
Scene Designer: a Unified Model for Scene Search and Synthesis from Sketch

Leo Sampaio Ferraz Ribeiro1, Tu Bui2, John Collomosse2, 3, and Moacir Ponti1

1ICMC, Universidade de São Paulo – São Carlos/SP, Brazil
2CVSSP, University of Surrey – Guildford, Surrey, UK

3Adobe Research, Creative Intelligence Lab – San Jose, CA, USA

Supplementary Material
1. Designing QuickDrawCOCO

For each object in a COCO-stuff [1] scene, we randomly
select a QuickDraw1 sketch from the same class and replace
the object crop. To do so, a map from QuickDraw classes
to COCO classes was made; Out of 345 sketch classes
in QuickDraw, 119 have correspondents in the COCO set,
while from the 172 classes in COCO-stuff, 92 have sketch
correspondents. The mapping is not 1:1 because Quick-
Draw is “more specific” than COCO-stuff, e.g. ‘school
bus’ and ‘bus’ are both classes in QuickDraw, but both are
mapped to ‘bus’ under COCO-stuff’s set. The full class map
is shown in Table 3.

We call the objects with sketch correspondents sketch-
able objects; any non-sketchable object is excluded from
the list of objects at the preprocessing stage. We keep
however “objects” from categories that we called materi-
als; while those do not have sketched correspondents, they
remain necessary for background generation when synthe-
sizing the final image; QuickDrawCOCO has 56 materials
that can compose the background. The list of materials is
in Table 2.

Finally, the dataset is also restricted by number of sketch-
able objects, from 1 to 8, and those objects need to occupy
at least 5% of the scene area. Given this setup, QuickDraw-
COCO is composed of 111,112 training scenes (images,
plus the full set of possible synthesized sketch composi-
tions), 2,788 test scenes and 1,907 validation scenes. The
test and validation splits where split from COCO’s initial
test set (2,048 for valiation and 2,952 for testing) and then
filtered per our requirements.

2. Architecture and Preprocessing Details
The crops are scaled to 96x96 in preprocessing, as well

as their values normalized to the [-1, 1] floating point
range. The QuickDraw sketches are from the set used by
SketchRNN and are rasterized to 96x96 images from the
stroke3 format. The output is the 256D SR for search and
the 256x256 semantic layout.

1https://github.com/googlecreativelab/
quickdraw-dataset

To create our Object-Level Representation (OLR), the
sketches and images crops go through two separate Mo-
bileNet, the specific model used was trained on ImageNet
with 96x96 image size and is available through Tensor-
flow/Keras2. The output of the network goes is average
pooled to decrease the dimentionality and then the model
splits into two steps: one fc layer with softmax activation
for each domain classifies the inputs while a set of 2 shared
fc layers computes the OLR used in the triplet loss. The
specifics of those layers are in Table 1.

Our Graph Neural Network (GNN) encodes into
a Constrained-Correlated Representation (CCR) the
Scene Graph (SG) where each node is represented by the
object’s corresponding OLR. Our GNN has 6 layers, each
built with hidden dimensionality of 512 (the output of the
first internal fc layer), output of 256 and all activations done
via LeakyRelu with α = 0.3. Our code was based on John-
son et al.’s [2] implementation3 of a GNN for SGs.

Finally, our Transformer-like architecture takes the CCR
and computes both the single Scene Representation (SR)
and the Freely-Correlated Representations (FCR) for
each object. Our grid-based positional encoding follows
traditional encoders and is defined as:

pi,j =

{
sin(i

10000j/256
) if j is even

cos(i
10000(j−1)/256) if j is odd

(1)

where i ∈ 0, 1, ..., 24 is the position in the grid while
j ∈ 0, 1, ..., 255 is the position in the vector (which is
256D long). Our Transformer has 3 attention layers that
use multi-head attention (16 heads), a hidden dimension of
512D, dropout with rate 0.1 and Layer Normalisation with
ε = 1e − 6. Our implementation was based on the official
TensorFlow code4.

To generate scenes using the materials listed in Table 2,
a semantic layout using them can be selected from images
ranked high in the SBIR process or a user could make their
own background semantic layouts in a similar fashion to the
SPADE demonstration [3].

