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Abstract

Pedestrian trajectory prediction is one of the important
research topics in the field of computer vision and a key
technology of autonomous driving system. However, it’s
full of challenges due to the uncertainties of crowd mo-
tions and complex interactions among pedestrians. We pro-
pose a Spatio-temporal Interaction-aware Recursive Net-
work (STIRNet) to predict multiply socially acceptable tra-
jectories of pedestrians. In this paper, a recursive struc-
ture is used to capture spatio-temporal interactions by spa-
tial modeling and temporal modeling alternately. At each
time-step, the spatial interactions are modeled by a graph
attention network, in which the nodes feature are repre-
sented by temporal motion features. The learned spatial
interaction context is used to capture temporal motion fea-
tures through an LSTM model. The temporal motion fea-
tures are used to infer future positions and update nodes
features. Experimental results on two public pedestrian
trajectory datasets (ETH and UCY) demonstrate that our
proposed model achieves superior performances compared
with state-of-the-art methods on ADE and FDE metrics.

1. Introduction
Pedestrian trajectory prediction is of major significance

in several applications such as autonomous driving, robot
navigation, and surveillance systems. For example, in
surveillance systems, forecasting pedestrian trajectories is
critical in helping identify suspicious activities [23, 20].

In recent years, with the development of deep learning,
the deep neural networks including LSTM, GAN are widely
used in pedestrian trajectory prediction and achieve great
success. In such deep learning prediction methods, pool-
ing mechanisms [2, 10, 3], attention mechanisms [8, 31, 22]
and graph neural network mechanisms [14, 18, 39] are of-
ten used to model the complex and subtle social interaction
among pedestrians. In the view that pedestrians have differ-
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ent impacts on each other, some of the pooling mechanisms
and graph neural network mechanisms incorporate attention
mechanisms to model social interactions.

However, most of the models focus on modeling spa-
tial interactions among pedestrians. Xu et al. [34] design
a spatio-temporal attention module to model the spatio-
temporal interactions among pedestrians. In contrast,
STGAT [14] and AST-GNN [39] models model spatial in-
teractions firstly and then feed the spatial interaction con-
texts to the temporal model to capture the spatio-temporal
interaction features. Inspired by these works, we adopt a
novel recursive structured network via graph attention net-
work and LSTM to model spatio-temporal interactions.

In this paper, we propose a Spatio-temporal Interaction-
aware Recursive Network (STIRNet) for pedestrian trajec-
tory prediction. A GAT is adopted to model spatial interac-
tions among pedestrians at each time-step, where the nodes
features are represented by temporal motion features. Be-
sides, the output spatial interaction contexts of GAT are fed
to the LSTMs to capture temporal motion features. The
learned motion features are used to infer future positions
and update nodes features at next time-step.

The main contributions of this paper are summarized as
follows:

• We propose a novel recursive structured trajectory pre-
diction model which can capture spatio-temporal inter-
actions by alternately performing temporal modelling
and spatial modelling.

• A GAT is adopted to model spatial interactions from
nodes features which are represented by temporal mo-
tion features.

• Experiments on ETH and UCY datasets show that
STIRNet significantly improves pedestrian trajectory
prediction and achieving state-of-the-art performance
on two popular benchmarks.

2. Related Work
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2.1. Trajectory Prediction Methods

Forecasting human trajectory has been researched for
decades. In the early stages, many classic approaches are
applied such as linear regression and Kalman filter [15],
Gaussian processes [6] and Markov decision processing
[17]. However, it is hard to model complex social inter-
actions and normally fail in crowded scenes via these meth-
ods.

