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Abstract

Pedestrians are the most vulnerable road users and are
at a high risk of fatal accidents. Accurate pedestrian detec-
tion and effectively analyzing their intentions to cross the
road are critical for autonomous vehicles and ADAS solu-
tions to safely navigate public roads. Faster and precise
estimation of pedestrian intention helps in adopting safe
driving behavior. Visual pose and motion are two impor-
tant cues that have been previously employed to determine
pedestrian intention. However, motion patterns can give
erroneous results for short-term video sequences and are
thus prone to mistakes. In this work, we propose an in-
tention prediction network that utilizes pedestrian bound-
ing boxes, pose, bounding box coordinates, and takes ad-
vantage of global context along with the local setting. This
network implicitly learns pedestrians’ motion cues and lo-
cation information to differentiate between a crossing and a
non-crossing pedestrian. We experiment with different com-
binations of input features and propose multiple efficient
models in terms of accuracy and inference speeds. Our
best-performing model shows around 85% accuracy on the
JAAD dataset.

1. Introduction

Globally, more than 364,500 pedestrians lose their lives
each year, which accounts for 27% of the total deaths
in road accidents1. Naturally, pedestrian safety becomes
important for other road users. An essential aspect in
the context of pedestrian safety is pedestrian intention
estimation, especially while crossing the road. Pedestrian
intention estimation refers to determining whether the
pedestrian is going to cross the road in the next few
seconds. Timely and accurate prediction of pedestrian’s
intention is vital in safer maneuvering of autonomous
vehicles, thus avoiding potential accidents.

In the past few years, pedestrian intention estimation

1WHO Global status report on road safety 2018

has attracted significant attention in the computer vision
community. This has been made possible largely because
of the availability of richly annotated pedestrian intention
datasets such as the Daimler dataset[1], Joint Attention for
Autonomous Driving (JAAD)[2, 3], Pedestrian Intention
Estimation (PIE)[4].

Predominantly trajectory-based approaches have been
used to predict pedestrian intentions. Methods like [5], [6]
rely on the past trajectory of the pedestrian to predict their
future locations. Though motion analysis is a key feature
for estimating the future course of the pedestrian, it may be
inconsistent for small changes in the pedestrians’ actions
and are often subject to errors. To overcome this problem,
recent pedestrian intention estimation techniques have
adopted bounding boxes[3, 7, 8], pose[9, 10], semantic
segmentation maps[11, 12] as their input. However, these
techniques focus on specific information and are usually
prone to failures in certain scenarios. To obtain a more
generalized solution that is also robust, there is a need to
utilize information, global as well as local, from various
sources.

In this work, we propose an approach that uses pedes-
trian bounding boxes, pose information, both with global
and local context along with bounding box coordinates
for pedestrian intention prediction. We perform a thor-
ough analysis of our proposed approach. We experiment
with different inputs to determine the best possible input
combination for the task of pedestrian intention prediction
and compare our method with state-of-the-art techniques.
Through experiments, we show that our best performing
model, shown in Figure 1, outperforms other methods on
pedestrian crossing prediction task on the JAAD dataset.
We extend our experiments to evaluate the impact of
observation length on model performance and inference
speed. We further study the behavior of our model during
the beginning of a crossing event to find out any latency in
model prediction.
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Figure 1. The architecture of our best performing model: Here P s(pose having surrounding information) is concatenated with P (pose
having local context only). The concatenated input is fed to a pretrained Resnet-18 3D. The features extracted from the last convolutional
layer of Resnet 3D are then concatenated with the Bounding box coordinates C. This is finally fed to the fully-connected layer to make the
crossing prediction.

