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Abstract

Recent advancements in deep learning, computer vision,
and embodied AI have given rise to synthetic causal rea-
soning video datasets. These datasets facilitate the devel-
opment of AI algorithms that can reason about physical
interactions between objects. However, datasets thus far
have primarily focused on elementary physical events such
as rolling or falling. There is currently a scarcity of datasets
that focus on the physical interactions that humans perform
daily with objects in the real world. To address this scarcity,
we introduce SPACE: A Simulator for Physical Interactions
and Causal Learning in 3D Environments. The SPACE sim-
ulator allows us to generate the SPACE dataset, a synthetic
video dataset in a 3D environment, to systematically eval-
uate physics-based models on a range of physical causal
reasoning tasks. Inspired by daily object interactions, the
SPACE dataset comprises videos depicting three types of
physical events: containment, stability and contact. These
events make up the vast majority of the basic physical inter-
actions between objects. We then further evaluate it with a
state-of-the-art physics-based deep model and show that the
SPACE dataset improves the learning of intuitive physics
with an approach inspired by curriculum learning. Reposi-
tory: https://github.com/jiafei1224/SPACE

1. Introduction

Traditionally, it is believed that infants have very little
understanding of the physical world due to their poor per-
formance on object-manipulation tasks [23, 25]. However,
with further research conducted via new visual-attention
methods, it has been revealed that, contrary to traditional

beliefs, even young infants possess a wealth of knowledge
about the physical world and have the innate ability to per-
form causal reasoning over physical interactions between
objects [2, 11, 21, 31]. In addition, young infants develop
their sensitivity to kinetic information for depth in the very
early stages of development, which allows them to foster a
response for expansion and contraction patterns specifying
approach to three-dimensional objects [14, 26, 28]. Beyond
that, infants can also learn to recognise the objects from
those interactions when they are as young as nine months
old [27]. Thus, as a result of all these attributes, infants
can observe a wide range of physical interactions (e.g. con-
tainment, stability and contact) between objects of various
geometric shapes and further develop a causal understand-
ing for fundamental physical interactions in their preopera-
tional stage of development [12]. Furthermore, according to
the theory of accommodation [24], infants can further mod-
ify their basic understanding of physical interactions into
higher order tasks which incorporate a mixture of those fun-
damental physical interactions. Hence, it is of paramount
importance for infants to have fully developed their innate
ability in understanding those fundamental physical inter-
actions before moving on to the higher order tasks. Equiv-
alently, it is vital for AI models that aim to improve their
understanding and reasoning capabilities of real-world ob-
ject interactions, to be first trained on those fundamental
physical interactions.

This paper aims to study the significance of causal rea-
soning in fundamental physical interactions between ob-
jects in a 3D environment. Our work draws inspiration from
a few recent 3D visual reasoning datasets [3, 9, 34] in terms
of their methodologies for synthesizing large-scale physical
interaction datasets in a 3D environment. As such, the paper
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Figure 1. Top row: visual data attributes for one example frame
comprises of RGB, object segmentation, optical flow, depth, and
surface normal vector. Bottom three rows: example frames from
the three physical interactions.

composed of two parts: 1) the SPACE simulator for syn-
thesizing of various physical interactions between objects
in 3D environment with a large degree of conditional vari-
ances and accurate physics-based interactions, and 2) the
SPACE dataset, a large-scale video dataset with over 15k
unique videos and over 2 million frames of the three fun-
damental physical interactions: containment, stability and
contact, as shown in Figure 1. Furthermore, we evaluate the
SPACE dataset on PhyDNet [17], a state-of-the-art model
for physics-based future frame prediction and show that by
pre-training on our SPACE dataset, we can improve the
physics-based model’s performance on higher order real-
world human action datasets after fine-tuning in a way sim-
ilar to curriculum learning [4].

2. Related Work

The notion of drawing inspiration from conventional
concepts in neuroscience and psychology to understand hu-
man perception of physical dynamics and causal reasoning
has been around for some time [1, 5, 16, 19]. However,
those works primarily focused on human intuitions of rec-
ognizing or predicting motions. But with the advancement
and rise of deep learning, computer graphics, and embod-
ied AI [8, 15, 18], there has been a paradigm shift towards
generating synthetic datasets that range from simple 2D car-
toons [10, 22, 35] to realistic interaction in 3D environments
[3, 7, 9, 13, 29, 34], all with the aim to explore machine per-
ception of physics and causal reasoning on a deeper level.
However, only datasets from CLEVRER [34], CoPhy [3],
and CATER [9] are most relevant to our work.

CLEVRER [34] is a collision-based video dataset com-
prising over 20,000 synthetic videos of object collision and
300,000 questions and answers on four newly proposed cat-
egories of questions: descriptive, explanatory, predictive,
and counterfactual. A Neuro-Symbolic Dynamic Reason-
ing model was further proposed to tackles the dataset.

Figure 2. Environment setup, and all the available interactable ob-
jects and containment holders (for containment task only) spawned
for the two physical events.

