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Abstract

The current state-of-the-art monocular 3D hand pose es-
timation methods are mostly model-based. For instance,
MANO is one of the most popular hand parametric mod-
els, which can depict hand shapes and poses. It is widely
adopted for estimating hand poses in images and videos.
However, MANO is a parametric model derived from
scanned hand data with limited shapes and poses which
constrains its capability in depicting in-the-wild shape and
pose variations. In this paper, we propose a 3D hand pose
estimation approach which does not depends on any para-
metric hand models yet can still accurately estimate in-the-
wild hand poses. Our approach (Stride Consistency with
Autoregressive regressor and Transformer, SCAT) offers a
new representation for measuring hand poses. The new rep-
resentation includes a mean shape hand template and its 21
hand joint offsets depicting the 3D distances between the
hand template and the hand that needs to be estimated. Be-
sides, SCAT can generate a robust and smooth linear map-
ping between visual feature maps and the target 3D off-
sets, ensuring inter-frame smoothness and removing motion
jittering. We also introduce an auto-regressive refinement
procedure for iteratively refining the hand pose estimation.
Extensive experiments show that our SCAT can generate
more accurate and smoother 3D hand pose estimation re-
sults compared with the state-of-the-art methods.

1. Introduction

As we all know, hands are the most crucial part of the
human body to interact with the outside world and the em-
bodiment of productivity. With the need for cost-saving
and computational resource reduction, especially in AR,
human-computer interaction (HCI) and many other scenes,
3D hand pose estimation from a single RGB image is be-
coming much more significant since the current trend of
AR/VR (Facebook Quest2). 3D hand pose estimation is

Figure 1. We present a model-free hand pose estimation approach
with a single RGB image input. The left is our hand skeleton hier-
archy and joint numbers, benefits from transformer, we visualize
the learned relationship between joints through choosing represen-
tative joint of each finger: 4 (for thumb), 5 (for index), 10 (for mid-
dle), 13 (for ring), 20 (for pinky), where brighter color indicates
stronger correlations.

a challenging problem, due to the ambiguity of depth and
exterior parameters of the camera, fast movements, oc-
clusions, complex articulated motion and indistinguishable
skin appearance. Thus the 3D hand pose estimation has at-
tracted a lot of attention in the academia.

To make the problem tractable, many state-of-the-art
methods [50, 37, 3] incorporate prior knowledge, i.e, geom-
etry, forward kinematics [20] either inverse kinematics [1].
The most common practice inside them is to regress the θ
(pose), β (shape) of a canonical 3D parametric hand model
MANO [36] and the camera parameters that serve to project
the 3D coordinate to the 2D image plane, aiming to estimate
a reasonable and reliable hand pose.

However, MANO [36] is a data-driven parametric model
that shares the same formulation as SMPL [28]. Following
the literature of MANO: ”MANO is learned from around
1000 high-resolution 3D scans of hands of 31 subjects in a
wide variety of hand poses”. Through experiments on the
MANO-based model [37, 50] in complex gestures: hand
heart, metal horns and etc, we found it is difficult for the
MANO-based model to reconstruct a satisfactory gesture.
The reason in obtaining an inferior estimation comes down
to the limited and monotonous exemplars that are used to
construct the parametric model. Moreover, since MANO
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has left and right-hand model, which adds to the difficulty
in real-world use since an extra model is needed, indicating
whether an input hand image is left or right.

Here, we want to determine whether it is possible to
construct a rational and expressive representation without
any 3D parametric models. So we naturally turn to Model-
free methods. The beginning of this genre is estimating the
3D joint coordinates directly [51]. Then researchers real-
ized that using the heatmap (from 1D to 2.5D heatmap),
which broaden the interests of a single hand joint to its
corresponding neighborhood region, dramatically improves
the estimation performance [30, 50, 19]. Moreover, Graph
CNN [25, 7], which is adept at modeling the interactions
and relationships of vertex/joint in its neighborhood, has
attracted much interest. However, due to the progressive
assimilation phenomenon in each cluster of graphs during
training, graph-based methods are not efficient in modeling
non-local vertex/joint-based interactions.