We set the key objectives of this work as follows:

1. Predicting the crossing intention as soon as the cross-
ing event begins.

2. Evaluating the significance of different combinations
of pose, bounding box and surrounding information.

3. Discussing the practical aspects of the proposed
method - in terms of accuracy vs computation time.

2. Related Work
Action Prediction: Action recognition has been widely

studied; however, in many scenarios such as autonomous
driving systems, criminal activities, etc., we do not have
the luxury to wait for the action to end. Hence action
prediction becomes a more viable option in such cases.
Ryoo et al. [13] proposed one of the first works in action
prediction that used a bag of words approach. For accident
prediction, Zeng et al. [14] take an agent-centric approach
to anticipate accidents through soft-attention RNNs. [15]
extends accident risk assessment to autonomous driving
by employing a ConvLSTM model on camera images and
driving commands. Apart from accident risk estimation,
several works [16], [17] are focused on understanding the
intent of different agents on the road. Next, we will look
at previous approaches related to the particular topic of
pedestrian crossing intention estimation.

Pedestrian crossing intention estimation: Previous
works in pedestrian crossing intention estimation have
relied on different input features and network architectures.
[3] was one of the first works to report its results on JAAD.

It utilized a single frame of pedestrian and traffic scene
information to predict the crossing intention. However, a
better technique to predict crossing intentions is through
sequence analysis by incorporating multiple frames. [9]
uses 14 frames of pedestrian pose data, which is later fed
to SVM/Random Forests for classification. [7] employs
a spatio-temporal Densenet for classification based on
sequences of pedestrian bounding boxes. Piccoli et al. [10]
follow a similar technique; however, they additionally use
pose features as input. [18] incorporates a Transformer for
classifying pedestrian intentions based on bounding box
features.

Recently feature fusion or feature concatenation has
been explored for pedestrian crossing estimation. [19]
is an early work that uses multiple modalities, including
bounding box, pose, ego-vehicle speed, and then performs
the classification step through stacked RNNs. Yang et al.
[20] use similar features, however, with a Spatio-temporal
attention module in their network architecture. In [21], the
authors utilize a RubiksNet [22] along with a transformer to
extract features followed by a classification network. [11]
incorporates depth maps, semantic segmentation maps, op-
tical flow output, and bounding boxes for feature extraction.

Graph-based approaches are also being adopted to solve
the intention estimation problem. [23] uses 2D human pose
and Graph Convolutional Networks as a solution. [24]
employs a Graph-based network to model interactions be-
tween different agents in the scene such as pedestrians, ego-
vehicle, other vehicles, etc.
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(a) (b) (c) (d)
Figure 2. Inputs: (a) Cropped Bounding Box. (b) Bounding Box
with surrounding information (c) Pose (d) Pose with surrounding
information

.

3. Proposed Approach

We define the problem of pedestrian intention esti-
mation as a binary classification task, the two classes
being crossing (C) and not crossing (NC). The objective
is to determine whether the pedestrian will start crossing
the road at time t when provided with the observations
for some frames n before time t. Formally, given the
sequence of observations X = {x1, x2, ..., xn} before
time t, we want to learn parameters θ to predict the proba-
bility p(y|X, θ) of the pedestrian crossing the road at time t.

We leverage the spatio-temporal information of the
frames to make the predictions. We experiment with dif-
ferent sources of information in our approach. These in-
clude bounding boxes B = {b1, b2, ..., bn}, bounding boxes
with surrounding information Bs = {bs1, bs2, ..., bsn}, pose
P = {p1, p2, ..., pn}, pose with surrounding information
P s = {ps1, ps2, ..., psn} and the bounding box coordinates
C = {c1, c2, ..., cn}.

3.1. Input Information

We now give a detailed explanation of the sources of in-
formation that we experiment with in our approach:

Bounding Boxes: Given the ground truth bounding co-
ordinates, we crop the bounding box around the pedestrian
in a frame (Figure 2(a)) and resize it to 100×100. Bounding
boxes are cheaper to compute and can help in determining
the pedestrian’s gait(walking/standing).

Bounding Boxes with Surrounding Information:
These are obtained by scaling the 2D bounding boxes to 1.5
times their original size. This is shown in Figure 2(b). Apart
from providing knowledge about the pedestrian’s gait, they
also give an idea about the pedestrian’s surroundings such
as curb, road, etc.

