
SketchyDepth: from Scene Sketches to RGB-D Images

Gianluca Berardi, Samuele Salti, Luigi Di Stefano
Department of Computer Science and Engineering (DISI)

University of Bologna, Italy
{gianluca.berardi3, samuele.salti , luigi.distefano}@unibo.it

Abstract

Sketch-based content generation is a creative and fun ac-
tivity suited to casual and professional users that has many
different applications. Today it is possible to generate the
geometry and appearance of a single object by sketching it.
Yet, only the appearance can be synthesized from a sketch
of a whole scene. In this paper we propose the first method
to generate both the depth map and image of a whole scene
from a sketch. We demonstrate how generating geometri-
cal information as a depth map is beneficial from a twofold
perspective. On one hand, it improves the quality of the im-
age synthesized from the sketch. On the other, it unlocks
depth-enabled creative effects like Bokeh, fog, light varia-
tion, 3D photos and many others, which help enhancing the
final output in a controlled way. We validate our method
showing how generating depth maps directly from sketches
produces better qualitative results with respect to alterna-
tive methods, i.e. running MiDaS after image generation.
Finally we introduce depth sketching, a depth manipulation
technique to further condition image generation without the
need of additional annotation or training.

1. Introduction
Sketching is a universal form of communication that has

been used by humans since ancient times. A sketch con-
veys information to represent objects, scenes, actions or
concepts in a concise though expressive form. There exist
a variety of reasons to create sketches for professional, e.g.
manga, CAD or portraits, as well as casual applications, like
free hand drawing, games (like Pictionary or Quik, Draw!
[7]) or doodling. Nowadays, the widespread diffusion of
touch-screen devices and the impressive advances of ma-
chine learning can boost the potential of sketch-based appli-
cations. We can draw a sketch to search for images, videos
or 3D models, we can define games based on sketch recog-
nition [7] or take part in collaborative drawing by interact-
ing with an AI [5]. One of the most exciting area of research
in the realm of AI applied to sketches concerns generating

Figure 1. SketchyDepth generates images and depth maps from
sketches (first row), enabling depth based creative effects (second
row).

an RGB image that may effectively depict the concepts the
user is willing to convey through a sketch, i.e. synthesizing
a plausible RGB image conditioned on a sketch [2][4]. A
further leap in this direction would enable to pop the sketch
out of its 2D world so as to figure out also a plausible 3D
geometry for the sketched content. Generating geometri-
cal information alongside appearance from sketches holds
the potential to unlock creative image manipulation appli-
cations like climatic effects (e.g. fog, rain), light variation
and shadows, shallow depth of field or Bokeh, background
substitution, autostereograms and 3D photos. Furthermore,
synthesizing geometry from sketches may also contribute to
3D models generation, opening up a host of new possibili-
ties in the space of creative design. In literature there exist
some papers concerned with synthesizing 3D information
from a sketch, but these works are focused on single ob-
ject sketches [8][16][23]. Very recently, with the advance
of the research over single object sketches, also the topic of
scene sketches is starting to attract more attention, with two
recent published contributions addressing sketch to image
generation [4] and image retrieval from sketches [15].

In this paper we propose the first approach to generate
geometrical information from scene sketches. In particular,
our deep learning method can synthesize both an RGB im-

2414



age as well as its associated depth map conditioned on an in-
put scene sketch. We empirically demonstrate how leverag-
ing geometrical information helps to generate higher quality
RGB images and that we are able to obtain depth maps that
are qualitatively better with respect to alternative methods.
We show the potential of leveraging depth maps in creative
applications, as displayed in Fig. 1, manipulating the gen-
erated images by, e.g. Bokeh effect, fog, alteration of the
illumination, 3D photos and others. Finally, our framework
enables depth map sketching, a novel method to condition
image generation by directly manipulating depth maps so
as to refine the background content without requiring fur-
ther training or supervision.

2. Related Works
In the last few years, with the development of deep learn-

ing, many papers have tried to apply it to sketches. Classic
research themes like sketch recognition [28], sketch-based
image retrieval [27] [20] and sketch-based 3d shape re-
trieval [22] have seen relevant performance improvements
while new topics have been proposed like sketch-based
model generation [10], sketch generation/synthesis [7] or
object-based sketch-to-image synthesis [2]. Also interest-
ing works with human-AI sketch-based interaction have
been published [7] [5]. A broader overview of the sketch
literature can be found in the recent survey [26].