Recently, METRO [27] take advantage of the trans-
former [43] to propose a simple yet effective framework to
model global vertex-vertex interactions, which achieves the
current state-of-the-art in both body and hand pose estima-
tion. Nonetheless, METRO still suffers from some limi-
tations: it needs a fixed CNN network to extract the 1D
feature of a single RGB image, which leads to sub-optimal
predictions considering only a minority of neurons changes
during the training process. Moreover, the transformer-
based [43] vertex-vertex METRO requires an enormous
amount of computing powers and GPU memories since it
regresses the 3D coordinates of hand joints and mesh ver-
tices in parallel. The number of template hand mesh vertices
is 778, which means they need to input an extremely large
feature map of [batchsize, 778, 2051] into the regressor of
METRO (2051 consists of 2048 feature vector extracted by
the fixed pre-trained CNN and the 3D coordinates of the
vertices or joints).

Inspired by the transformer encoder in construct-
ing meaningful and mighty interrelationship, SCAT
(Stride Consistency with Auto-regressive regressor and
Transformer) cast off the conventional practice of using the
3D parametric model by leveraging the multi-head attention
mechanism of Transformer [43]. Unlike METRO, which
outputting the 3D vertex/joint coordinates directly, we ob-
tain coarse predictions Ccoarse through adding the trans-
former encoder’s output (offset O) on pre-defined 21 ba-
sis coordinates (mean M) extracted from a standard hand
template mesh. Through this mean-plus-offset strategy, we
obtain a biomechanical-plausible prediction that is empow-
ered by M. As shown in Fig 1, we plot five typical joints and
their relationships with other joints. It demonstrates that our
SCAT can establish biomechanical-rational joint-joint topo-
logic relations, which obeys the principle as [45] points
out. Additionally, we only model the joint-joint relation-

ships, which are designated to mitigate the computational
load and reduce the GPU memories.

Since the previous frame-level models are incapable of
ensuring a smooth transition through time varies, we present
a novel pose length regularization loss that encourages good
conditioning in the mapping from feature maps Fi, i ∈
1, 2, ..., 21 to the offsets of 3D hand pose Oi, which is the
stride consistency as we proposed in title. Through the Ja-
cobian matrix’s help Jf,i = δOi/δFi, we then impose the
penalty term to robustly produce a feature map that encour-
ages a fixed-size step in the feature map space results in
a non-zero, fixed-magnitude change in the output 3D off-
sets of hand pose. According to our experiments, this novel
loss is crucial for maintaining the inter-frame consistency
as well as reducing the jitters.

Following the successful practice of HMR [21], we de-
velop a coarse-to-fine strategy to obtain the fine-grained
3D predictions. In short, we refined the coarse predic-
tions, which derived from adding the 3D output offset from
the transformer encoder of SCAT to our pre-defined hand-
picked 21 key joint coordinates, through feed the coarse
output to the auto-regressive regressor as depicted in sec-
tion 3.3.

In this work, we propose SCAT, a Stride Consistency
with Auto-regressive and Transformer for 3D hand pose es-
timation from a single RGB input image. The contributions
of SCAT are summarized below:

• We introduce an end-to-end, model-free method:
SCAT, which estimates an accurate yet smoother 3D
hand pose on mainstream datasets, represents a com-
petitive performance compared to the model-based
method (MANO).

• SCAT learns to discover both short- and long-range in-
teractions among 21 hand joints through multi-layer
transformer encoder structure and the mean-plus-offset
strategy, which yields convincing results compared to
the MANO-based methods.

• We use an auto-regressive manner to regress both the
3D hand pose and camera intrinsic parameters (we use
orthogonal projection) together, which solves the sub-
optimal prediction problem of multi-modal distribu-
tion (cameras and poses) when using a single-mode
model. We also develop a novel pose length regular-
ization loss to enable a consistent stride between fea-
ture maps and 3D offsets, which vastly increased the
stability of estimation result with time varies. It is a
handy tech for real-world applications.