Pose: Given the cropped bounding box we use
OpenPose[25] to generate pose. The generated pose is then
superimposed on the pedestrian, Figure 2(c). Pose has been
widely used in the past for action recognition and action
anticipation tasks. Pose information simplifies learning for

Figure 3. Examples of the annotations provided in the dataset. Im-
age from [3]

action recognition by providing head and body orientations.
Pose with Surrounding Information: The cropped

bounding boxes are scaled to 1.5 times their original size
before the pose is superimposed on the pedestrian as shown
in Figure 2(d).

Bounding Box coordinates: Like [19], we believe the
bounding box coordinates give a sense of the relative dis-
placement of the pedestrian and can also be seen as the
pedestrian’s velocity.

3.2. Classification

Owing to the success of 3D-CNNs[26] in video classifi-
cation tasks in the recent past, we use a 3D Resnet-18[27]
pre-trained on Kinetics-400[28] as the classification net-
work in our experiments.

We concatenate the inputs before passing them to our
classification network. Except for the bounding box coor-
dinates, all the other inputs are passed into the first layer
of the network. In experiments where bounding box co-
ordinates are used, they are concatenated with the feature
output of the last convolution layer and then passed to the
fully-connected layer.

4. Experiments and Results
In this section, we describe the dataset we use for our

experiments and report our results.

4.1. Dataset

We use the Joint Attention in Autonomous Driving
(JAAD) Dataset[2, 3] for all our experiments. JAAD dataset
is a dataset for studying pedestrian and driver behavior at
the point of crossing the road. It has a collection of 346
videos each 5-10 seconds long. The videos are recorded
at 30 FPS with a resolution of 1920 x 1080 pixels. Each
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video comes with rich ground truth annotations which in-
clude bounding box annotations, behavioral tags and scene
annotations, shown in Figure 3.

4.2. Training Details

We use a pretrained Resnet3D-18 as the classification
network. A batch size of 16 is used during training and
optimization is done using Adam[29] with a learning rate
of 0.0001. We use the NVIDIA GeForce GTX1080 GPU
to train our networks. All the experiments are performed
using the Pytorch[30] deep learning framework.

4.3. Evaluation Technique

We train on the first 250 videos and evaluate on the re-
maining 96 videos from JAAD. Since most of the previous
works on pedestrian intention estimation utilize 16 frames
of temporal information, therefore for a fair comparison,
even we observe sequences of 0.53 seconds(16 frames) be-
fore making a prediction. In later sections, we also look at
the effect of different observation lengths on intention esti-
mation performance. The prediction horizon in our experi-
ments is the next frame. The train set consists of 93545 such
observations of which 55006 belong to crossing and 38539
belong to not crossing. For the test set, we have 39155 ob-
servations, of which 20041 are crossing and 19114 are not
crossing.

4.4. Comparison of different input combinations

Input No. Inputs Accuracy
B 1 79.8
Bs 1 80.70
P 1 81.14
P s 1 81.85

Bs, C 2 82.54
P s, C 2 83.1
P s, P 2 83.77

P s, P, C 3 84.89
Table 1. Results on JAAD dataset: Comparison of different input
combinations. Different inputs used are: B Bounding Box, Bs

Bounding box having surrounding context, P Pose, P s Pose with
surrounding context, C Bounding box coordinates.

We experiment with various input information in our
approach. The results of experiments involving different
inputs are summarised in Table 1. We observe that increas-
ing the number of modalities of information improves the
results. Using multiple input sources allows the network
to learn discriminative features better than with one single
source.

Using bounding boxes as the only input to the classifica-
tion network proves to be a good baseline for the rest of our

(a) (b) (c) (d)
Figure 4. Results of intention prediction (a) Pedestrian is stand-
ing on the curb (b) The green bounding box around the pedestrian
generated by our network shows that the pedestrian is not cross-
ing the road (c) The pedestrian is intending to cross the road (d)
The red bounding box around the pedestrian signifies the crossing
intention of the pedestrian.

experiments. Next, we see experiments that improve upon
this baseline. Looking at the results we observe that using
bounding boxes with surrounding information improves
the accuracy by 0.9%. In the single input case, pose with
surrounding information gives the best results with an
accuracy of 81.85%.