Despite the growing interest and development of appli-
cations in many sketch related areas, geometry generation
from sketches, that represents a hard task, is still far to be
fully explored. The main investigations concern the genera-
tion of 3D shapes from the sketch of a single object [11]
[8][16][23][3]. Multi-view Convolutional Networks [16]
considers a maximum of three sketches of the same ob-
ject (front, side and top views) and leverages multi view
depth and normal maps prediction to fuse them into a 3D
point cloud solving an optimization problem. A different
work [23] proposes to synthesize training sketches simu-
lating free hand human style and to normalize them before
directly predicting the corresponding 3D shape. A recent
work [3] instead introduces a casual sketch to 3D shape in-
teractive tool where it is possible to create a good 3D model
of a monster and define simple animations for it.

Geometry generation from scene sketches is instead an
unexplored area of research. The scene sketch research [1]
has seen recent advances on image generation [4] and im-
age retrieval [15]. In SketchyCOCO [4] a proposed Edge-
GAN generates foreground objects (cows, zebras, etc.) one
by one following sketch details while a conditional genera-
tive network (pix2pix) [12] produces the final image, fol-
lowing loosely background indications (grass, sky, forest).
SceneSketcher [15] proposes instead a fine-grained image
retrieval solution from scene sketches exploiting graph con-
volutional networks [14].

Thus, in this paper we investigate further along the path-
way of scene sketch research and propose the first approach
to generate geometrical and appearance information, i.e. an
RGB-D image, from a scene sketch.

3. Method
Our framework, dubbed SketchyDepth and illustrated in

Fig. 2, takes a scene sketch as input and generates the corre-
sponding RGB image and geometric information, the latter
represented as a depth map. Akin to SketchyCOCO [4],
the objects in the sketch are subdivided into foreground and
background, where foreground sketches express precisely
user intentions, i.e. scale, position and details of an object,
while background sketches roughly indicate how the rest of
the image should be completed, e.g. grass or trees in certain
regions.

To train our framework we start from a dataset consist-
ing of {scene sketch, scene image} pairs. As every ob-
ject in a scene sketch can be localized and classified by
a sketch segmentation method [31], it is possible to crop
the regions corresponding to foreground objects from each
scene image. Pasting these regions onto the corresponding
scene sketch yields partial images, denoted as ip in Fig. 2.
Then, we complement the dataset with the depth map asso-
ciated with each scene image, which is obtained by an off-
the-shelf monocular depth estimation model trained by the
authors on a mix of diverse datasets [18]. Thus, to train our
generative model that returns the final image, igen and its
associated depth map dgen we rely on a dataset consisting
of {partial image, depth map, scene image} triplets.

As depicted within the orange dashed line in Fig. 2, the
partial images required by our solution at inference time are
obtained by applying the EdgeGAN model [4] to the fore-
ground objects detected by a sketch segmentation method
[31]. EdgeGAN is trained separately based on a dataset
consisting of {object sketch, object image} pairs, as de-
scribed in [4].

3.1. Depth Map and Final Image Generation

To produce the depth map and final image corresponding
to the input scene sketch, we design the conditional gen-
erative adversarial network [6][12] shown within the solid
blue line in Fig. 2. Having obtained a partial image, ip,
for each scene sketch in the training dataset as explained
above, to train our generative model we create triplets {ip,
dreal, ireal}, where dreal and ireal are the depth map and
scene image corresponding to each scene sketch. Then, a
depth generator, Gd, takes as input a partial image, ip, and
produces a corresponding depth map, dgen:

dgen = Gd(ip) (1)

To guide the generator a depth discriminator, Dd, is defined.
Dd is trained to discriminate between fake {ip, dgen} pairs

2415



Figure 2. Overview of the SketchyDepth framework.

and real ones, {ip, dreal}. We leverage a conditional GAN
loss [12] to train the generator Gd and the discriminator Dd:

Lgd = Eip,dreal
[logDd(ip, dreal)]+

Eip [log(1−Dd(ip, dgen)]
(2)

where Ex[·] denotes expectation over x and the discrimina-
tor Dd is trained to maximize Lgd, while the generator Gd

is trained to minimize Lgd. Similarly to pix2pix [12], the
previous loss is complemented by an L1 term that encour-
ages Gd to generate depth maps, dgen, that are similar to the
corresponding real ones, dreal:

Lrd = Eip,dreal
[∥dreal − dgen∥1] (3)

The complete loss for Gd and Dd is thus given by:

Ld = argmin
Gd

max
Dd

Lgd + αLrd (4)

where α is a scale factor that weighs the contribution of the
L1 term.