In recent years, the Long Short-Term Memory (LSTM)
model has achieved great success in various sequence pre-
diction tasks and is widely used in pedestrian trajectory
prediction methods [2, 38, 35]. Gupta et al. [10] intro-
duce Generative Adversarial Networks (GANs) to trajec-
tory prediction task and propose a variety loss function that
encourages the network to produce socially plausible tra-
jectories. Inspired by this, a large number of GAN-based
trajectory prediction models [5, 3, 25] emerged later. As
another popular generative model, Conditional Variational
Auto-Encoder (CVAE) is also adopted in various trajectory
prediction methods [16, 24, 37]. As the Temporal Convolu-
tional Network (TCN) reached or even exceeded the Recur-
rent Neural Network (RNN) in multiple tasks, some schol-
ars use TCN to replace the RNN model and achieve success
in pedestrian trajectory prediction [32, 30].

In this paper, we introduce a novel recursive structure
network to predict trajectory where the LSTM is used for
temporal modeling to capture motion features. Besides, a
VAE model is employed during the training stage to encour-
age the proposed model to generate multimodal socially
plausible trajectories.

2.2. Interactions Modeling in Trajectory Prediction

As a pioneering work, the social force model [11]
achieves great success in interaction modeling and is widely
used in crowd analysis and robotics. Social force models
work well on interaction modeling while performing poorly
on trajectory prediction [1]. Recently, in deep learning-
based models, pooling mechanisms [2, 26, 27] that approx-
imate crowd interaction are widely used. Besides, recent
works consider pedestrians as nodes in a graph and inter-
grate information of the proximal pedestrians with attention
mechanisms [29, 36, 39]. Explicit message passing allows
the network to model more complex social behaviors.

The methods mentioned above focus on modeling spa-
tial interactions between pedestrians. However, some schol-
ars propose predicting trajectories by modeling spatio-
temporal interaction among pedestrians. The existing meth-
ods [22, 34, 14, 39] are based on the seq2seq structure and
capture spatio-temporal interaction context explicitly. Dif-
ferent from them, the proposed STIRNet model is based
on a recursive structure and learns the latent motion fea-
ture which contains both spatial and temporal contexts by
performing spatial and temporal modeling alternately. Spe-

cially, in STGAT [14], the GAT is used to capture spatial
interaction contexts of historical trajectories, and the con-
texts are treated for temporal modeling through a LSTM to
acquire the spatial-temporal context. Similar to STGAT, we
adopt GAT and LSTM for spatial modeling and temporal
modeling respectively. Innovatively, the GAT and LSTM
are executed alternately through a recursive structure that
allows the temporal and spatial contexts to be fully inte-
grated.

2.3. Graph Neural Networks in Trajectory Predic-
tion

Graph Neural Networks (GNNs) are powerful deep
learning architectures for processing graph-structured data.
In the pedestrian trajectory prediction task, pedestrians in
the scene can be treated as nodes in the graph. In these
works [28, 4], Graph Convolutional Networks (GCNs) are
used as message passing schemes to aggregate social infor-
mation from adjacency nodes. In particular, Graph Atten-
tion Networks (GATs) implement efficient weighted mes-
sage passing between nodes and achieve great success in
trajectory prediction [14, 18, 39].

In these methods, the GNNs are often used to model spa-
tial interactions. In this paper, we also adopt GAT to model
spatial interactions, in which the nodes features are repre-
sented by temporal features.

3. Proposed Method

The overview of the STIRNet model is illustrated in Fig-
ure 1. A recursive framework is adopted in the STIRNet
model. For each time-step, the encoders embed the posi-
tions to high-dimensional features and the decoders are de-
signed for inferring future positions from high-dimensional
features. The GAT is employed to model spatial interactions
from nodes features. Then the spatial interaction context
is coupled with the encoding from the encoder and fed to
the LSTM to capture motion feature. Besides, we design a
VAE-based latent variable generator to generate latent vari-
ables in the training stage to encourage the model to predict
multiply socially acceptable positions in the test stage.