We also observe that incorporating bounding box
coordinates along with other inputs seems to boost results
drastically. For instance, we see an improvement of 1.84%
in the case where bounding box coordinates are used along
with bounding boxes having surrounding information.
We get the best accuracy of 84.9% , shown in Figure 1,
with a combination of 3 inputs: i) pose with surrounding
information, ii) pose and iii) bounding box coordinates.

4.5. Comparison with prior works

Method Obs. Length Pred. Horizon Acc.
ATGC[3] 1 (0.03s) next frame 63

Fussi-Net[10] 16 (0.533s) next frame 75.6
STIP [24] 30 (1s) next frame 76.98

Ours 16 (0.533s) next frame 84.9
Table 2. Results on JAAD dataset: Comparison with prior works

Table 2 shows the comparison of our approach against
the state of the art methods on the JAAD dataset. For a fair
comparison, we only compare against methods where the
observation endpoint is before the event, and the observa-
tion length is less than 1 second. ATGC[3] uses a single
frame of pedestrian information for intention prediction
and achieves an accuracy of 63%. Fussi-Net[10] uses 16
frames of pose sequence as input and then feeds it to a
Spatio-temporal Densenet[7] for classification. STIP[24]
uses a graph-based network to interact with different ob-
jects in the surrounding and achieves a prediction accuracy
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of 76.98%. From the results, we can see that our approach
is able to outperform other methods on the dataset. This is
mainly because of the multiple input modalities used in our
approach. The output generated by our network is shown
in Figure 4.

For future experiments, we only focus on bounding box
features for inputs as bounding box coordinates have been
provided in JAAD annotations. Since pose key points are
not present in the available annotations, estimating pose
separately from a pre-trained model can be prone to errors
and time-consuming for real-time inferences.

4.6. Effect of Observation lengths on performance

In this section, we indicate the effect of the number of
past frames on crossing intention performance. We show a
comparison between history lengths of 1 frame, 8 frames,
and 16 frames. In Table 3, we consider Bs, C features as
input, and for Table 4, we use B as input features. Both the
experiments show similar trends.

The accuracy of 1 frame experiment is the lowest, as ex-
pected. This is because a single frame is unable to pro-
vide any temporal information, and the prediction is solely
based on the spatial information available from the frame.
A history length of 8 frames performs better than 16 frames
in both our experiments. One possible explanation for this
could be the enhanced performance of 8 frames during the
transition state of the pedestrian. We define transition as the
change of pedestrian’s crossing intention from not cross-
ing (NC) to crossing (C) or vice versa. We suspect that
utilizing a larger number of past frames would delay inten-
tion prediction during transition. To enforce this belief, we
perform quantitative analysis and qualitative analysis com-
paring transition and non-transition accuracies for different
observation lengths. Section 4.7 presents the results of the
aforementioned experiment.

Input Obs. Length Acc. F1 Precision Recall
Bs, C 1 (0.03s) 78.60 79.43 78.09 80.77
Bs, C 8 (0.26s) 84.63 85.08 84.59 85.56
Bs, C 16 (0.53s) 82.54 82.41 80.12 84.71

Table 3. Effect of different observation lengths on performance
using Bs, C features as input

4.7. Transition state analysis

In this section, we discuss the results of different experi-
ments during transition state of the pedestrian. A transition
state is defined as the change of pedestrians’ intention. To
calculate transition accuracy, we compare the predictions of
our models with the ground truths over 16 frames after the

Input Obs. Length Acc. F1 Precision Recall
B 1 (0.03s) 76.40 77.09 76.16 78.02
B 8 (0.26s) 81.05 81.66 83.06 80.27
B 16 (0.53s) 79.8 80.15 80.53 79.77

Table 4. Effect of different observation lengths on performance
using B features as input

Input Obs. Length T-C Accuracy T-NC Accuracy
Bs, C 1 (0.03s) 73.71 45.16
Bs, C 8 (0.26s) 71.46 38.54
Bs, C 16 (0.53s) 61.02 36.93

Table 5. Effect of different observation lengths on Transition ac-
curacies using Bs, C features as input

state change. Let f th frame be the transition frame; then
we calculate the transition accuracy over the frames f + 1,
f +2, f +3 . . . f +16. Table 5 presents our results for the
experiment mentioned above. The term T-C indicates the
behavior change from not crossing to crossing. In compar-
ison, T-NC suggests a change from crossing to not crossing.