After depth generation, an image generator, Gi, takes as
input the partial image, ip, and the generated depth map,
dgen, in order to generate the final scene image, igen:

igen = Gi(ip, dgen) (5)

An image discriminator, Di, is defined as the critic of Gi.
Di is trained to discriminate between fake triplets, {ip,
dgen, igen}, and real ones, {ip, dreal, ireal}. Akin to depth
generation, a conditional generative loss combined with an
L1 term defines the loss for Gi and Di:

Lgi =Eip,dreal,ireal
[logDi(ip, dreal, ireal)]+

Eip [log(1−Di(ip, dgen, igen)] (6)
Lri =Eip,ireal

[∥ireal − igen∥1] (7)
Li =argmin

Gi

max
Di

Lgi + αLri (8)

Furthermore, to encourage alignment between dgen and
igen, we train a joint discriminator, Dj , to tell apart fake
{ip, dgen, igen} triplets and real ones, {ip, dreal, ireal}.
The loss for Dj is defined as a conditional generative loss
where both generators are optimized:

Lgj =Eip,dreal,ireal
[logDj(ip, dreal, ireal)]+

Eip [log(1−Dj(ip, dgen, igen)] (9)

Lj =arg min
Gi,Gd

max
Dj

Lgj (10)

The complete training procedure alternates the update of ev-
ery discriminator with an update of both generators with re-
spect to Li, Ld and Lj .

4. Experiments
4.1. Dataset

In our experiments we use the SketchyCOCO dataset [4],
a dataset consisting of {scene sketch, scene image} pairs
that contains 14 foreground classes (like horse, giraffe or
elephant) and 3 background classes (trees, grass and sky).
Indeed, although image generation from sketches is a gener-
ative task, and therefore open-ended, the dataset features for
each sketch a ”ground-truth” real image which was paired
by the authors with the sketch and can be used as an exam-
ple of a valid result.

To evaluate our proposed conditional generative net-
work, we start from pairs {partial image, scene image}.
Partial images are obtained as detailed in Section 3. These
are the same pairs used in SketchyCOCO to train and test
the background generation. We then add depth supervision
for ground-truth images (and, in turn, the associated sketch)

2416



by running a pre-trained version of MiDaS [18], a recent
and popular monocular depth estimator trained for gener-
alization. The final datasets contain 11265 training triplets
and 2816 test triplets. To validate our experiments we used a
split of the training dataset with 9576 training triplets (85%)
and 1689 validation triplets (15%).

4.2. Baseline and Implementation

As baseline for scene image generation we use the
SketchyCOCO proposal [4]. With this method, in the
background generation phase a pix2pix network [12] is
trained to learn to transform foreground images (i.e. partial
images) into scene images. The configuration for the train-
ing and evaluation differ from the pix2pix default ones as
follows. A pre-processing operation is added so as to crop
images centrally to obtain the largest squared image and
then resize it to 128 × 128; the pix2pix resize and crop
pre-processing operations are set to size 128 × 128 so that
they do not modify the images further; as for the generator,
the UNet128 [19] architecture proposed in pix2pix is se-
lected, the output size of the generated images is 128×128,
and the system is trained for 110 epochs. All the other
hyper-parameters are kept aligned with the pix2pix code.

We trained the baseline to replicate SketchyCOCO re-
sults but we were not able to exactly replicate them, even if
we used the same official code for pix2pix and we had
the kind support of the authors in several private commu-
nications. This is probably due to different versions of the
official pix2pix pytorch code1 [12] [30] that got many
fixes and updates over time. Since we were not able to re-
cover the exact version of pix2pix code used in Sketchy-
COCO, we selected a recent version of pix2pix pytorch
code to have an implementation of reference for all our ex-
periments2. Thus, in the experiments reported in Tab. 1
and discussed in the next subsection, we report the Sketchy-
COCO paper results (first row) as well as the results we have
replicated by using the selected pix2pix version (second
row), which we consider our baseline.

