
Learning Decoupled Representations for Human Pose Forecasting

Behnam Parsaeifard1,2,* Saeed Saadatnejad2,* Yuejiang Liu2 Taylor Mordan2 Alexandre Alahi2

1University of Basel, Switzerland 2Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
behnam.parsaeifard@unibas.ch saeed.saadatnejad@epfl.ch

Abstract

Human pose forecasting involves complex spatiotempo-
ral interactions between body parts (e.g., arms, legs, spine).
State-of-the-art approaches use Long Short-Term Memories
(LSTMs) or Variational AutoEncoders (VAEs) to solve the
problem. Yet, they do not effectively predict human motions
when both global trajectory and local pose movements ex-
ist. We propose to learn decoupled representations for the
global and local pose forecasting tasks. We also show that
it is better to stop the prediction when the uncertainty in hu-
man motion increases. Our forecasting model outperforms
all existing methods on the pose forecasting benchmark to
date by over 20%. The code is available online †.

1. Introduction

Human pose forecasting is defined as predicting future
human keypoints’ locations –the body parts (e.g., legs,
arms, spine)– given a sequence of observed ones. It has
attracted more attention in recent years due to its critical
applications in self-driving cars [34], robotics [42, 12], and
healthcare [25, 47, 44, 10]. For example, in self-driving
cars, it is very important to predict the location of pedestri-
ans to avoid accidents [28]. Furthermore, the body pose of
pedestrians often provide useful information about whether
or not they intend to cross the street [40]. Unfortunately,
the high uncertainty in this problem makes it challenging
such that even we, humans, are often not able to exactly
predict the next motions. In this work, we want to learn a
representation of human pose dynamics to effectively pre-
dict plausible motions and potentially stop predicting when
the uncertainty is too high.

The human pose forecasting task can be decoupled into a
global (coarse) trajectory forecasting task and a local (fine-
grained) pose forecasting one. At the coarse level, the large-
scale movements of humans with respect to the camera are

*Equal contribution, order chosen alphabetically
†https://github.com/vita-epfl/decoupled-pose-prediction.git

1

Trajectory 
forecasting

Local pose 
forecasting

Observed 
pose

Forecasted 
pose

Figure 1: Decoupling the human pose into a trajectory and
local pose. The dashed arrows indicate the trajectory of the
human.

modeled. However, at the fine-grained level, all the detailed
local movements of different keypoints are modeled. Pio-
neering works showed promising results for trajectory fore-
casting [3, 20] and local pose forecasting i.e., excluding the
global trajectory movements [36, 5]. They used Long Short-
Term Memories (LSTMs) because of their ability to capture
temporal dependencies or Variational Autoencoders (VAEs)
because of their ability in generating a new pose consider-
ing the non-deterministic task. While they achieved out-
standing results for each of these separate tasks, they have
limited performance to predict the human pose dynamics
when both trajectory and local pose move.

Considering the complexity of this task, we propose to
decompose it into trajectory forecasting and local pose fore-
casting tasks (see Figure 1). When a person moves, their
global coordinates and the local coordinates of their key-
points (with respect to their trajectory) change in differ-
ent ways and this distinction helps us exploit different ap-
proaches for both.

We propose an LSTM encoder-decoder network for tra-
jectory forecasting and a VAE-encoder-decoder to solve this
local pose forecasting task. Moreover, if the network is not
confident about the future, it stops predicting and takes the
last prediction. We show that using this approach results in a
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significant improvement of the quality of the predicted pose
both visually and numerically in the evaluation metrics.

2. Related works
2.1. Trajectory Forecasting

Trajectory forecasting refers to the task of predicting the
future trajectories of humans, i.e., the future positions of
them over time (in XY coordinates) based on previous loca-
tions. In the pioneering work [21], the authors presented the
social force model for trajectory forecasting, in which at-
tractive and repulsive forces are introduced to impose phys-
ical constraints such as navigating the person toward their
goal while forcing them to keep distance from other peo-
ple in the scene. This and similar hand-crafted models
[48, 33, 37, 4, 39, 41, 15] rely on small datasets at the cost
of limited prediction accuracy.