2. Related work
In the following, we discuss the methods that are closely

related to our work.
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Figure 2. Overview of the proposed framework. SCAT receives a single RGB image and yields the feature maps F and feature vector X
through a trainable convolutional neural network (CNN). Then we flatten the 2D feature maps to 1D feature vector J of fixed 21 joints, after
performing positional encoding to J, a multi-layer transformer encoder is used to regress the 3D coordinates offset O = (Oxi , Oyi , Ozi),
the structure of which is depicted in the right. Next, we extract the mean shape M = (Mxi ,Myi ,Mzi) from a pre-defined hand mesh
template (here we use the hand mean template from MANO [36] with 778 vertices, 1,538 faces and 2,315 edges, the detail is attached
in the Sup. Mat.), after adding the offset Oi to the mean shape Mi, the satisfied 3D coordinates of 21 key joints are obtained by an
auto-regressive manner. Here,

⊕
represents for the element-wise addition operation, ‖ denotes the concatenation operation.

2.1. Single Image 3D Hand Pose Estimation

Although works that using depth sensors [33, 40] or in-
ertial measurement units (IMU) [17, 44] have achieved ap-
pealing results on estimating 3D hand pose, they suffer from
their own drawbacks: for depth sensors, they are incapable
of working under bright sunlight and people have to be close
to the sensor; for IMUs, the accumulation error is inevitable
and the price of IMU is quite expensive for consumer-level
usage.

To reduce costs and computational overheads, re-
searchers recently started to research 3D hand pose estima-
tion from monocular RGB images, which is even more chal-
lenging because of the ambiguity of depth, fast movements,
occlusions, complex articulated motion and indistinguish-
able skin appearance.

Since it is challenging to regress the 3D pose directly
from an RGB image, recent works further propose to lever-
age various human hand priors or segmentation maps in
solving this. Zimmermann and Brox [51] have trained a
CNN-based model that estimates 3D joint coordinates di-
rectly from an RGB image. However, this kind of method
has been found disable to estimates a reasonable pose with
partial occlusions.

For achieving a more reliable estimation result, Mueller
et al. [32] combines CNN (heatmap-based) with kinematic
3D hand model to do skeleton fitting for RGB image input,
Boukhayma et al. [3] uses images and 2D pose predicted
from OpenPose [5] as input and regress the parameters of
the MANO [36].

As there are some people who regard the parametric
model as a burden, GraphCNN [8] has been used to di-
rectly regress 3D hand shape from a single RGB input.
Ge et al. [11] directly regressed the hand by taking ad-

vantage of GraphCNN, but as a dataset with ground truth
hand meshes is required for training, which restrained its
appliance to the in-the-wild data. Choi et al. [7] proposed
Pose2Mesh, which is a cascaded model using GraphCNN
to reconstructs human mesh directly. While GraphCNN-
based methods [11, 7, 25] are designed to model neigh-
borhood vertex-based interactions based on a pre-specified
mesh topology, it is less efficient in modeling longer range
restrained by the neighbors of per-vertex due to the inherent
properties of GraphCNN.

METRO, recently proposed by Lin et al. [27], models
global interactions among joints and mesh vertices without
being limited by any mesh topology, and is the first method
learns with multi-head attention to model the non-local re-
lationship between joints. Although METRO has achieved
great success both in estimating hand and body, the compu-
tational complexity is exponentially growing as the number
of vertex increases, which is the main bottleneck for real-
word applications. As a contrast, SCAT models the sparse
key joint instead of every vertex of a template mesh. A
mean-plus-offset strategy is used instead of predicting out-
put directly, implicitly ensuring a reasonable and reliable
structure without the need for any sorts of pre-defined kine-
matic trees or explicit biomechanical constraints.

2.2. Transformer in Computer Vision

Transformer [43], first applied to the natural language
processing (NLP) field, is a type of deep neural network
mainly based on the multi-head self-attention mechanism.
Transformer nowadays dominating the NLP area in its supe-
rior performance in language modeling at scale, BERT [9]
and GPT [4] are the two milestone achievements by incor-
porating advantages of transformer.

In the past two years, some researchers have explored
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whether similar models can learn useful representations for
images. In the past few months, transformer-based net-
work have achieved astonishing progress in image classi-
fication, such as iGPT [6], ViT [10] and DeiT [42]. There
are also many paper that adopt transformer to other vision
tasks: Re-Identification (ReID) [16], Multi Object Tracking
(MOT) [29] and etc.