We used the same PyTorch [17] implementation for all
the operations in common between the baseline and our pro-
posal, like pre-processing and data augmentation. In our
adversarial training, we used pix2pix default PatchGAN
[12] architecture as discriminators. The depth map follows
the same pre-processing of the partial images but processed
as single channel. The α L1 balancing term is equal to 100
and we use the Adam optimizer [13] with 0.0002 as learning
rate, as done for the baseline. All other hyper-parameters
share the same value in the baseline and our method. We
used a 1080ti and a 1060 nvidia gpus for our experiments.
We will make our code publicly available in case of accep-
tance.

1github: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2commit: f13aab8148bd5f15b9eb47b690496df8dadbab0c

Table 1. Quantitative scene image generation results. We report
FID (lower is better) as image quality metric and SSIM (higher is
better) as faithfulness metric among generated images and ground-
truth images.

Method FID ↓ SSIM ↑
SketchyCOCO (original) [4] 164.80 0.2880
SketchyCOCO (replicated) 130.48 0.2766
SketchyDepth (w/o Gd and Dd) 130.38 0.2820
SketchyDepth (w/o Dj) 136.13 0.2783
SketchyDepth 116.87 0.2693

4.3. Scene Image Evaluation

We evaluate the images generated from the sketches be-
longing to the test set by comparing them with the corre-
sponding ground-truth images according to Fréchet Incep-
tion Distance (FID) [9] and SSIM [24] metrics. FID is a
measure of similarity between two sets of images that cor-
relates well with human judgement of visual quality and it
is often used to evaluate the realism of generated images.
Thus, we use it to compare the set of generated images and
the set of ground-truth images in order to evaluate the image
generation quality. The SSIM metric measures the similar-
ity between a pair of images and it is normally used as a
quality measure when the perfect image one wishes to at-
tain is known (e.g. in super resolution applications). In the
context of scene generation from sketches, the SSIM has
been proposed as a measure of faithfulness to the sketch
of the generated image by using the ground-truth image as
a proxy for the sketch. However, we argue the SSIM to be
less meaningful than the FID for a generative task like scene
from sketches, because the ”ground-truth” image is just one
of the possible high-quality results and not the only correct
one, and slightly higher SSIM with respect to it may not re-
ally measure a lower faithfulness to the sketch, especially
for background regions which are coarsely indicated in the
sketch and may instead vary wildly between generated im-
ages. Nonetheless, we report SSIM scores as done in [4].

Tab. 1 collects the experimental results. The first row
reports the original SketchyCOCO paper results, while the
second row those obtained trying to replicate it, which we
use as baseline to compare the results provided by our
framework, shown in row 5.

Our framework yields better FID with respect to the
baseline, this highlighting that the images generated by our
method are usually of higher quality with respect to those
generated by the baseline. The SSIM score, instead, is
slightly worse: as discussed above, we believe this result
mainly indicates that the content generated by our method
for a specific sketch differs more from the corresponding
ground-truth image. Yet, it may still represent well the in-
put sketch, as shown by the qualitative results in Fig. 3.

As reported in Tab. 1, beside testing the SketchyCOCO

2417



Figure 3. Scene image generation from sketch. Results are visualized in two columns: each column shows from left to right the input
sketch, our result, and the baseline. The first column deal with sketches featuring foreground and background content while in the second
the sketches contain only background classes.

baseline and our proposal, we also consider two additional
configurations as an ablation study. In particular, on one
hand, we wish to sift out the actual contribution of the joint
depth map generation to the image generation performance
of our framework, while on the other we wish to validate
the impact of the joint discriminator Dj . If we remove all
components strictly needed to produce and discriminate the
depth map in our proposal, i.e. Gd and Dd, we are left with
the generator Gi and the discriminators Di and Dj , modi-
fied so as to not take a depth map as input. This can also
be thought of as the baseline with two discriminators, i.e.
with the additional training signal of Dj for Gi. Row 3
shows the results of this experiment, while row 4 ablates
the contribution of the joint discriminator Dj . Ablating out
the joint depth map generation, SketchyDepth obtains the
same FID score as the baseline, showing how the additional
training signal for the image generator, considering only the
RGB image information, does not help to reach higher im-
age quality generation. This validates that the FID gain of
our method is related to the introduction of depth informa-
tion, and shows how depth information can impact signif-
icantly the sketch to image task, in particular increasing
image generation quality. Interestingly, the SSIM of this
configuration increases with respect to the baseline: more
supervision for the generator within the same budget for
training time forces it to produce images more similar to

the ground-truth ones, which increases SSIM but does not
increases realism as measured by the FID, another hint of
the biased nature of the SSIM and the limited relevance of
small differences in its value to assess the performance of
the sketch to scene image generation task. Similarly, our
solution without Dj cannot improve performances over the
baseline. This result show how, beside introducing the ad-
ditional depth information as studied in the previous exper-
iment, it is also important to have the correct amount of
training signal and alignment between dgen and igen, as in-
troduced by Dj , to be able to improve image quality gener-
ation. This validates that all components of our framework
are needed to deliver improved performance with respect to
the baseline in the sketch to scene image generation task.

