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Abstract

Video Photoplethysmography (VPPG) technique can de-
tect pulse signals from facial videos, becoming increasing-
ly popular due to its convenience and low cost. Howev-
er, it fails to be sufficiently robust to drastic motion distur-
bances such as continuous head movements in our real life.
A motion-driven attention network (MANet) is proposed in
this paper to improve its motion robustness. MANet takes
the frequency spectrum of a skin color signal and of a syn-
chronous nose motion signal as the inputs, following by re-
moving the motion features out of the skin color signal using
an attention mechanism driven by the nose motion signal.
Thus, it predicts frequency spectrum without components
resulting from motion disturbances, which is finally trans-
formed back to a pulse signal. MANet is tested on 1000
samples of 200 subjects provided by the 2nd Remote Phys-
iological Signal Sensing (RePSS) Challenge. It achieves a
mean inter-beat-interval (IBI) error of 122.80 milliseconds
and a mean heart rate error of 7.29 beats per minute.

1. Introduction

The pulse is a rhythmical throbbing of arteries result-
ing from heartbeat. It provides a wealth of information
about the cardiovascular system, and plays an important
role in disease prophylaxis and cardiac rehabilitation. Pre-
vious researches [1,2] have shown that the pulse signal can
be remotely detected from a facial video using an optical
biomonitor technique named video Photoplethysmography
(VPPG). The color in facial skin changes subtly in response
to the pulses due to the varying light absorption of the blood
flowing beneath the skin. The VPPG technique captures the
skin color changes in a video using a consumer-level cam-
era, followed by detecting the pulse from the changes. This
technique can be implemented on mobile devices such as
cell phones and laptops, and frees users from the firm con-
tact between the skin and sensors. With the rapid develop-
ment of the computer vision and artificial intelligence, it is
becoming increasingly practical and popular. Up to now, it
has been used for detecting heart rate [3], oxyhemoglobin
saturation [4], atrial fibrillation [5,6], etc.

However, the VPPG technique is not sufficiently robust
to unsteady factors in the realistic environments such as face
motions, weak illumination, and diverse skin tones. A va-
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riety of methods have been proposed to improve its robust-
ness, and they can be summarized as follows. (1) Blind
source separation (including principal component analysis
(PCA) [7], independent component analysis (ICA) [8] and
singular spectrum analysis [9]) linearly decomposes the ob-
served color signal into several basis vectors, from which
the vectors with pulsating features are selected to constitute
the pulse signal. (2) Signal filtering (including bandpass
filtering [10], least mean square adaptive filtering [11] and
homomorphic filtering [12]) separates the pulse signal out
of the observed color signal based on the pulse prior infor-
mation such as frequency range and temporal periodicity.
(3) Multi-region analysis [13] extracts color signals from
different facial areas, followed by combining the color sig-
nals with high signal-noise ratios into the pulse signal. (4)
Chromatic model transforms the face video from RGB s-
pace to another chromatic space (including CHROM [14],
SR [15], and POS [16]) where the pulse signal is furthest
(orthogonal) to noise. (5) Deep learning models (including
DeepPhys [17], STVEN-rPPGNet [18], RhythmNet [19])
learn the relationship between the skin color changes and
the underlying pulse signal from a large number of sam-
ples, which have achieved noticeable progress with today’s
data explosion.

Above-mentioned methods can deal with certain kinds
of face motions such as local expression changes and brief
head motions, but fail to work effectively for drastic dis-
turbances such as continuous head twisting. Furthermore,
some disturbances with similar features to the pulse compli-
cate the problem. For example, the motion signal resulting
from the head twisting overlap with the underlying pulse
signal in both the time and space domains, which is hard to
separate by deep learning models or filters with an empirical
setting. Thanks to the opportunity to participate in the 2nd
Remote Physiological Signal Sensing (RePSS) Challenge,
we propose a motion-driven attention network (MANet) for
detecting the pulse signal from a facial video, with a focus
on addressing the drastic motion disturbances in the testing
videos provided by the organizers. In addition to skin color
signal, the proposed model also takes the nose moving trail
into account, and uses the nose motion signals to counter-
act the motion artifact in the skin color signal. The rest of
the paper is structured as follows. The proposed model is
elaborated in Section II. The experiments for evaluating the
model are introduced in Section III, followed by a conclu-
sion about this paper in Section IV.

2. Method

2.1. Pre-processing

In a recorded video, the face area is tracked in order to
eliminate its rigid movements. The face tracking method
introduced in [11] is used in this work. At first, the face

rectangle on the first frame of the video is detected using
the Viola-Jones face detector. Then, 66 facial landmark-
s inside the face rectangle is found through Discrimina-
tive Response Map Fitting (DRMF) method. Following the
movement trajectory of the landmarks, the face rectangle is
tracked through the rest of the video.

The chromatic space of the video is transformed from
the RGB space to the CHROM space [14] to highlight the
color changes due to the pulse. For each pixel, two color
signal are computed as X = 3R − 2G, and Y = 1.5R +
G − 1.5B. Two signals are filtered in a bandpass (0.7-
4.0 Hz) manner, and then combined into a signal as Z =
X − αY , where α = σ (X) /σ (Y ) and σ refers to the
standard deviation.