As for pose estimation, METRO [27] and TransPose [48]
are the latest paper that integrates transformer into the ordi-
nary CNN pipeline to get a better human pose estimation
either fine-grained reconstruction result. However, 3D hand
pose estimation has not been explored independently in this
area. In this study, we estimate the 3D coordinates of the 21
hand key joints through the combination with transformer
and CNN.

3. Proposed Method
The overview of SCAT is depicted in Figure 2. It takes

an image of size 224×224×3 as input, and predicts a set of
hand joints feature vector Ji, i ∈ 1, 2, ..., 21 and the intrin-
sic parameter R (rescale factor), t (2D translation) for re-
projecting the 3D joints coordinates to the 2D image plane.
SCAT consists of three parts: Convolutional Neural Net-
work (CNN), Multi-Layer Transformer and Auto-regressive
Regressor. First, a CNN is used to extract the feature vec-
tor of desired size from an input image. Next, Multi-Layer
Transformer takes in the feature vector with positional en-
coding and outputs the offset (3D coordinates of the hand
joint) in parallel. The final stage of SCAT is to add the
offset O to the 3D mean joint locations of pre-defined tem-
plate hand mesh M and regress the Cfine through an auto-
regressive manner. We will go through them in details as
below.

3.1. CNN

First, we take advantage of the Convolutional Neural
Network (CNN) to extract low-level features since CNN is
powerful in handling high-dimensional image features. Dif-
ferent from the practice of METRO [27] that use the last
feature vector of a pre-trained CNN model on ImageNet
classification task, we use the intermediate feature map F
∈ RN×21×28×28 (N is batch size) and input the flattened
F of size RN×21×784 to the multi-layer transformer. Then
branch out to extract an apriori info X ∈ RN×1024, which
helps to regress the final 3D coordinates and camera intrin-
sic parameter R ∈ RN×1, t ∈ RN×2 iteratively.

With this design, CNN is trained to yield the most suit-
able representations for estimating hand pose. In SCAT,
transformer benefits from the feature maps from CNN since
ViT [10]-like architectures (with not even one convolu-
tion layer) is unable to regress the pose steadily and accu-
rately according to our experiments. Moreover, we use pose
length regularization to obtain a good linear mapping from

feature maps Fi, i ∈ 1, 2, ..., 21 to the offsets of 3D hand
pose Oi.

3.2. Multi-Layer Transformer

Inspired by METRO [27], we construct a reasonable and
reliable joint-joint relationship through a similar progres-
sive dimensionality reduction strategy. As depicted in the
bottom right of Figure 2, the input to the transformer en-
coder are the hand joint feature vectors J and output the
offset of 3D coordinates O ∈ RN×21×3. To decouple the
21 key joints, we use positional encoding to preserve the
positional information explicitly. Moreover, learned from
the successes [9, 41] in using the Masked Language Model-
ing (MLM) to the NLP field, we mask some percentages of
the input joints Ji at random to predict an output that may
possess good robustness for the partial occlusion problem,
which frequently appears in the hand-interaction scenarios.

3.3. Auto-regressive Regressor

The last module of SCAT is the auto-regressive regres-
sor. After a variety of combinations of intrinsic parame-
ters R, t, feature vector X and coarse 3D coordinates pre-
dictions Ccoarse = M + O were tested, we found that the
original iterative manner proposed by Kanazawa et al. [21]
is very effective in modeling a multi-modal distribution in-
stead of suffering the sub-optimal prediction problem. To be
specific, we concatenate X, R, t and the flattened Ccoarse

∈ RN×63 to a total feature vector ∈ RN×1090. To bal-
ance the computational resources and the result, we set
iterations = 3 as a trade-off. According to our Sup. Mat,
the more iterations are, the better result is achieved.