3.1. Problem Formulation

The trajectory prediction task is formulated as one that
estimates the positions of all pedestrians in the scene in
the future period of time from their history trajectories.
We assume that there are N pedestrians involved in the
scene. Given certain observed positions {pti|(xt

i, y
t
i), t =

1, 2, ..., Tobs} of pedestrians i of Tobs time-steps, our goal is
predicting the positions {pt′i |(x̂t′

i , ŷ
t′

i ), t
′ = Tobs+1, Tobs+

2, ..., Tpred} of future Tpred time-steps.
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Figure 1. The architecture of the proposed STIRNet model. The model is built with a recursive structure. At each time-step, the encoders
embed the positions to high-dimensional features, and the decoders decode the high-dimensional feature into position coordinates of the
next time-step. The GAT and LSTM are employed for spatial modeling and temporal modeling to capture spatial interaction context and
motion feature. The spatial modeling and temporal modeling are performed in an alternate manner to recursively predict future positions.
Besides, a VAE is used to generate latent variables in training stage for multimodal trajectory prediction.

Figure 2. An illustration of graph attention network. GAT assigns
different weights to different neighborhood nodes and aggregates
features of them.

3.2. GAT-based Spatial Interaction Modeling

The social interactions that exist between pedestrians are
crucial for pedestrian trajectory prediction. In the deep
learning-based trajectory prediction models, pooling mech-
anisms, attention mechanisms are often used to model the
social interaction among pedestrians. Besides, GNNs are
also widely adopted in social interaction modeling. As one
of the popular GNNs, GAT adopts the attention mechanism
and can assign different weights to different nodes. In view
of the success of GAT in pedestrian prediction [14, 18, 39],
we adopt GAT to model the social interaction among pedes-
trians.

In this section, the pedestrians in the scene are treated
as nodes in the graph, and the node features are rep-

resented by the temporal motion features of pedestri-
ans. The GAT mechanism we adopted is illustrated in
Fig. 2. For each time-step t, the input of GAT is a
set of features of nodes which is represented by h ={
h⃗t−1
i |⃗ht−1

i ∈ RF ,∀i ∈ {1, . . . , N}
}

, N is the number of
nodes, and F is the feature dimension of each node. Firstly,
the nodes features are transformed to distinct intermedi-
ate representations through a learnable linear transforma-
tion W ∈ RF×F ′

. Then, the self-attention mechanism is
performed on these nodes, and the coefficient of the node
pair (i, j) is computed by:

αt
i,j =

exp
(
LR

(
aT

[
Wh⃗t−1

i ∥ Wh⃗t−1
j

]))
∑

k∈Ni
exp

(
LR

(
aT

[
Wh⃗t−1

i ∥ Wh⃗t−1
k

])) (1)

where αt
i,j represents the impact of node j on node i at

time-step t, and Ni represents the neighbors of node i on the
graph. LR is a LeakyReLU function, ∥ is the concatenation
operation, a ∈ 2F ′ is a learnable weight vector, and .T

represents transposition.
After getting the attention weights among nodes, the fea-

tures of neighboring nodes are aggregated by an aggregate
function. For instance, the aggregated feature of node i at
time-step t is given by:

H⃗t
i =

∑
k∈Ni

αt
i,jWh⃗t−1

j (2)

where H⃗t
i is the aggregated hidden state for pedestrian i at
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time-step t, which contains the spatial influence from other
pedestrians. And it is regarded as the spatial interaction con-
text of pedestrian i at the current time-step.

3.3. LSTM-based Temporal Modeling

Pedestrian trajectory prediction is a sequential predic-
tion task which predicts the future trajectory through the
observed pedestrian trajectory. Most pedestrian trajectory
prediction works [10, 3, 14, 13, 7] adopt the sequence-to-
sequence architecture, in which the observed trajectory is
treated as input sequence to feed to encoder, and the encod-
ing feature is decoded to infer the future trajectory that can
be treated as the output sequence. Instead, a small num-
ber of models [2, 38, 35] are based on recursive structures,
which perform the same operation at each time-step to ex-
tract features and infer the position of the next time-step. In
this paper, we propose a novel pedestrian trajectory predic-
tion model via recursive structure.