2https://www.tensorflow.org/api_docs/python/tf/
keras/applications/MobileNet

3https://github.com/google/sg2im
4https://www.tensorflow.org/tutorials/text/

transformer

1

https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNet
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNet
https://github.com/google/sg2im
https://www.tensorflow.org/tutorials/text/transformer
https://www.tensorflow.org/tutorials/text/transformer

3. Training Details
As mentioned before, training is done in three stages. In

the first stage we train only the OLR representation and the
total loss function is:

LOLR = Ltri + LCCE (2)

where both losses were defined in Sec. 3.1 in the paper.
The negative crops used for Ltri are random crops from
other classes. This stage is trained with a batch size of
128 samples from QuickDraw (sketches) and COCO-stuff
(crops from the images) for 100k iterations.

At the second stage all parts of Scene Designer are
trained and losses used:

LSD = LOLR + LGb
+ LGm + Lcont + LCCEf

(3)

with each of those loss functions defined in Sec. 3.4 and 3.5
in the paper. The mask discriminator D is also trained with
the LSGAN loss, opposing the one in LGb

:

LD =
1

2
|D(mg, y), 1|2 +

1

4
|D(Gm(x̂i, y))|2

+
1

4
|D(Gm(x̂s, y))|2

(4)

where x̂i as the FCR based on image input and x̂s as the
FCR based on sketch input and mg the ground truth masks.
This stage is trained with a batch size of 16 sketch+image
scene pairs from QuickDrawCOCO-92c for 120k iterations.

Finally, the third stage uses the same losses as
the second, but with a batch size of 8 samples from
QuickDrawCOCO-92c and 8 samples from SketchyCOCO.
We’ve used mixed batches as using only SketchyCOCO
samples leads Scene Designer to overfit.

4. Implementing Our Baselines
We used the official code and models provided for

Ashual et al. [4]5 and SketchyCOCO’s EdgeGAN [5]
model6. We have to note however that the EdgeGAN is
only the single-object generator of SketchyCOCO’s model
and we trained our own Pix2Pix (also using official code7)
to do full scene generation per Gao et al.’s instructions.

To run experiments on Sketchy, we used an unnoficial
pytorch reimplementation that yields comparable or better
results than the official paper8 and for the CAG [6] model
we did our own reimplementation. Numbers for SceneS-
ketcher [7] and Sketch-me-that-shoe [8] were taken from
Liu et al.’s report [7].

5https://www.github.com/ashual/scene_generation
6https://github.com/sysu-imsl/EdgeGAN
7https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix
8https://github.com/CDOTAD/SketchyDatabase

Layer In Out Act.

MobileNet (96, 96, 1/3) (7, 7, 1024) -
AveragePool (7, 7, 1024) (1024,) -
FC1 (1024,) (256,) -
FCclass (256,) (172,) Softmax
FC1

olr (256,) (128,) ReLU
FC2

olr (128,) (128,) ReLU
Table 1. Layers that compute the Object-level Representation
(OLR).

Material

ceiling-other
window-other
wall-concrete
floor-marble
floor-marble
ceiling-tile
structural-other
ground-other
window-blind
textile-other
playingfield
water-other

Mat.

floor-tile
cardboard
wall-tile
floor-wood
wall-stone
floor-stone
solid-other
floor-other
wall-other
solid-other
wall-brick
plant-other

Mat.

curtain
counter
carpet
pavement
railing
railroad
plastic
banner
wall-wood
sky-other
clothes
leaves

Mat.

stone
rock
cloth
river
gravel
straw
road
roof
wood
sand
other
grass

Mat.

sea
hill
snow
tree
fog
metal
net
mud
mat
dirt
moss

Table 2. List of materials in QuickDrawCOCO. These object
classes are used for background layouts.