Then we use the way in Algorithm 1 to regress a fine-
grained Cfine:

Algorithm 1: Auto-regressive Regressor in esti-
mating a fine-grained Cfine

Input: R, t, X, Ccoarse

Initialize: i = 0, iterations = 3; Cfine =Ccoarse

Output: Cfine

while i ≤ iterations do
input = X || R|| t|| Cfine ;
out = regressor(input) ;
Cfine =Cfine+ out ;
i += 1;

end

3.4. Loss

Similar to the Frankmocap [37], Minimal Hand [50],
METRO [27], we consider 3D key point annotations (local
root-relative coordinate system) and 2D key point annota-
tions (image plane). Let C3D denote the output 3D coor-
dinates, and C2D is the reprojection of 2D position in the
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image plane. The 3D loss can be directly computed through
Mean Square Error (MSE):

L3D =
∥∥∥C3D − Ĉ3D

∥∥∥2
2

(1)

For a better alignment between 3D and 2D [21, 25], we
project the 3D joints C3D to the image plane using the esti-
mated R, t, the 2D loss is calculated as below:

L2D =
∥∥∥C2D − Ĉ2D

∥∥∥
1

(2)

Since a good linear mapping between the latent feature
map to the 21 key joint offsets is of great importance in ob-
taining a stable result through time varies, which could offer
assurance to reduce the jitter between frames and maintain
a smoothly inter-frame transition. Learned from the path
length regularization from StyleGAN2 [23], we further mi-
grate it to our case as pose length regularization.

We can measure the deviation from this novel ideal em-
pirically by stepping into random directions in the output
key joint offset and observing the corresponding gradients.
These gradients should have close to an equal length regard-
less of F, indicating that the mapping from the latent feature
map space to the 21 key point space is well-conditioned.

Through the help of Jacobian matrix Jf,i = δOi/δFi,
pose length regularization is added as below:

Lreg = (
∥∥JT

f

∥∥
2
− a)2 (3)

where a is the moving average of the Jacobian JT
f . The

overall loss L used to train our hand pose estimation model
is defined below:

L = λ1L3D + λ2L2D + λ3Lreg (4)

λ1,2,3 are weights that set to balance the loss, the weights
are set to λ1 = 100, 000, λ2 = 10, λ3 = 10 in all our
experiments.

4. Experiments
In this section, we first describe the datasets used for

training. Then we describe the evaluation metrics as well
as the detailed settings in our experiments. After that, we
compare our SCAT with state-of-the-art approaches. Fi-
nally, we perform ablation studies to demonstrate the key
components of SCAT.

4.1. Implementation Details

4.1.1 Datasets

We train SCAT on the 6 publicly widely used 3D hand
datasets: Rendered Handpose Dataset (RHD) [51], Frei-
HAND [52], HO-3D [14], Stereo Hand Pose Tracking
Benchmark (STB) [49], Multi-view Hand Pose (MHP) [12]

and InterHand2.6M [31]. RHD [51] is a synthetic dataset
that consists of 41,258 images with 2D and 3D annota-
tions. FreiHAND is a real-world dataset with ground truth
3D hand joints, the 3D annotations are obtained by a multi-
camera system and a semi-automated approach. HO-3D is
mainly focused on the interaction between hands and ob-
jects. It is a real-world dataset and we use this dataset to
prove the validity of the masked mechanism used in SCAT
to the partial occlusion scenes. STB is composed of 15,000
training samples and 3,000 testing samples with both RGB
images and depth images. MHP uses Leap Motion Con-
troller to provide the 3D ground truth of the color images.
InterHand2.6M is the first large-scale real-captured dataset
(2,590,34) with accurate ground truth 3D interacting hand
poses, of which we only use the single hand part during
our experiment. To unify the definition of joints, follow-
ing the practice of [11], we first re-order the joint number
to the same with SMPLX [35] hand model skeleton hierar-
chy, then move the root joint from palm center to the wrist
of the above datasets as well as rescale the coordinates ac-
cording to the length between 4th and 5th key joint of the
template hand. Aside from the dataset mentioned before,
we use Dexter+Object (DO) [39] for validation, which owns
5 key fingertips annotation only.