In Fig. 3, we show images generated from test sketches.
The first column concerns sketches with foreground and
background content, the second one sketches with back-
ground content only. Visual observation suggests that depth
information contributes to fill effectively the empty regions
of the input sketch, see in particular column 2 rows 3 and 4,
upper right portion of images. We investigated on the FID
subdividing test examples in foreground-background (fb)
and background-only (bo), obtaining 96.70 in fb and 184.73
in bo for the baseline and 92.91 in fb and 162.24 in bo for
the proposed method. This quantitative measurements seem
to support our observation concerning the ability of our so-

2418



Figure 4. Depth map generation from sketch. Results are visualized in three columns. We show from left to right: our generated scene
images, our generated depth maps and depth maps generated by MiDaS from our generated images.

lution to contribute more in terms of background genera-
tion.

4.4. Depth Evaluation

There are no previous methods that can generate a depth
map from a scene sketch. However, it is possible to ob-
tain depth maps from images by running depth-from-mono
models. Thus, to asses the quality of the depth maps gen-
erated by our method, we compare them with those gener-
ated by a pre-trained monocular depth estimator, i.e. MiDaS
[18], applied to the generated RGB images. We apply Mi-
DaS on generated images because real RGB images are not
available at test time. Furthermore, even if they were avail-
able, the comparison would not be meaningful because, for
the same sketch, the real image and the generated one ex-
hibit different structures and therefore different depth maps.
Fig. 4 shows examples of depth map generation. In each of
the three columns we show, from left to right, generated im-
ages, the corresponding depth maps generated jointly by our
method and the depth maps obtained by MiDaS on gener-
ated images. Our method produces good depth maps most
of the times, while MiDaS depth maps are often less de-
tailed, in particular on foreground objects, and sometimes
grossly wrong. This is somewhat surprising since MiDaS is
also used to create depth supervision at training time for our
framework, and it shows how monocular depth estimation
algorithms are influenced by subtle changes in the image
texture [25], which occurs in our generated images. This
also vouches for the importance of simultaneous generation
of RGB and depth information, as proposed in our frame-
work, to avoid such depth artifacts or errors.

To further assess our depth map generation results we
conducted a human evaluation. We selected 100 random
sketches containing foreground and background from the
test dataset and generated the corresponding image and
depth map with our method. From the generated images

we also obtained depth maps by MiDaS. Given the gener-
ated image and both depth maps, the test proposed to the
participant consists in choosing which of the depth maps
best corresponds to the displayed image. We collected data
from 23 people with previous experience with computer vi-
sion and depth maps. Over 23×100 = 2300 answers the 23
participants preferred our generated depth maps compared
to those yielded by MiDaS 2153 times, i.e. about 93.60%
of the times. Human evaluation results are therefore aligned
with the previous qualitative considerations.

4.5. Depth Based Creative Applications

One of the interesting applications unlocked by generat-
ing depth maps together with images is the possibility to ap-
ply effects over images which vary according to depth val-
ues. Given an effect, it is possible to choose the depth value
where the effect will start to affect the image, the direction
of the effect, i.e. if the intensity of the effect increases or de-
creases alongside depth value, and the maximum intensity
of the effect. We experimented with three different effects.
The first one is a blur filter whose intensity increases with
the estimated depth of the central pixel, in particular the
weight of the central pixel is scaled accordingly. This so-
lution can be used to reproduce a shallow depth of field or
a Bokeh effect3. Light, hue shifts, and colour to grayscale
transitions, where the intensity of the effect increases along
with depth, are also possible and can be realized transform-
ing the image to the HSV color-space and scaling a specific
channel of pixels according to depth value. Finally, climatic
fog and the transition-to-cartoon effects can be realized by
using an overlay image of the desired effect, i.e. a fog im-
age and a cartooned version of the input image. The output
image is produced as a weighted average of the input image
and the overlay image where the weight varies according to
the depth value at every pixel. Further details about how we

3https://en.wikipedia.org/wiki/Bokeh

2419



Figure 5. Leveraging depth map information to apply creative effects on generated images. In both columns from left to right we show
generated images, bokeh effect, light variation, fog and hue shift.