As a popular variant of recurrent neural network, LSTM
achieves great success in sequence tasks [12, 9]. In re-
cursive structure trajectory prediction models [2, 38, 35],
LSTMs are adopted as main bodies to capture motion fea-
tures, and the hidden state of LSTM at each time-step is
used to infer the position of next time-step. In our proposed
model, the LSTM is used for temporal modeling to capture
temporal motion features from spatial interaction context.
Specifically, at each time-step, the positions of pedestrians
are encoding to high dimensional features through encoders
firstly. Then, the spatial interaction contexts acquired from
GAT in Sect. 3.2 and encodings are coupled and served as
the current inputs of LSTMs. The hidden states of LSTMs
are regarded as motion features captured at current time-
step to infer the positions of the next time-step. In addition,
the hidden states are used to update the nodes features of
the graph, which means that the hidden states are treated as
nodes features of the graph of the next time-step. The key
operations are formulated by:

eti = ϕ(xt
i − xTobs

i , yti − yTobs
i ;We) (3)

ht
i = LSTM(ht−1

i , H⃗t
i , e

t
i;Wl) (4)

where ϕ(·) is an embedding function with ReLU nonlinear-
ity of encoder, We is the embedding weight. The LSTM
weight is denoted by Wl. These parameters are shared
among all the pedestrians in the whole scene. Ht

i is the
social interaction context which is the output of the GAT
in Sect. 3.2. Similar to [38], we use the normalized ab-
solute(Nabs) position which shifts the origin to the latest
observed time slot.

After spatial modeling and temporal modeling, the
learned hidden state ht

i contains spatial context and tempo-
ral context implicitly. In the recursive structure, the hidden
state ht

i is treated as node feature at the next time-step to up-
date graph node information for spatial modeling. By this

alternate manner, the spatial contexts and temporal contexts
are fully integrated into the learned latent motion features,
so as to better inferring the future positions.

3.4. Latent Variable Generator

For multimodal prediction, a VAE-based latent variable
generator is designed to generate the latent variables µ and
γ (see Fig. 1). The existing trajectory prediction methods
use latent variables to handle multimodality where the latent
variables are directly sampled from the normal distribution
[10, 14] or a multivariate normal distribution conditioned on
the observed trajectories [19, 21]. To make our latent vari-
ables more aware of social cues, we design a novel VAE
model to learn the parameters of the sampling distribution
from the current position and spatial interaction context. To
this end, the concatenated feature eti ⊕ H⃗t

i is passed to two
different fully connected layers to yield the mean vector
µi and logarithmic variance γi and finally zi for the down-
stream decoder:

µi = ϕµ(e
t
i ⊕ H⃗t

i ;Wµ) (5)

log δ2i ≜ γi = ϕµ(e
t
i ⊕ H⃗t

i ;Wδ) (6)

zi ∼ N (µi, diag(δ
2
i )) (7)

where Wµ and Wδ are trainable weights of ϕµ and ϕδ . The
re-parameterization trick [19] is applied to sample the latent
variable zi.

3.5. Trajectory Prediction

To infer the position of next time-step, the concatenated
feature ht

i ⊕ zi at time t is fed to the decoder:

[∆x̂t+1
i ,∆ŷt+1

i ]T = Wp[h
t
i ⊕ zi] (8)

(x̂t+1
i , ŷt+1

i ) = (∆x̂t+1
i + xTobs

i ,∆ŷt+1
i + yTobs

i ) (9)

where Wp is a weight matrix. In the test stage, we can sam-
ple z from N (0, 1) multiple times to generate multiple fu-
ture positions.

3.6. Implementation Details

The parameters of the STIRNet model are directly
learned by minimizing the L2 loss between the predicted
positions and ground truth. W in GAT is of shape 64× 64.
The dimension of encoder vector eti in Eq.3 is set to 32, and
the dimension of hidden states of LSTM cells is set to 64.
The dimension of latent variable z is set to 16. All trajectory
segments in the same time window are regarded as a mini-
batch, as they are processed in parallel. Adam optimizer is
adopted to train models in 300 epochs, with an initial learn-
ing rate of 0.001.