4.1.2 Evaluation Metrics

For each dataset, we calculate the percentage of correct
3D keypoints (PCK) under different thresholds (range from
20mm to 50mm) and calculate the corresponding Area Un-
der Curve (AUC) for PCK. Additionally, the Mean-Per-
Joint-Position-Error (MPJPE) [18] is used to measure the
Euclidean distances between the ground truth joints and the
predicted joints. Each error metric is computed for the root-
relative 3D pose. Finally, to validate the effectiveness of
pose length regularization, we report the acceleration er-
ror followed by Kanazawa et al. [22]. Acceleration error
(mm/s2) is the mean difference between ground-truth and
predicted 3D acceleration for every joint.

4.1.3 Detail Settings

SCAT is build on top of PyTorch [34], we input the
RGB image of 224 × 224 × 3 augmented with motion
blur and random rotation (±30 degree), after normalize
the augmented data, we use trainable ResNet-50 [15] pre-
trained on ImageNet as CNN backbone as depicted in Fig-
ure 2. F is obtained through apply a 1×1 convolutional
layer to layer2.3.bn3, which downgrade the feature map of
layer2.3.bn3 from RN×512×28×28 to RN×21×28×28. Fea-
ture Vector X is produced by the fully-connected (FC) layer
of ResNet-50 leave out of the last classification FC layer.
The head of all Transformer Encoder layers are 8, the head
dimension of each Encoder layer in the Fig 2 are 128, 64,
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32, which accompanied with the shrinkage of feature di-
mension from 784 to 3. We use ResNet@head8 with
positional encoding by default and report the fine-grained
predictions if there is no explicit statement.

Adam optimizer [24] (lr = 5e-4) along with Warmup tac-
tic [13] are adopted to the training process. R is initialized
with 5 where t is (0, 0).

4.2. Main Results

Here, we compare SCAT with the state-of-the-art meth-
ods on STB, RHD and DO. STB and DO are used to test
on real-world data, while RHD is for synthetic. We use
STB for estimating hand pose under natural conditions, DO
for hand-interaction scenes (partial occlusion is the typical
case), RHD for test on rendered images to verify SCAT’s
generalization performance.

Following the mixing strategy of [37, 50], we first train
SCAT on synthetic dataset RHD and then train on the rest
5 datasets to make our model generalizes well to real-world
applications. Finally, we finetune our model on the specific
dataset and achieve a competitive result as depicted in Ta-
ble 1. Different from the methods to be compared, SCAT
rank almost the best in these three datasets, which proves
its stability and high performance. Besides, it is also evident
that with the help of the coarse-to-fine mechanism provided
by auto-regressive regressor, a pronounced lift which based
on the coarse prediction Ccoarse, is achieved as Cfine.

Method AUC of PCK ↑
DO [39] STB [49] RHD [51]

Ge et al. [11] - 0.998∗ 0.920
Yang et al. [47] - 0.996 0.943
Baek et al. [2] 0.650 0.995 0.926
Z & B [51] - 0.948 0.675

Xiang et al. [46] 0.912 0.994 -
Zhou et al. [50] 0.948 0.898 0.856
Spurr et al. [38] 0.820 - 0.920
Rong et al. [37] - 0.992 0.934

Li et al. [26] 0.860 0.996 0.960∗

Ourscoarse 0.892 0.977 0.915
Oursfine 0.951M,∗ 0.994M 0.954M

Table 1. Comparison with state-of-the-art methods on three public
datasets. Here, superscript M for our result where ∗ for best, ‘-‘
demonstrate for those who did not report the results.

In order to verify the generalization performance be-
tween our model and current methods, we qualitatively
compare SCAT with Frankmocap as depicted in Fig 3.
While Frankmocap is a model-based method that relies on
MANO [36], SCAT better estimates the 3D hand pose with-
out reliance on MANO and other parametric 3D models.

Figure 3. Comparison to the current method Frankmocap [37].
The noteworthy thing is that both models we used are trained on a
mixture of the above 6 datasets rather than finetune on a specific
dataset. We found SCAT generalizes well in unseen data.