Figure 6. 3D photo example: simulation of the movement of the camera toward the foreground of the scene, i.e. a zoom effect is simulated.

obtained overlay images can be found in the supplementary
materials. We note that in the literature also more sophis-
ticated depth-based algorithms [29] to introduce simulated
fog into images do exist, which could be beneficially lever-
aged starting from our generated depth map. Fig. 5 reports
examples of the above mentioned effects applied to images
generated by our method based on the associated gener-
ated depth maps. In particular Bokeh, light variation, fog
and hue shift effects are shown in the figure, while colour
to grayscale and transition-to-cartoon effects are visible in
the supplementary material. We also experimented with the
creation of so called 3D photos, i.e. a video where a 3D ef-
fect is applied. We used a pre-trained model [21] to produce
3D photos using our generated depth maps and images. Fig.

6 shows some sequences of frames sampled from the gen-
erated 3D photos. Animated versions are provided in the
supplementary material.

Overall, these qualitative results show how obtaining ge-
ometrical information from a sketch enables different and
engaging effects that exceed the limitations of the 2D image
plane. The proposed effects are just an example of the pos-
sibilities unleashed by the availability of depth maps, and
more creative uses can be explored.

4.6. Can You Sketch a Depth ?

The design of our pipeline enables the exploration of
another creative use of depth maps. Once our system is
trained, we can get the partial image of a sketch from a

2420



Figure 7. Sketching generated depth maps to acquire finer control over image generation. In both columns, from left to right: generated
depth map, generated image, sketched depth map and newly generated image.

pre-trained EdgeGAN and use Gd to get the correspond-
ing depth map. Since the image generator Gi is then con-
ditioned on it, if we manually modify the depth map with
an image editor before feeding it to Gi, we can gain addi-
tional control over image generation. For instance, we can
add shapes of objects that belong to background classes or
modify the structure of the image, e.g. the height of the
horizon. In our experiments, we treat the depth map as a
grayscale image and edit for every new object/area a sin-
gle fixed grayscale value, which defines its depth. After
the depth sketching phase, we can use the resulting depth
map and the partial image as input to Gi to obtain the cor-
responding generated image.

Depth sketching examples are visible in Fig. 7. Qualita-
tive results show how our system can generate new objects
and partially modify the image structure when conditioned
on a sketched version of the generated depth map, without
further training or supervision. The system learns to do so
only from the edited depth shapes, in particular Gi gains
knowledge about the shapes of objects and image structures
that occur often in the training dataset. Depth sketching
gives us more control over position, shape, and scale of ob-
jects which are normally part of the background. Indeed,
this information cannot be specified directly in the sketch,
where background classes are meant as coarse selectors of
the background texture, not as precise indicators of the ap-
pearance of the objects forming the background. As in our
setting the background objects that appear more frequently
are grass, sky and trees, we can get additional and finer con-

trol mainly over different types of trees, bushes, vegetation.
Although depth sketching is an interesting additional way
to gain control over the generated image, it is enabled by
our framework almost as a side effect and it comes with
its own limitations: in particular, sometimes more than one
attempt is needed to obtain the desired result. We believe
that a training protocol specifically designed with this use
case in mind, e.g. with data augmentation simulating the
test conditions, could easily enhance its robustness.

5. Conclusion and Future Work

We have presented SketchyDepth, the first framework to
generate a depth map and an image from a scene sketch.
We demonstrate how leveraging geometrical information al-
lows for improving scene sketch to image generation qual-
ity and how our framework can generate depth maps that
are consistently better compared to an alternative method.
Moreover, generated depth maps can be used to obtain
many depth-based effects over generated images which of-
fer a variety of tuning nobs to creative users. Our framework
also enables depth sketching, another creative depth manip-
ulation technique that gives finer control over the generated
background. We hope that our findings may foster further
investigations dealing with depth maps generation. For in-
stance, one might conjecture that leveraging depth informa-
tion could improve the results in generative tasks beyond
sketches, e.g. in a classic RGB generation task with state of
the art generative models.

2421



References
[1] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and

Shi-Min Hu. Sketch2photo: Internet image montage. ACM
transactions on graphics (TOG), 28(5):1–10, 2009.