The cheek is chosen as the region of interest (ROI) as it is
less affected by hair and talking. By connecting four facial
landmarks around the cheek with straight lines, the ROI in
each frame is marked off, where all the pixels are globally
averaged. Thus, a temporal sequence which reveals the skin
color changes can be constructed.

The temporal sequence is interpolated linearly into a col-
or signal with 300 elements, for the purpose of signal length
consistency. The color signal is then processed by wavelet
decomposition method to remove noise outside the heart
rate band. In this work, the raw color signal is decomposed
into an approximate component a5 and 5 detail components
d1 ∼ d5 using the Meyer wavelet, from which the fourth
detail component d4 (whose frequency band is around 0.7-
2.5 Hz) is selected as the color signal that contains pulse
information.

2.2. Pulse signal detection with MANet

In a video with facial movements, the color signal c (t)
is a combination of the pulse signal p (t) and the motion
signal m (t). The pulse signal can be obtained by removing
the motion signal out of the color signal. Although the mo-
tion signal is unknown, it can be estimated from the moving
trajectory of the nose. Specifically, after detecting the nose
rectangle in the first frame of a tracked face video using
the Viola-Jones nose detector, we calculate the location of
the central point of the nose rectangle m̃1. Subsequently,
the motion signal is estimated as the Euclidean distance be-
tween the central point of the first frame and those of the fol-
lowing frames, i.e., m̃ (t) = [∆m̃1,∆m̃2...∆m̃T ], where
∆m̃t = |m̃t − m̃1|. The estimated motion signal m̃ dif-
fers from the actual motion signal m in waveform, but they
are similar in frequency (i.e., the frequency of head move-
ment). Therefore, after computing the frequency spectrum
of the estimated motion signal M̃ (f) and the color signal
C (f) by Fourier transform, we plan to remove the motion
signal under the guidance of the estimated motion signals
from the frequency domain perspective.

It is implemented by MANet in this work, whose archi-
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Figure 1: Framework of the proposed method. A color signal and a motion signal are first extracted from the cheek and noise
regions in a face video respectively. Two signals are then pre-preprocessed and transformed into the frequency domain to
acquire their spectrum. The spectrum of two signals is map into a latent feature space by MANet, where the motion features
of two signals cancel each other out by an attention mechanism. The spectrum predicted by MANet is finally transformed
back to the time domain to construct the pulse signal.

Figure 2: Architecture of MANet.

tecture is shown in Figure. 2. This model takes the fre-
quency spectrum of the color signal C (f) and the estimated
motion signal M̃ (f) as the inputs, and outputs the frequen-

cy spectrum of the pulse signal P̂ (f). It is worth noting
that the frequency spectrum of a vector is a complex vec-
tor which cannot be processed by common neural networks.
Considering that the signal frequency information is main-
ly contained in the amplitude of the frequency spectrum,
we divide the frequency spectrum into amplitude spectrum
(the modulus of the frequency spectrum) and phase spec-
trum (the angles or orientations of the frequency spectrum),
and use the amplitude spectrum only in the input and output
of the model. For each input, two layers of Bidirectional
Long Short Term Memory (Bi-LSTM) networks are used
to extract its features at different frequency bands. The Bi-
LSTM networks for two inputs have shared weights for the
purpose of feature similarity. Each Bi-LSTM layer outputs
a total ofK hidden states. The features of the estimated mo-
tion signal spectrum f

M̃
=
[
f1
M̃
, f2

M̃
...fK

M̃

]
are then used

as an attention mask overlaying on the features of the color
signal spectrum fC =

[
f1C , f

1
C ...f

K
C

]
, aiming to let the net-

work assign higher weights for the part of the color signal
spectrum that has less motion signal components. It can be
accomplished by the following steps. (1) The features of the
estimated motion signal f

M̃
are reverse-normalized into a

soft mask using a negative Sigmoid function,

fmask =
−1

1 + expfM̃
−Ave(fM̃)

(1)

where Ave refers to the mean, and fmask is the soft mask.
The weights in the mask range from 0 to 1, with higher
weights indicating weaker motion features. (2) The features
of the color signal spectrum are multiplied by the attention
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mask in a element-wise manner,

FA = fC ⊗ fmask (2)

where ⊗ refers to the Hadamard product, and FA is the
masked features of the color signal spectrum. Through the
attention mechanism, the masked color features have less
motion components compared to the previous version.

The masked color features are fed into two layers of Bi-
LSTM networks to predict the amplitude spectrum under
the supervision of a label amplitude spectrum. The label
is transformed from a clean PPG signal recorded in sync
with the face video. The loss function for training the mod-
el is designed as the minimum mean square error (MSE)
between the outputs and the labels,

Loss =
1

N

∑N

n=1

(
PPPG (f)− P̂ (f)

)2
(3)

where PPPG (f) stands for the label amplitude spectrum of
the PPG signal. One remaining problem is that the pulse
signal cannot be reconstructed with the predicted amplitude
spectrum only. In view of this, we combine the predicted
amplitude spectrum with the separated phase spectrum of
the color signal into the frequency spectrum, and then trans-
form it back to the pulse signal p̂ (t) using inverse Fourier
transform.