The data-driven and deep learning methods have been
proposed to increase the prediction accuracy [17, 20, 31, 3,
23, 7, 30, 29, 32] of the hand-crafted models. These ap-
proaches rely on large datasets [28]. Due to the sequential
nature of the human trajectories, a history of 2D or 3D co-
ordinates, recurrent neural network (RNNs) and their vari-
ants can be used. Social LSTM [3] proposed a Long Short-
Term Memory (LSTM) network with a social pooling mod-
ule modeling the interaction between the humans. Others
studied different deep learning alternatives such as feed-
forward networks [22], graph attention network [23] and
a deep generative adversarial network (GAN) coupled with
a recurrent neural network [20]. In this paper, we use an
encoder-decoder LSTM network for our trajectory forecast-
ing task.

2.2. Pose Forecasting

The trajectory forecasting only provides coarse informa-
tion about the future but we can go one step further and
predict the bounding boxes around the human to catch the
size of them too [8]. This can be extended further to predict-
ing the future body keypoints over time based on previous
observations.

Existing works on pose forecasting mostly ignore the
global motion of the human and only predict the changes
in keypoints locations with respect to the center of human
with the global motion excluded [18, 24, 36, 11, 19, 13, 35,
14, 45, 5, 49]. RNNs, capable of capturing the temporal
dependencies in sequential data, have been widely used for
the problem of local pose forecasting [18, 24, 36, 11, 19,
13, 35]. Combining high-level spatio-temporal graphs with
RNNs [24], sequence-to-sequence architecture with resid-
ual connections [36] and forecasting human dynamics from
static images [11] are used for pose forecasting. There are
some other ideas for pose forecasting including combin-
ing a 3-layer LSTM and a dropout autoencoder [19], hi-

erarchical RNN [13], attention-based feed-forward network
[35], completing an incomplete pose and designing a graph
convolutional network [16], and including context using a
graph attention [14]. There are also some probabilistic ap-
proaches based on GANs [45] and VAEs [5, 49] considering
their strengths in generation and learning representations.
In [5], the authors proposed an encoder-decoder network
with a conditional VAE for pose forecasting. In [49], the
authors proposed Motion Transformation VAE (MT-VAE)
to generate multiple plausible pose from the same input.

However, none of those methods solved the pose fore-
casting problem when both the trajectory and local pose
change. There are still some works in the literature that pre-
dicted pose when they move globally [2, 1, 9, 34, 46]. Some
of them proposed the goal-directed human motion forecast-
ing by incorporating the context of the scene in the predic-
tion [9] or synthesizing human motion between two points
given the inputs of start and end positions [46]. Closer to
ours, SC-MPF [1] and TRiPOD [2] predicted the trajectory
and local pose dynamics as a single task by considering var-
ious human-human, human-objects, and human-scene inter-
actions. In another approach, the human motion was split
into the global and local dynamics [34] in a deterministic
way. In this work, we decouple the human pose into a tra-
jectory and a local pose and propose a generative approach
based on VAE to learn a representation for the local pose
dynamics. Furthermore, we show that our approach outper-
forms those baselines significantly in evaluation metrics.

3. DeRPoF: Decoupled Representations for
Pose Forecasting

In this section, we describe our method to decouple rep-
resentations for pose forecasting. Our model consists of two
networks for trajectory and local pose forecastings and the
general concept of decoupling is depicted in Figure 1.

3.1. Formulation

Given a sequence of Tobs observed pose
{P1,P2, . . . ,PTobs

}, where Pt = {P i
t }i=1:d is

the location of d keypoints at time step t, we aim
at predicting the next Tfuture future pose, i.e.,
{PTobs+1,PTobs+2, . . . ,PTobs+Tfuture

}. We split the
keypoints P i

t at each time t into two parts:

P i
t = Rt + rit, (1)

where Rt is the location of the center of the human with re-
spect to the camera and rt = {rit}i=1:d is the locations of d
keypoints with respect to Rt. The trajectory {Rt}t=1:Tobs

represents the global movements of the human with respect
to the camera and the local pose sequence {rt}t=1:Tobs

indi-
cates the fine-grained movements of keypoints with respect
to the trajectory.

2295



Encoder Decoder

LSTM LSTMLSTM... LSTM...

Figure 2: The LSTM encoder-decoder network for trajec-
tory forecasting. The dashed arrows indicate the trajectory
of the human.