4.3. Ablation study

Structure with different settings: We want to dig deep
into the network structure to achieve top performance on
in-the-wild data. First, we try our transformer encoder with
different head numbers. Apart from transformer structure,
whether the choice of CNN backbone is a central factor in
obtaining a successful pose estimation process also appeals
us. Here, we use ResNet-50 [15], HRNetW24 and Incep-
tionV3 for ablation test. All backbones are pre-trained on
the 1000 class image classification task of ImageNet. Fur-
thermore, we are also interested in the positional encoding,
so we conduct experiment without positional encoding for
comparison. We observe SCAT achieves competitive per-
formance on FreiHAND.

In Table 3, we found positional encoding (PE) is vital
for SCAT, ResNet@head8 with PE outperforms its no PE
version by a large margin: 8.591 mm in MPJPE and 6.9%
in AUC of PCK. Besides, it is evident from Table 3 that
the number of head of transformer encoder is the most im-
portant factor in obtaining a satisfactory result, the larger
the number of the head is, the higher precision and lower
MPJPE achieved. Moreover, the choice of CNN backbone
contribute to different precision level, the optimal perfor-
mance was achieved by IncepV3@head8 with PE.
Pose Length Regularization: One of our SCAT’s signif-
icant contributions is the pose length regularization (PL),
which ensures a smooth transition between consecutive
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Figure 4. Ablation study of Pose Length (PL) Regularization. To qualitative validate PL, we visualize the feature maps F train with PL
(brown) and without PL (green) under the same structure. It is rather obvious that PL empowers SCAT and produces a smooth and distinct
contour of gesture in its feature maps while SCAT without PL yields the inferior result: people can easily observe the fuzzy and blurry
pattern in its feature maps in the last three columns.

Figure 5. Qualitative results of SCAT on STB test set. As defined in Fig 1, we visualize the attention weights between the specified joint in
each finger with the rest 20 joints, where brighter color indicates stronger attention.

frames through imposing a consistent stride constraint be-
tween feature maps F and 3D offsets O. To demonstrate the
effectiveness of PL, we conduct experiments on the dataset
with continuous image clips: MHP, FreiHand. According
to Table 2, PL reduces the acceleration metric markedly,

which helps yield a smooth pose estimation result without
the addition of any temporal priors. Model with PL helps to
reduce MPJPE and increase AUC. Furthermore, as depicted
in Fig 4 without PL regularization (green contour), the es-
timation result is fragile and unstable with time progress.
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Method Accel ↓ MPJPE ↓ PA-MPJPE ↓ AUC ↑
HO-3D MHP HO-3D MHP HO-3D MHP HO-3D MHP

w/o PL 6.78 11.110 3.02 4.729 1.50 3.611 0.794 0.918
w PL 4.40 7.709 2.99 4.985 1.43 3.522 0.803 0.922

Table 2. Ablation experiment on temporal-consistent datasets with pose length regularization (PL). We test HO-3D with submitting result
to CodaLab while MHP is test with provided evaluation test (1,1524 images with 3D annotations).

Method MPJPE ↓ AUC of PCK ↑

w/o PE, ResNet@head8 15.454 0.890
w PE, ResNet@head2 22.382 0.847
w PE, ResNet@head4 14.299 0.901
w PE, ResNet@head8 6.863 0.959
w PE, HRNet@head2 21.105 0.855
w PE, HRNet@head4 13.726 0.913
w PE, HRNet@head8 6.914 0.946
w PE, IncepV3@head2 18.551 0.877
w PE, IncepV3@head4 11.329 0.920
w PE, IncepV3@head8 6.702 0.965

Table 3. Ablation experiments on FreiHAND dataset.