3. Experiments
3.1. Dataset

The model was trained on a self-collected dataset, and
was tested on two datasets (OBF and VIPL-HR-V2) offered
by the challenge organizers. The self-collected dataset was
established by our team in collaboration with the first af-
filiated hospital of USTC (Anhui Provincial Hospital). It
contained 470 subjects (including healthy individuals and
patients with coronary heart disease, hypertension, and a-
trial fibrillation). For each subject, there were a 10-second
static video where the subjects kept still and a 10-second
dynamic video where the subjects performed typical face
motions such as head twisting, speaking and nodding. All
the videos were recorded at 30 frames per second (fps) with
a resolution of 1080p using a Logitech C930 camera. Mean-
while, synchronous PPG signals viewed as the ground truth
were detected by a pulse oximeter (ZJE PWS-20D) worn on
the fingertips.

The OBF testing dataset included 100 subjects. For each
subject, there were five 10-second videos with a resolution
of 1080p at 30 fps. All the videos were recorded in static s-
cenarios where the subjects had no facial motions. The chal-
lenge from the this dataset was the diverse skin tones. The
VIPL-HR-V2 testing dataset included 100 subjects. Five
10-second videos with a resolution of 720p were recoded
for each subject. All the videos were recorded in dynamic

scenarios where the subjects talked and moved heads con-
tinuously. Furthermore, nearly half the videos were record-
ed in dim or uneven lighting, which increased the difficulty
of the pulse signal detection.

3.2. Set up

In this work, 20% samples were separated from the train-
ing set, which was used as the validation to set the model
hyperparameters. The lengths of the inputs and the output
of MANet were 150 (half the length of the video) as only
half of the signal spectrum was input. Each Bi-LSTM layer
contained 15 hidden states in one direction, whose length
was 10. The activation functions of all the Bi-LSTM layers
were Relu. The parameters of MANet were trained by the
Adam optimizer (with the initial learning rate at 0.1) based
on the back propagation. The training epoch was 100, and
a batch of samples (n=64) were used in each training itera-
tion. The experimental data were processed by Tensorflow
2.0 and Matlab 2018A.

3.3. Evaluation Metrics

In the RePSS challenge, the performance of the proposed
method was mainly evaluated by the inter-beat-interval
(IBI) metrics [20] as follows,
1. Mean of IBI error (MIBI)
For the IBI curve of the estimated pulse signalR (t) and the
IBI curve of the ground truth Rgt (t), the IBI error AE and
its mean MIBI can be computed as,

AEIBI =
∑T

t=0
|R (t)−Rgt (t)|,MIBI =

∑K
k=0AEIBI (k)

K
(4)

where T is the time length of the IBI curves, and K is the
number of videos.
2. Standard deviation of IBI error (SDIBI)

SDIBI=

√∑K

k=0
[AEIBI (k)−MIBI]

2
/K (5)

In addition, the heart rate metrics including mean absolute
error of heart rate (MAEHR), root mean squared error of
heart rate (RMSEHR), and Pearson correlation coefficient
of heart rate (RHR) were also used for reference.

3.4. Results

The experimental result on the testing set provided by the
organizers was presented in Table I. Our team ranked 2nd
out of 6 participating teams, with the mean IBI error MIBI
4.7% larger than the best one, and 26.9% lower than the
third one. Besides, our team achieved the second best SDIBI
and RHR, and the best MAEHR and RMSEHR. Figure 3
shows the experimental result of MANet more visually with
two examples. It can be clearly seen that two pulse signals
(especially the one in VIPL-HR-V2) became more regular
after being processed by MANet.
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Team MIBI (ms) SDIBI (ms) MAEHR (bpm) RMSEHR (bpm) RHR

TIME 117.25 153.18 7.31 11.44 0.62

Dr. L (Ours) 122.80 153.91 7.29 11.05 0.57

Anti-Spoofers 168.08 162.82 11.84 14.51 0.02

shankejinjiboy 224.41 163.98 15.44 18.75 -0.05

ZJUT-WTCrPPG 273.53 171.13 23.89 27.96 -0.03

ZJUT-ASTrPPG 295.70 175.24 29.24 33.69 -0.10

Table 1: Comparison among 6 teams in this challenge (best performance in bold).

Figure 3: Pulse signals predicted by MANet. The blue
curves were the observed color signal, the red curves were
the predicted pulse signals, and the green binary signals in-
dicate the locations of the signal peaks.

4. Conclusions

VPPG is an imaging technique for pulse signal detection
from face videos, but its development is impeded by drastic
motion disturbances. MANet is proposed in this paper to
address this problem. It suppresses the motion components
of the observed skin color signal in a spectral feature space
using an attention mechanism driven by the nose moving
signal, producing a pulse signal with less motion-induced
distortions. The performance of MANet ranked 2nd out of
6 teams in the RePSS Challenge.
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