CoPhy [3] developed a model for causal physical reason-
ing in a synthetic 3D environment. However, they propose
a model that learns the physical dynamics from a counter-
factual setting and based on the given scenarios to make the
next frame prediction. The CoPhy framework allows for the
generation of 300k different scenarios in a 3D environment,
such as a tower of blocks falling or objects colliding.

CATER [9] built a video dataset with observable and
controllable objects in a 3D environment and requires the
model to have spatiotemporal understanding to solve it. It
consists of three different tasks: atomic action recognition,
compositional action recognition, and snitch localization
(an object permanence task where the goal is to classify the
final location of the snitch object within a 2D grid space),
with 5,500 videos for each of the tasks.

Even though our SPACE dataset might share similar vi-
sual modalities as the three datasets, but the nature of its
physical interactions and the complexity in dynamics are
very different. The purpose of the SPACE dataset is to
serve as the building blocks for curriculum learning [4] in
more complex real-world object interaction tasks. Hence,
our SPACE dataset is rich in complexity and diversity, mak-
ing it a suitable dataset for training AI models to learn the
intuitive physics behind object interactions.

3. SPACE Dataset

3.1. Overview

Figure 1 shows the composition of the SPACE dataset,
which is made up of three novel video datasets that are
generated from the scenarios synthesized based on three
fundamental physical interactions: containment, stability,
and contact in a 3D environment. Each of the physical
interaction scenarios is synthesized by our SPACE simula-
tor, which is developed using Blender [6], an open-source
3D computer graphics software with a Python API. The
SPACE simulator allows users to generate various scenarios
for each of the physical interactions with different cinematic
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conditions, object classes and position settings as shown
in Figure 2. Each physical interaction scenario generated
has several parameters such as object classes O, number of
objects spawned N , spawn locations L, and containment
holders C (only applicable to the containment task). These
parameters are selected because they affect the physical dy-
namics significantly, thus helping to create more diverse set
of scenarios for each category of the physical interactions.

Containment. This physical interaction is demonstrated
by synthesizing up to three objects of various object classes
to be spawned at different locations with predefined heights
which are directly above one of the containment holders as
illustrated in Figure 1. The data will capture the final coor-
dinates of each object to determine if it is contained within
the containment holder labelcontainment = {0, 1}.

Stability. This physical interaction is demonstrated via
having up to three objects of various object classes spawn-
ing at different locations with predefined heights which are
directly above the origin of the plane as shown in Figure 1.
The stability labelstability = {0, 1} of each object can be
determined through the differences in the angular rotational
motion of each object measured throughout the scene.

Contact. This physical interaction is demonstrated via
having up to three objects of various object classes spawned
at different locations and at a ground level height as shown
in Figure 1. After the scene has been initialized, a ball of
fixed mass and shape will be spawned and moved across the
plane at a speed of 1m/s with a fixed trajectory. Whether
each object has been contacted labelcontact = {0, 1} are
determined by the changes in its initial and final positions.

3.2. Procedural Generation

To synthesize all the physical interaction scenarios, the
SPACE simulator will sample from a range of one to three
objects N = {1, 2, 3} to be spawned in the scene, and the
class of each object are then sampled from O = {cylinder,
cone, inverted cone, cube, torus, sphere, flipped cylinder}.

However, there are differences in certain settings be-
tween each category of the physical interactions. For con-
tainment, the object(s) will be spawned directly above the
containment holder with height differences of ±0.5 be-
tween two consecutive objects. The containment holder
is sampled from C = {wine glass, glass, mug, pot, box}.
For stability, the object(s) will be spawned directly above
the origin (0, 0, z) with its x and y coordinates sampled
from {0.3, 0.2, 0.1, 0,−0.1,−0.2,−0.3}. For contact, the
object(s) will be spawned within a 6× 6 grid with an incre-
mental or decremental value of 1 for both the x and y axes
at ground level.

3.3. Dataset Structure

There are 15,000 unique scene instances generated for
the SPACE simulator, with 5,000 scenes for each category

Figure 3. Dataset analysis for number of objects and success rate
of physical interactions by object classes.

of physical interactions. From there, we collect 15,000
videos lasting 3 seconds with a frame rate of 50 frames per
second (FPS), which total up to 2,250,000 frames. Besides
the RGB frames, we also provide the segmentation map, op-
tical flow map, depth map and surface normal vector map as
shown in Figure 1. We further perform an in-depth analy-
sis of the composition of each geometric object within each
category of physical interactions and analyze the success
rate for each of the geometric objects within the scene. The
success rate for each of the geometric objects within their
physical interaction task is a clear indication of how the ge-
ometric shape of the object might have on the overall out-
come of physical interactions, as seen in Figure 3.

4. Experiments
In our experiments, we aim to show that the SPACE

dataset is useful in helping physics-based deep models learn
robust physical dynamics for downstream tasks.