5. More Examples
Together with this supplementary material we are includ-

ing new examples of generation, search and iterative com-
position on both SketchyCOCO and QuickDrawCOCO-
92c. They are presented in Fig. 1, 2, 3, 4, 5 and 6.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018. 1

[2] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image Genera-
tion from Scene Graphs. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pages 1219–1228. IEEE, jun 2018. 1

[3] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 1

[4] Oron Ashual and Lior Wolf. Specifying object attributes and
relations in interactive scene generation. In Proceedings of the
IEEE International Conference on Computer Vision, volume
2019-Octob, pages 4560–4568, sep 2019. 2

[5] Chengying Gao, Qi Liu, Qi Xu, Limin Wang, Jianzhuang Liu,
and Changqing Zou. Sketchycoco: Image generation from
freehand scene sketches. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2

https://www.github.com/ashual/scene_generation
https://github.com/sysu-imsl/EdgeGAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/CDOTAD/SketchyDatabase

COCO-stuff class QuickDraw classes

chair chair
cow cow
bench bench
pillow pillow
clouds cloud
light floor lamp; lantern; light bulb
table table
bear bear
building-other church; hospital;
airplane airplane
toaster toaster
knife knife; sword
fence fence
cabinet dresser
baseball bat baseball bat

vegetable
onion; peas; potato;
string bean; aspargus

horse horse
traffic light traffic light
umbrella umbrella
banana banana
wine glass wine glass
fork fork
branch tree
bush bush
toilet toilet
donut donut
tennis racket tennis racquet
elephant elephant
backpack backpack
bottle wine bottle
car car; police car
remote remote control
bicycle bicycle
bed bed
bridge bridge
stairs stairs
teddy bear teddy-bear
apple apple
book book
house house; barn
door-stuff door
mouse mouse
flower flower
tent tent
keyboard keyboard
stop sign stop sign

COCO-stuff class QuickDraw classes

boat canoe; cruise ship; sailboat; speed boat
cake birthday cake; cake
train train
toothbrush toothbrush
pizza pizza
broccoli broccoli
motorcycle motorbike
person yoga
couch couch
refrigerator cooler
spoon spoon
oven oven; stove
fire hydrant fire hydrant
furniture-other hot tub
sink sink
cup coffee cup; cup; mug
food-other peanut; steak; bread;
microwave microwave
waterdrops rain
hot dog hot dog
tv television
bus bus; school bus

fruit
grapes; pear; pineapple; strawberry;
watermelon; blackberry; blueberry

sports ball soccer ball; baseball; basketball
handbag suitcase; purse
cell phone cell phone
mountain mountain
vase vase
sandwich hamburger; sandwich
cage jail
skyscraper skyscraper
carrot carrot
wall-panel picture frame
laptop computer; laptop
bird bird
tie bowtie
skateboard skateboard
paper map
sheep sheep
zebra zebra
cat cat
clock wristwatch; alarm clock; clock
truck ambulance; firetruck; pickup truck; van; truck
dog dog
potted plant house plant
giraffe giraffe

Table 3. Mapping between COCO and QuickDraw sketchable classes. With COCO as our base, more than one QuickDraw class may be
mapped to a COCO class.

[6] Tu Bui, Leo Ribeiro, Moacir Ponti, and John Collomosse.
Sketching out the details: Sketch-based image retrieval us-
ing convolutional neural networks with multi-stage regres-
sion. Computers & Graphics, 71:77–87, 2018. 2

[7] Fang Liu, Changqing Zou, Xiaoming Deng, Ran Zuo, Yu-
Kun Lai, Cuixia Ma, Yong-Jin Liu, and Hongan Wang. Sce-

nesketcher: Fine-grained image retrieval with scene sketches.
2020. 2

[8] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M
Hospedales, and Chen-Change Loy. Sketch me that shoe. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 799–807, 2016. 2

Figure 1. Generating images with Scene Designer with more QuickDrawCOCO-92c scenes

Figure 2. Generating images with Scene Designer with more SketchyCOCO scenes

Figure 3. Compositional Sketch-based Image Retrieval results with Scene Designer on more QuickDrawCOCO-92c scenes; showing top-5
results with the correct match highlighted in green.

Figure 4. Compositional Sketch-based Image Retrieval results with Scene Designer on more SketchyCOCO scenes; showing top-5 results
with the correct match highlighted in green.

Figure 5. More examples of using Scene Designer for iterative design of image compositions using Sketchy sketches and SketchyCOCO
scenes. Orange squares indicate the image‘s background layout was selected; Blue squares show an object crops was chosen to be added
to the composition.

Figure 6. More examples of using Scene Designer for iterative design of image compositions using QuickDraw sketches and
QuickDrawCOCO-92c scenes. Orange squares indicate the image‘s background layout was selected; Blue squares show an object crops
was chosen to be added to the composition.