[2] Wengling Chen and James Hays. Sketchygan: Towards di-
verse and realistic sketch to image synthesis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9416–9425, 2018.

[3] Marek Dvorožňák, Daniel Sỳkora, Cassidy Curtis, Brian
Curless, Olga Sorkine-Hornung, and David Salesin. Monster
mash: a single-view approach to casual 3d modeling and ani-
mation. ACM Transactions on Graphics (TOG), 39(6):1–12,
2020.

[4] Chengying Gao, Qi Liu, Qi Xu, Limin Wang, Jianzhuang
Liu, and Changqing Zou. Sketchycoco: image gener-
ation from freehand scene sketches. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5174–5183, 2020.

[5] Songwei Ge, Vedanuj Goswami, C Lawrence Zitnick, and
Devi Parikh. Creative sketch generation. arXiv preprint
arXiv:2011.10039, 2020.

[6] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. In Ad-
vances in Neural Information Processing Systems (NIPS),
2014.

[7] David Ha and Douglas Eck. A neural representation of
sketch drawings. arXiv preprint arXiv:1704.03477, 2017.

[8] Xiaoguang Han, Chang Gao, and Yizhou Yu. Deeps-
ketch2face: A deep learning based sketching system for 3d
face and caricature modeling. ACM Transactions on graph-
ics (TOG), 36(4):1–12, 2017.

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. arXiv preprint arXiv:1706.08500, 2017.

[10] Conghui Hu, Da Li, Yi-Zhe Song, Tao Xiang, and Timo-
thy M Hospedales. Sketch-a-classifier: Sketch-based photo
classifier generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9136–
9144, 2018.

[11] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: a sketching interface for 3d freeform design. In ACM
SIGGRAPH 2006 Courses, pages 11–es. 2006.

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015.

[14] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[15] Fang Liu, Changqing Zou, Xiaoming Deng, Ran Zuo, Yu-
Kun Lai, Cuixia Ma, Yong-Jin Liu, and Hongan Wang.

Scenesketcher: Fine-grained image retrieval with scene
sketches. In European Conference on Computer Vision,
pages 718–734. Springer, 2020.

[16] Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis,
Subhransu Maji, and Rui Wang. 3d shape reconstruction
from sketches via multi-view convolutional networks. In
2017 International Conference on 3D Vision (3DV), pages
67–77. IEEE, 2017.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[18] Ranftl René, Lasinger Katrin, Hafner David, Schindler Kon-
rad, and Vladlen Koltun. Towards robust monocular depth
estimation: Mixing datasets for zero-shot cross-dataset trans-
fer. arXiv preprint arXiv:1907.01341, 2019.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[20] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James
Hays. The sketchy database: learning to retrieve badly drawn
bunnies. ACM Transactions on Graphics (TOG), 35(4):1–12,
2016.

[21] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8028–
8038, 2020.

[22] Fang Wang, Le Kang, and Yi Li. Sketch-based 3d shape
retrieval using convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1875–1883, 2015.

[23] Jiayun Wang, Jierui Lin, Qian Yu, Runtao Liu, Yubei Chen,
and Stella X Yu. 3d shape reconstruction from free-hand
sketches. arXiv preprint arXiv:2006.09694, 2020.

[24] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[25] Alex Wong, Safa Cicek, and Stefano Soatto. Targeted ad-
versarial perturbations for monocular depth prediction. In
Advances in neural information processing systems, 2020.

[26] Peng Xu, Timothy M Hospedales, Qiyue Yin, Yi-Zhe Song,
Tao Xiang, and Liang Wang. Deep learning for free-hand
sketch: A survey and a toolbox. arXiv e-prints, pages arXiv–
2001, 2020.

[27] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M
Hospedales, and Chen-Change Loy. Sketch me that shoe.

2422



In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 799–807, 2016.

[28] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang,
and Timothy M Hospedales. Sketch-a-net: A deep neural
network that beats humans. International journal of com-
puter vision, 122(3):411–425, 2017.

[29] Ning Zhang, Lin Zhang, and Zaixi Cheng. Towards simulat-
ing foggy and hazy images and evaluating their authenticity.
In International Conference on Neural Information Process-
ing, pages 405–415. Springer, 2017.

[30] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017.

[31] Changqing Zou, Haoran Mo, Chengying Gao, Ruofei Du,
and Hongbo Fu. Language-based colorization of scene
sketches. ACM Transactions on Graphics (TOG), 38(6):1–
16, 2019.

2423


