta-
tion. Only using breathing waves may be not enough for
high rPPG signal and accurate respiratory rate estimation.
Estimating accurate respiratory rate under less constrained
conditions using large scale dataset with more physiological
signals provided may be one future research direction.
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