Similar to previous works [36, 1], instead of locations,
we use velocities which are more effective in the learning
process. The velocity of the pose at time t is simply {Ṗ i

t } =
Pt−Pt−1 and its i-th element (i ∈ 1, . . . , d) can be written
as:

Ṗ i
t = Ṙt + ṙit (2)

where Ṙt = Rt − Rt−1, ṙt = {ṙit}i=1:d = {rit −
rit−1}i=1:d.

3.2. Network Architecture

Our method comprises two networks: an LSTM
encoder-decoder for trajectory forecasting and a VAE
encoder-decoder for the local pose forecasting.

3.2.1 Trajectory Forecasting

Figure 2 shows this part of the network. We use an LSTM
encoder-decoder network similar to [8] for the trajectory
forecasting. The encoder LSTM at time t takes in as in-
put the observed velocities {Ṙ1, . . . , Ṙt} and outputs the
updated hidden state, i.e.:

ht = LSTM traj
enc (ht−1, Ṙt) (3)

where LSTM traj
enc is the encoder LSTM. The encoder ex-

tracts the important features of the input and encodes them
in the hidden state.
After encoding the input, the decoder LSTM takes as input
the last observed velocity as well as the last hidden state of
the encoder as its initial hidden state and outputs the pre-
dicted hidden state, i.e.:

ĥt+1 = LSTM traj
dec (ht, Ṙt) (4)

where LSTM traj
dec is the decoder LSTM. A fully connected

layer is finally used to predict the next future velocity, i.e.:

ˆ̇Rt+1 = ϕ(ĥt+1) (5)

where ϕ is the fully connected layer. We can predict the
next velocities from Equations 4 and 5 if we use as input in
Equation 4 the previous predicted hidden state and velocity,
i.e., for a later time t+ t′ we write:

ĥt+t′ = LSTM traj
dec (ĥt+t′−1,

ˆ̇Rt+t′−1)

ˆ̇Rt+t′ = ϕ(ĥt+t′)

R̂t+t′ = R̂t+t′−1 +
ˆ̇Rt+t′

(6)

The velocities are used to iteratively compute the future tra-
jectory using the above equation.

3.2.2 Local Pose Forecasting

A common VAE consists of an encoder that maps the input
to a distribution in a latent space and a decoder that sam-
ples from that distribution and tries to regenerate the input.
The optimal parameters of the network are found by mini-
mizing the reconstruction loss, defined usually as the Mean
Squared Error (MSE) between the prediction and the input,
as well as the KL Divergence between the latent space dis-
tribution and a standard Gaussian distribution [27]. In our
task of local pose forecasting, we use a slightly different
VAE in which the network does not regenerate the input but
tries to generate the future ground truths. In this case, the
loss is defined as the MSE between the predictions and the
ground truths in addition to the KL divergence.

We show the architecture of the network in Figure 3.
The encoder LSTM, LSTM local

enc , at time t takes in as
input the sequence of the observed local pose velocities,
{ṙ1, . . . , ṙt}, and outputs the updated hidden state, i.e.:

h
′

t = LSTM local
enc (h

′

t−1, ṙt) (7)

Two fully connected layers take as input the hidden state
and output the mean µ and the covariance σ, i.e.:

µ = ϕµ(h
′

t)

σ = ϕσ(h
′

t)

z = µ+ σ ∗ ξ
(8)

where ϕµ and ϕσ are the fully connected layers and ξ is
a random variable sampled from a multivariate standard
Gaussian using the reparameterization trick [27]. Having
calculated µ and σ, we set the initial hidden state of the
decoder to a fully connected layer applied on z.

The decoder LSTM, LSTM local
dec , takes as input the last

observed local pose velocity as well as the hidden state and
outputs the predicted hidden state, i.e.:

ĥ
′

t+1 = LSTM local
dec (h

′

t, ṙt) (9)
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Figure 3: The VAE encoder-decoder network for the local pose forecasting.