4. Experiments
In this section, we evaluate our method on two public

walking pedestrian video datasets: ETH and UCY. These
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Table 1. Comparison with baselines models on ADE & FDE evaluation metrics. † denotes that the scene information is used in this model.

Model Performance (ADE/FDE) ↓
ETH HOTEL UNIV ZARA1 ZARA2 AVERAGE

S-LSTM [2] 1.09/2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54
CIDNN [33] 1.25 / 2.32 1.31 / 2.36 0.90 / 1.86 0.50 / 1.04 0.51 / 1.07 0.89 / 1.73
SGAN [10] 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18
SoPhie† [25] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15
IDL [21] 0.59 / 1.30 0.46 / 0.83 0.51 / 1.27 0.22 / 0.49 0.23 / 0.55 0.40 / 0.89
STGAT [14] 0.65 / 1.12 0.35 / 0.66 0.52 / 1.10 0.34 / 0.69 0.29 / 0.60 0.43 / 0.83
RAMP† [27] 0.69 / 1.24 0.43 / 0.87 0.53 / 1.17 0.28 / 0.61 0.28 / 0.59 0.44 / 0.90
TPNet† [7] 0.84 / 1.73 0.24 / 0.46 0.42 / 0.94 0.33 / 0.75 0.26 / 0.60 0.42 / 0.90
NMMP [13] 0.61 / 1.08 0.33 / 0.63 0.52 / 1.11 0.32 / 0.66 0.29 / 0.61 0.41 / 0.82

STIRNet 0.48 / 0.95 0.22 / 0.41 0.54 / 1.15 0.37 / 0.80 0.31 / 0.70 0.38 / 0.80

two datasets contain 5 crowd scenes, including ETH, HO-
TEL, ZARA1, ZARA2, and UNIV. There are 1536 pedestri-
ans and thousands of real-world pedestrian trajectories. All
the trajectories are converted to the world coordinate system
and then interpolated to obtain values at every 0.4 seconds.

Experiment Setup. We use the leave-one-out approach
similar to that from S-LSTM [2]. Specifically, we train
models on four datasets and test on the remaining dataset.
We take the coordinates of 8 key frames (3.2s) of the pedes-
trian as the observed trajectory, and predict the trajectory of
the next 12 key frames (4.8s). For each mini-batch, random
rotation is employed for data augmentation.

Evaluation Metrics. Similar to prior works [10, 38], the
proposed method is evaluated with two types of metrics as
follows:

1. Average Displacement error(ADE): the mean square
error (MSE) between the ground-truth trajectory and
predicted trajectory over all predicted time steps.

2. Final Displacement error(FDE): the mean square er-
ror (MSE) between the ground-truth trajectory and pre-
dicted trajectory at the last predicted time steps.

Baselines. We compare the proposed model with the fol-
lowing state-of-the-art models:

1. S-LSTM [2]: A recursive trajectory prediction model
via LSTM which uses a social pool module to model
social interactions.

2. CIDNN [33]: A recursive trajectory prediction model
which models crowd interactions via spatial affinity.

3. SGAN [10]: A GAN-based seq2seq trajectory predic-
tion model that can generate multiple socially accept-
able trajectories, in which global pooling is used for
social interaction modeling.

4. SoPhie [25]: An improved version of SGAN that cou-
pling attention to social and physical constraints.

5. IDL [21]: A novel imitative decision learning approach
for multimodal path forecasting which delves deeper
into the latent decision.

6. STGAT [14]: A seq2seq trajectory prediction model
which models spatial interaction via GAT and utilizes
LSTM for temporal modeling from spatial interaction
contexts to capture spatio-temporal interactions.