4.1. Task & Dataset

In this paper, we illustrate the efficacy of our dataset for
improving physics-based models by comparing two differ-
ent experimental setups on the future frame prediction task
[20]. For this task, we make use of our SPACE dataset and
the UCF101 dataset [30]. The UCF101 dataset consists of
realistic action videos, collected from YouTube, with 101
action categories.

Specifically, we want to show that a transfer learn-
ing setup that leverages on pre-training with the SPACE
dataset outperforms one that is limited to pre-training on
the UCF101 dataset, when both models are subsequently
fine-tuned and evaluated on the UCF101 dataset. Our setup
is also inspired by curriculum learning [4], where data is
presented to the model in a way that gradually illustrates
more complex data. In this case, UCF101 represents the
increased complexity, since it is situated in the real world
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while our SPACE dataset is in a synthetic environment.

4.2. Network Architecture

We select a state-of-the-art physics-based model, PhyD-
Net [17] for our experiments. PhyDNet introduces a two-
branch deep architecture that disentangles the learning of
physical dynamics and unknown complementary informa-
tion that do not correspond to any prior model. In PhyDNet,
physics knowledge is represented by the learning of partial
differential equations (PDE) and is used to enforce physi-
cal constraints for future frame prediction. Unlike previous
models, PhyDNet allows for a generic class of linear PDEs
through the varying of differential orders, enabling it to ac-
count for more classical models, e.g. the heat equation, the
wave equation. To learn the unknown complementary in-
formation, PhyDNet uses a generic ConvLSTM [33].

4.3. Experimental Settings

For all experiments, we use a batch size of 2 and a se-
quence length of 50 frames. We remove UCF101 samples
that have less than 50 frames. Within the 50 frames, the first
5 frames are set as the input sequence, and the remaining
45 are to be generated. We train for 20 and 30 epochs for
pre-training and fine-tuning respectively. We use an adap-
tive learning rate that follows the original PhyDNet setup.
During fine-tuning for both SPACE and UCF101, we set
the starting learning rate to be the final learning rate in the
UCF101 pre-training, and maintain the adaptive learning
rate. Like in the original PhyDNet setup, we also employ
teacher forcing [32], we set the reduction rate in teacher
forcing probability threshold to be the same as that of PhyD-
Net with each epoch. We reset this threshold at the start of
the fine-tuning process with the same reduction rate.

For SPACE, we sample 50 frames by taking 1 frame ev-
ery 3 frames, since each scene has a sequence of 150 frames.
We take 1,000 instances for each task in SPACE: contain-
ment, stability and contact for a total of 3,000 instances. For
each task, we take 200 samples as validation data in a 8:2 ra-
tio. Likewise, we split UCF101 into training and validation
data by categories in a 8:2 ratio.

We vary the dataset composition in our experiments for
both SPACE and UCF101 to test the importance of the three
SPACE tasks in helping physics-based deep models learn
robust physical dynamics. Specifically, we have two scenar-
ios: 1) 3 UCF101 categories are filmed with a fixed camera,
and encapsulate physical dynamics from at least two of the
three SPACE tasks (UCF3), while having minimal human
intervention/actions throughout the video, and 2) individual
SPACE tasks evaluated on scenario 2 during fine-tuning.

4.4. Evaluation Metric

We evaluate our experimental setups using an evaluation
metric commonly used in video prediction: Mean Squared

Figure 4. Experimental results for scenarios in Section 4.3. For
scenario 1, we compare the effects of UCF3 and SPACE pre-
training (cyan and red lines), and for scenario 2, we compare the
effects of individual SPACE tasks (green, orange and pink lines).

Error (MSE). This metric computes the quality of gener-
ated frames in comparison to their respective ground-truth
frames. The MSE is averaged for each frame of the output
sequence. Lower MSE indicates better performance.

4.5. Results

Our results show that the SPACE dataset helps physics-
based model, PhyDNet to learn robust physical dynamics.
In Figure 4, we show that the validation loss in experimen-
tal scenario 1 (where we train the models on UCF3) is lower
in the case where the model is pre-trained on the SPACE
dataset. We also show that each of the three fundamen-
tal physical interactions in the SPACE dataset is essential
for the learning of robust physical dynamics, since the ex-
perimental results for scenario 2 are worse than when they
are combined in scenario 1. Furthermore, experimental sce-
nario 1 with SPACE pre-training has the overall lowest val-
idation MSE loss after 30 epochs of fine-tuning on UCF3.

4.6. Conclusion

Children learn the causality and intuitive physics behind
object interaction by first learning about fundamental phys-
ical interaction concepts such as contact, containment and
stability. Similarly, for AI models to improve their under-
standing of object interactions, they should also be trained
in an approach like curriculum learning. In this work, we
propose SPACE, a simulator for physical interactions and
causal learning in 3D environments, that composes a large-
scale synthetic video dataset for three fundamental physi-
cal interaction tasks. Our experiments show that the pre-
training done the on SPACE dataset improves a state-of-
the-art physics-based deep learning model’s performance
on real-world object interaction tasks.
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