We use a fully connected layer, ϕ
′
, to predict the next future

local pose velocity, i.e.:

ˆ̇rt+1 = ϕ
′
(ĥ

′

t+1) (10)

The next velocities are predicted from Equations 9 and 10
by using as input in Equation 9 the previous predicted hid-
den state and velocity, i.e., for a later time t + t′ we write:

ĥ
′

t+t′ = LSTM local
dec (ĥ

′

t+t′−1, ˆ̇rt+t′−1)

ˆ̇rt+t′ = ϕ
′
(ĥ

′

t+t′)

r̂t+t′ = r̂t+t′−1 + ˆ̇rt+t′

(11)

These velocities are used to iteratively compute the future
local pose in the above equation.

3.3. Training

The objective is to achieve realistic and accurate pose
close to the ground truth pose while keeping the trajectory
and the local pose decoupled. Therefore, the loss is derived
as follows:

L =

Tobs+Tfuture∑
t=Tobs+1

(
|| ˆ̇Rt − Ṙt||2 + λl||ˆ̇rt − ṙt||2

)
+

λkKL
(
P (z) ||N (0, I)

)
(12)

where p(z) is the probability distribution of z and λl and
λk are two hyperparameters to control the contribution of
each term in the final loss. The first term in Equation 12
penalizes the trajectory forecasting and the second and third
terms penalize realistic local pose forecasting.

We also consider the uncertainty in the pose forecasting.
Once the model is uncertain, it stops predicting and outputs
the last prediction. We call the model at t > tc, where
tc is the threshold, uncertain if the model is penalized less
by predicting up to time tc and using the last prediction as
the future predictions for times t > tc. In the beginning
of the training, tc starts from 0 but it increases after some
epochs of training and reaches a value smaller or equal to
the maximum prediction length.

4. Experiment
In this section, we first introduce datasets, evaluation

metrics, baselines, and experiment details. To be fair in the
results, we follow the same procedure mentioned in the So-
MoF challenge [2].

4.1. Datasets

• 3DPW[43] 3D Pose in the Wild is an accurate dataset
with 3D pose containing various indoor and outdoor
scenarios such as walking, arguing, phoning, doing
sport, etc. We use a subset of this dataset used as
benchmarking in the SoMoF challenge. This subset
contains 220 sequences in the train, 36 sequences in
the validation, and 85 sequences in the test set. The
pose consist of 13 body keypoints in 3D including the
neck, shoulders, elbows, wrists, knees, hips, and an-
kles.

• PoseTrack[6] is another dataset containing various in-
door as well as outdoor scenarios originally purposed
for the problem of pose estimation. PoseTrack dataset
contains human keypoints which are partly occluded
and invisible. Similarly, we use the official PoseTrack
dataset in the SoMoF challenge. This dataset has 306,
104, and 106 sequences in the train, validation, and test
respectively. The pose consist of 14 body keypoints in
2D including the head, neck, shoulders, elbows, wrists,
knees, hips, and ankles.

We have taken 16 frames (640 ms in PoseTrack and 1030 ms
in 3DPW) as the observation and predicted up to the next 14
frames (560 ms in PoseTrack and 900 ms in 3DPW).

4.2. Evaluation Metrics

• VIM: Visibility Ignored Metric is the average Eu-
clidean distance between the location of the predicted
keypoints and the location of the keypoints in the
ground truth [2].

• VAM: Visibility Aware Metric is the same as VIM if
the visibility of the keypoints is predicted correctly
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otherwise a penalty B is imposed [2]. This value is
considered as 200 in our experiments.

4.3. Baselines

• Zero velocity: A simple baseline to keep the last ob-
served pose as the prediction for future frames. It has
been shown that this baseline is a hard-to-beat base-
line that has outperformed a large number of models
[36, 18].

• Nearest neighbour: This is a simple baseline in which
using Euclidean distance, we compare the normalized
input sequence in the test set with the normalized input
sequences in the train set and choose the closest one.
Then, the prediction will be the future sequence of that
selected sequence. This baseline has been compared
with in some other works too [50].

• TRiPOD [2]: This is a recent work on human pose
forecasting which takes into account various interac-
tions between the humans and other humans and ob-
jects in the scene using graph attention networks.

• SC-MPF [1]: It is another recent method for pose fore-
casting. The human-to-human interaction is included
in this model using social pooling.