7. RAMP [27]: An improved version of SGAN by cou-
pling extra scene information, in which the forward
and backward prediction networks are tightly coupled
and satisfying the reciprocal constraint.

8. TPNet [7]: A unified two-stage motion prediction
framework for both vehicles and pedestrians.

9. NMMP [13]: An improved version of SGAN which
uses a novel neural motion message passing to explic-
itly model the interaction and learn representations for
directed interactions between actors.

4.1. Quantitative Evaluation

We compare our method with the state-of-the-art base-
lines mentioned above. All the stochastic method samples
20 times and reports the best-performed sample. The main
results are presented in Table 1. The S-LSTM, CIDNN,
and the proposed STIRNet are recursive structured models
while the rest of baselines are seq2seq models. The per-
formance of STIRNet model is best on ETH and HOTEL
datasets and compatible on the rest 3 datesets. STIRNet im-
proves the state-of-the-art prediction to 0.38m and 0.80m on
ADE and FDE on average. Particularly, the SoPhie, RAMP,
and TPNet models adopt scene information in modeling, but
our model achieves better performance without using scene
information compared with these models.
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(a) (b) (c) (d)

Figure 3. Comparisons between our model with STGAT and NMMP models in 4 different scenarios, which contain parallel walking (a, b),
people merging (c), and people meeting (d). For a better view, only part of the pedestrians in the scene are presented. We can see that the
trajectories generated by our model are closer to groundtruth.

Inference speed and model size To evaluate the infer-
ence speed, we list out the size of parameters and inference
speed comparisons between our model and publicly avail-
able models which we could bench-mark against. For eval-
uating the inference speed, we treat each fragment with 20
time-step as a batch and calculate the average time over all
batches. In particular, the parameter size of the NMMP
model is different across the five sub-datasets, the value
listed in the table is the average value. The parameter size
of our model is 49.1K, which is about 1.06 times that of
SGAN, only second to the 115.8K parameters of NMMP.
However, the inference speed of STIRNet is the slowest,
which is 11.55ms/batch. The reason is that the recursive
structure based STIRNet model performs spatio-temporal
interaction modeling in every time-step, while other mod-
els based on seq2seq structure only model interaction in the
encoder or decoder stage.

4.2. Qualitative Evaluation

As mentioned above, pedestrian trajectory prediction is
a complex problem because of the complex social interac-
tions between pedestrians. To verify the effectiveness of
our model, we illustrate the prediction trajectories of 4 ex-
amples which come from three types of social scenario. The
Fig. 3(a) and 3(b) show the parallel walking scenario where
two pedestrians are walking in parallel. The trajectories
generated by our model are closer to the ground truth while
the trajectories predicted by STGAT and NMMP are devi-

Table 2. Comparisions of parameter amount and inference speed
on ETH & UCY datasets. All models evaluated on Nvidia
GTX2080Ti GPU.
Model Parameters (k) Speed (ms/batch)

SGAN [10] 46.4 (1x) 1.25 (1x)

STGAT [14] 44.6 (0.96x) 1.33 (1.06x)

NMMP [13] 115.8 (2.50x) 4.49 (3.60x)

STIRNet 49.1 (1.06x) 11.55 (9.24x)

ated and fail to reach the endpoints. In people merging Fig.
3(c) and people meeting Fig.3(d) scenarios, the trajectories
predicted by our method are also closer to the ground truth
and without collisions and crowding happening. These ex-
amples prove that the proposed spatio-temporal interaction
modeling is more effective and successful than that of the
STGAT model.

We also compare the proposed model with STGAT in
3 common social scenarios on multimodal prediction per-
formance (see Figure 4). For the multimodal predictions
of the STIRNet model, the ground truth trajectories are al-
ways distributed in the high density regions (deep color).
Compared with the multimodal prediction of STGAT, the
multiple trajectories generated by STIRNet are more con-
centrated and clustered. However, a wider distribution of
future predictions means that there is more randomness in
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(a) (b) (c)

Figure 4. Comparisons between our model with STGAT on multimodal predictions. A variety of scenarios are shown: two individuals
walking in parallel (a), two persons merging from the same direction (b), and two persons meeting from different directions (c). For
each case, the solid lines are observed trajectories, the dashed lines are groundtruth, and the color densities are the predicted trajectory
distributions.

the prediction, which is not what we want. Therefore, the
prediction distribution generated by STIRNet is more con-
centrated, which is more efficient.