With PL regularization (brown contour), SCAT is capable
of maintaining the inter-frame consistency.
Masked Joint Modeling for Occlusion scenes: It appeals
to almost everyone in this field to identify whether a new
objective helps solve the occlusion problem since the self-
occlusion (due to different viewpoints) or partial occlusion
(caused by interacting with other objects) are the two stum-
bling blocks in the pose estimation area. So we borrowed
the masked joint modeling (MJM) from the NLP field and
tried to use it to enhance our SCAT’s generalization perfor-
mance on the occlusion scenes. Here, we conduct our ab-
lation study on the HO-3D dataset because HO-3D mainly
focused on the interaction between hands and objects; thus,
there are various type of occlusion inside. Table 4 shows
that an appropriate proportion of masking joint assists in el-
evating metrics, though we observe a distinct drop in both
MPJPE and AUC while the masked rate above 30%.
Relationship between 21 Hand Joints: To further un-
derstand SCAT’s capacity in learning interactions among
joints, we dive into the self-attentions in the transformer
encoder. Fig 5 shows the correlations of key joints. Each
row displays a specific input image and the relationship be-
tween five representative joints according to the definition
by Fig 1. According to the extensive experiments on in-
the-wild data and datasets mentioned before, we found the
self-attention mechanism, which derives from transformer
encoder, proves its powerful non-local modeling ability in
relevant the remote joint to the current joint. Take the mid-
dle point (index 10, blue dot in the Middle column in Fig 5)
for illustration.This joint has the most substantial ties with

Method MPJPE (mm) ↓ AUC of PCK ↑

w/o MJM 13.559 0.920
w 10% MJM 12.215 0.932
w 20% MJM 12.908 0.937
w 30% MJM 13.721 0.922
w 40% MJM 16.230 0.876
w 50% MJM 23.355 0.809

Table 4. Ablation of the Masked Joint Modeling (MJM) objective
with different percentages of masked input J to transformer en-
coder. n% indicates we mask randomly from 0% to n% of input
joint J.

its parent joint (index 9) and closes up with the ring’s upper
joint, which follows the articulated relations. Moreover, we
found each finger has an independent scope that affects only
the interested related joints except for the thumb, which fol-
lows the biomechanical analysis of [38] to some extent.

5. Conclusion
We propose a simple yet effective method for 3D hand

pose estimation from a single RGB image, SCAT: Stride
Consistency with Auto-regressive and Transformer. By uti-
lizing a simple mean shape of a template hand mesh and the
strong correlation modeling capacity bring from the trans-
former encoder, a reasonable and reliable 3D hand pose
is predicted. To the best of our knowledge, we are the
first to come up with novel pose length regularization in
the pose estimation field to ensures a smoother prediction
through time went on, without any temporal priors needed,
which greatly enhanced our frame-based pose estimation
method. Moreover, we use an auto-regressive regressor for
fine-grained prediction in a coarse-to-fine manner, a popular
and effective practice to boost performance. We also pro-
pose the masked joint modeling (MJM) to enhance SCAT’s
robustness in self-occlusion and partial occlusion scenes.
Experimental results show that our SCAT achieves compet-
itive results compared with the state-of-the-art methods on
mainstream hand datasets. Finally, without the need for any
complex kinematic priors as well as inverse kinematic pow-
ered post processing methods, all the results are obtained
through optimizing SCAT in an end-to-end manner, which
solves 3D pose estimation in a simple and convenient way.
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data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[44] Timo von Marcard, Roberto Henschel, Michael J Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a mov-
ing camera. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 601–617, 2018.

[45] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan.
Mining actionlet ensemble for action recognition with depth
cameras. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1290–1297. IEEE, 2012.

[46] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocu-
lar total capture: Posing face, body, and hands in the wild.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10965–10974, 2019.

[47] Linlin Yang, Shile Li, Dongheui Lee, and Angela Yao.
Aligning latent spaces for 3d hand pose estimation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2335–2343, 2019.

[48] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Trans-
pose: Towards explainable human pose estimation by trans-
former. arXiv preprint arXiv:2012.14214, 2020.

[49] Jiawei Zhang, Jianbo Jiao, Mingliang Chen, Liangqiong Qu,
Xiaobin Xu, and Qingxiong Yang. 3d hand pose track-
ing and estimation using stereo matching. arXiv preprint
arXiv:1610.07214, 2016.

[50] Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul
Habibie, Christian Theobalt, and Feng Xu. Monocular real-
time hand shape and motion capture using multi-modal data.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5346–5355, 2020.

[51] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3d hand pose from single rgb images. In Proceedings of
the IEEE international conference on computer vision, pages
4903–4911, 2017.

[52] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A dataset
for markerless capture of hand pose and shape from single
rgb images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 813–822, 2019.

2275