• Other baselines (PF-RNN + S-LSTM, MoAtt + S-
LSTM, PF-RNN + S-GAN, MoAtt + S-GAN, PF-
RNN + ST-GAT and MoAtt + ST-GAT): In these mod-
els, the human pose forecasting is achieved by com-
bining the results of the trajectory forecasting (MoAtt
[35] or PF-RNN [36]) and the local pose forecasting
(ST-GAT [23], S-LSTM [3] or S-GAN [20]).

4.4. Implementation Details

The dimension of the hidden states of all the LSTMs in
the model is 64. The dimension of the latent space in the
VAE is 32. We have taken λl and λk in Equation 12 to be 1
and 0.01 respectively. We have implemented our model in
Pytorch [38] and trained it using the Adam optimizer [26].
The learning rate starts at 0.001 and is updated during the
training by an adaptive scheduler. All the models are trained
for 1000 epochs on an NVIDIA GTX-2080-Ti GPU.

4.5. Results and Discussions

We evaluate our model on the unseen test dataset with the
evaluation metrics introduced in Section 4.2. The quantita-
tive numbers for 3DPW and Posetrack datasets are reported
in Table 1 and Table 2, respectively. Our model (DeRPoF)
outperforms all the previous baselines including two-stage
and one-stage predictions in both datasets. Furthermore, it
shows that given the high uncertainty in human pose fore-
casting, sometimes not predicting (Zero velocity) is better

than predicting. We used the numbers reported in the chal-
lenge and unfortunately, we could not compare with [34] as
their source code is not available and our re-implementation
shows non-realistic results.

To study the effect of each module in the final outcome,
we do an ablation study:

• w/o Early stop In this model, our network predicts all
the future frames regardless of the uncertainty of the
predictions.

• w/o Decoupling In this model, we remove the decou-
pling from the model, i.e., the human motion is not
split into a global trajectory and local pose. In this
baseline, the pose is predicted using the VAE-encoder-
decoder.

• w/o VAE, Decoupling In this model, we remove both
the VAE and the decoupling, i.e. the human motion is
predicted without splitting it into global and local mo-
tion using an encoder-decoder LSTM-based network.

The quantitative results of all these modes are reported
in Table 3. This experiment is conducted on the 3DPW
dataset. As it shows, each part improves the performance
and all of them are required to capture an accurate human
motion.

To better show it, the qualitative results of these mod-
els are depicted in Figure 4. The observed pose for t =
2, 4, 6, 8, 10, 12, 14, 16 are on the left and the predicted pose
for t = 17, 19, 21, 23, 25, 27, 29 are on the right for two
different scenarios (a) and (b). The keypoints move more
naturally in the two top rows (DeRPoF and w/o Early stop)
of each scenario while the keypoints do not move in a real
manner when the decoupling is omitted. This is in accor-
dance with our assumption about the necessity of learning
decoupled representations to predict a realistic human mo-
tion. The predictions of Nearest neighbor and Zero velocity
baselines are presented in the last two rows. We could not
include the qualitative results for other baselines since their
codes are not available.

Using a generative model provides us the ability to sam-
ple from the learned distribution and generate multiple ex-
amples per a given sequence of human motion. In the above
analysis, we used only the mean of the learned representa-
tion but we could verify that it generates multiple distinct
samples.

5. Conclusions and Future Works
We have tackled the human pose forecasting task by de-

composing it into global trajectory and local pose forecast-
ing tasks. We employed a simple LSTM encoder-decoder
network for the prediction of the trajectory and proposed a
VAE-encoder-decoder for the local pose forecasting. Eval-
uating our model on the 3DPW and PoseTrack datasets in
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method Prediction time
100 ms 240 ms 500 ms 640 ms 900 ms

PF-RNN [36]+S-LSTM [3] 73.82 127.23 179.07 202.78 277.55
MoAtt [35]+S-LSTM [3] 64.64 111.67 168.67 202.16 267.65

PF-RNN [36]+S-GAN [20] 83.35 138.48 182.84 204.84 291.96
MoAtt [35]+S-GAN [20] 66.36 112.18 166.48 209.53 277.85

PF-RNN [36]+ST-GAT [23] 66.95 117.77 165.99 190.52 252.23
MoAtt [35]+ST-GAT [23] 62.15 97.74 155.23 184.96 250.98

SC-MPF [1] 46.28 73.88 130.23 160.83 208.44
TRiPOD [2] 30.26 51.84 85.08 104.78 146.33

Nearest neighbour 27.34 51.68 97.75 121.40 168.27
Zero velocity 29.35 53.56 94.52 112.68 143.10