4.3. Ablation Study

In this section, we verify the effectiveness of our model
through ablation studies. The STIRNet model performs
spatial modeling and temporal modeling via GAT and
LSTM alternately. To verify the validity of this alternate
recursive structure, we compare the proposed model with
two variants. The TRNet represents a simple version of
STIRNet without the GAT-based spatial modeling module.
Moreover, a variant model named SIRNet that the tempo-
ral nodes features are replaced by spatial features which are
acquired from the encoders. As the comparisons listed in
Table 3, STIRNet achieves the best performance on ETH,
HOTEL, and ZARA2 datasets, and the SIRNet performs
best on the rest datasets. Furthermore, STIRNet achieves
the best performance on average of five datasets.

We also verify the effectiveness of latent variable gen-
erator of STIRNet model in this section. In the training
stage, the latent variables of STIRNet model are generated
through a VAE model from the concatenated feature eti⊕H⃗t

i

in Sect. 3.4, and the results are listed in column 3 in Table
4. The comparison of a variant version of STIRNet which
without VAE model is listed in column 1, while the latent
variables are generated from the standard normal distribu-
tion. The model via VAE latent variable generator achieves
better performance on 4 subdatasets. The results show that
using VAE models to generate latent variables is more ef-
fective for the training of multimodal prediction models.

Table 3. Ablation study on the effectiveness of alternate recursive
structure. SRNet means that the model without the GAT module.
SIRNet means that the nodes features in GAT are represented by
spatial features.

Dataset
Models

TRNet SIRNet STIRNet

ETH 0.53 / 1.05 0.50 / 0.99 0.48 / 0.95
HOTEL 0.27 / 0.58 0.25 / 0.47 0.22 / 0.42
UNIV 0.56 / 1.17 0.53 / 1.14 0.54 / 1.15

ZARA1 0.37 / 0.80 0.37 / 0.79 0.37 / 0.80
ZARA2 0.32 / 0.71 0.34 / 0.73 0.31 / 0.70

AVERAGE 0.41 / 0.86 0.40 / 0.82 0.38 / 0.80

Table 4. Ablation study of latent variables generator. N (0, 1)
means that the latent variables are generated from the standard
normal distribution in training stage. N (µ, diag(δ2)) means that
the latent variables are generated from a VAE model which are
adopted in STIRNet.

Dataset
Latent Variable Generator

N (0, 1) N (µ, diag(δ2))

ETH 0.50 / 1.01 0.48 / 0.95
HOTEL 0.23 / 0.44 0.22 / 0.41
UNIV 0.54 / 1.16 0.54 / 1.15

ZARA1 0.35 / 0.75 0.37 / 0.80
ZARA2 0.35 / 0.76 0.31 / 0.70

AVERAGE 0.39/0.82 0.38/0.80
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5. Conclusion
In this work we focus on modeling spatio-temporal in-

teraction and jointly predicting trajectories for all people in
a scene. We propose a novel spatio-temporal interaction-
aware recursive network to predict multimodal socially ac-
ceptable trajectories. The ablation studies prove the validity
of the proposed spatio-temporal modeling with alternative
recursive manner in pedestrian trajectory prediction. The
quantitative and qualitative comparisons also verify the ef-
fectiveness of the proposed model and outperforms other
SOTA methods. Although the proposed STIRNet achieves
the state-of-the-art prediction, the inference speed is far less
than other models. In future work, we will transfer the
proposed spatio-temporal interaction modeling to seq2seq
structured model to improve the inference speed.
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