DeRPoF (ours) 19.53 36.89 68.29 85.45 118.21

Table 1: Comparison of VIM for 3DPW dataset. The reported numbers are in centimeter.

method Prediction time
80 ms 160 ms 320 ms 400 ms 560 ms

PF-RNN [36]+S-LSTM [3] 87.02/89.44 103.22/111.11 129.21/136.43 138.77/145.72 160.95/157.04
MoAtt [35]+S-LSTM [3] 82.06/86.76 100.99/109.02 121.43/130.82 132.73/142.35 156.15/155.21

PF-RNN [36]+S-GAN [20] 84.40/87.23 99.24/106.23 130.21/131.12 130.21/139.94 150.03/150.44
MoAtt [35]+S-GAN [20] 82.45/85.82 98.76/104.13 119.38/128.97 127.98/139.07 149.53/151.45

PF-RNN [36]+ST-GAT [23] 82.06/86.76 94.25/102.61 117.70/127.87 126.71/137.87 148.65/150.80
MoAtt [35]+ST-GAT [23] 80.60/86.29 93.43/100.92 115.68/125.32 129.54/137.50 141.13/147.92

SC-MPF [1] 22.01/78.36 37.99/ 99.80 64.62/124.38 75.84/138.52 93.54/147.93
TRiPOD [2] 15.21/30.00 26.79/ 49.66 48.12/ 80.32 58.68/ 93.32 74.11/110.40

Nearest neighbour 11.75/24.62 21.35/ 42.05 41.15/ 70.95 50.99/ 82.76 66.80/ 99.91
Zero velocity 13.17/26.57 24.06/ 45.17 43.31/ 72.92 52.17/ 83.87 65.63/ 97.34

DeRPoF (ours) 10.20/22.05 18.56/37.29 34.89/62.01 42.76/73.10 54.62/88.12

Table 2: Comparison of VIM/VAM for PoseTrack dataset. The reported results are in pixel.

method Prediction time
100 ms 240 ms 500 ms 640 ms 900 ms

DeRPoF 19.53 36.89 68.29 85.45 118.21
w/o Early stop 19.53 36.89 70.70 89.02 126.19
w/o Decoupling 19.27 36.84 71.02 89.76 127.73
w/o VAE, Decoupling 20.50 37.95 72.68 91.94 131.99

Table 3: The ablation study of VIM for 3DPW dataset. The reported numbers are in centimeter.

the SoMoF benchmarking, we have shown that our model
outperforms all the baselines in the challenge.

Motivated by the success of our work in improving the
accuracy of human motion forecasting in 3DPW and Pose-
Track, this can be applied to other datasets especially for
longer predictions and in different environments.
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Miroslav Caban, Elvira Pirondini, Molywan Vat, Laura A.
McCracken, Roman Heimgartner, Isabelle Fodor, Anne Wa-
trin, Perrine Seguin, Edoardo Paoles, Katrien Van Den Key-
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Targeted neurotechnology restores walking in humans with
spinal cord injury. Nature, 563(7729):65–71, Nov. 2018. 1

[45] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial
Hebert. The pose knows: Video forecasting by generating
pose futures. In Proceedings of the IEEE international con-
ference on computer vision (ICCV), pages 3332–3341, 2017.
2

[46] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
long Wang. Synthesizing long-term 3d human motion and in-
teraction in 3d scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9401–9411, 2021. 2

[47] Nikolaus Wenger, Eduardo Martin Moraud, Jerome Gan-
dar, Pavel Musienko, Marco Capogrosso, Laetitia Baud,
Camille G Le Goff, Quentin Barraud, Natalia Pavlova, Na-
dia Dominici, Ivan R Minev, Leonie Asboth, Arthur Hirsch,
Simone Duis, Julie Kreider, Andrea Mortera, Oliver Haver-
beck, Silvio Kraus, Felix Schmitz, Jack DiGiovanna, Rubia
van den Brand, Jocelyne Bloch, Peter Detemple, Stéphanie P
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