During a transition, the temporal information available
to the network consists of frames f , f − 1, f − 2, . . . ,
f − (N − 1). Here N is the number of frames used for
observation. Of all the frames utilized for observation, only
the f th frame belongs to the same class as frame f + 1,
f + 2, . . . . Whereas frame f − 1, f − 2, f − (N − 1)
belong to the opposite class. As N gets larger, the temporal
data has an adverse effect on the prediction accuracy during
transition. We suspect a lower N to show better results
during transition. This is clearly shown in Table 5, where
an observation length of 1 gives the best T-C accuracy as
well as T-NC accuracy. As expected, a history length of 16
gives the lowest numbers. This is because during transition,
a 16 frames sequence consists of a majority of frames of
the other class, which plays an opposing role and results in
wrong predictions.

Qualitative analysis of model performance during transi-
tion has been presented in Figure 5. The first row represents
the ground truth, while the second, third, and fourth row
show the outputs of 1-frame, 8-frame and 16-frame model
respectively. The transition frame in the figure is indicated
by f . The qualitative results present a similar picture as the
quantitative results. The 1-frame model outputs follow the
ground truths during transition, and there is no delay in pre-
diction. However, as we move to the outputs of the 8-frame
model, we observe a delay of 3 frames—the results of the
16-frame model show the highest latency where we see a
lag of 7 frames.
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. . . . . .
f − 1 f f + 1 f + 2 f + 3 f + 7

. . . . . .
f − 1 f f + 1 f + 2 f + 3 f + 7

. . . . . .
f − 1 f f + 1 f + 2 f + 3 f + 7

. . . . . .
f − 1 f f + 1 f + 2 f + 3 f + 7

Figure 5. Qualitative Analysis of model performance during transition: The first row represents the ground truths. The second, third,
and fourth row provide the outputs of 1-frame, 8-frame and 16-frame model respectively. Here f represents the frame when the intention
changes from not-crossing to crossing. The 1-frame model does not show any delay, whereas we observe a delay of 3 frames and 7 frames
in the predictions of the 8-frame and 16-frame models respectively.

4.8. Effect of Sampling

In this section, we briefly discuss the effect of sampling
on the performance of our model. We uniformly sample
frames from a history length of 8 frames and utilize them to
train our model. Hence for a 4 frame history, every alternate
frame is sampled, while for a 2 frame history, every fourth
frame is sampled. The accuracy results, along with the in-
ference speed of the model, is provided in Table 6. Since
there can be multiple pedestrians in a single frame, there-
fore to calculate the inference rate, we measure the pedes-
trians processed by the network in one second. We call this

Input Obs. Length PPS Accuracy
Bs, C 8 (0.26s) 97 84.63
Bs, C 4 (0.13s) 125 84.14
Bs, C 2 (0.06s) 141 82.01

Table 6. Sampling from 8 frames history using Bs, C features

pedestrians per second (PPS).
The results show that the accuracy of the 8 frames model

is the highest. There is a slight decrease in performance
while utilizing a 4 frames model; however, it has a much
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higher PPS of 125 as compared to 97 of the former. The
accuracy of the 2 frames model is around 2% lower and has
a slightly higher PPS than the 4-frame model. The high PPS
and a satisfactory accuracy of the 4 frames model indicate
that it might be an optimal solution for the task of pedestrian
crossing intention which requires accurate as well as quick
predictions.

5. Conclusion

Accurate and early prediction of the intention of a pedes-
trian helps an autonomous vehicle to take safe navigation
steps. This is crucial for the acceptance of autonomous
vehicles and their coexistence with humans on the public
road. The proposed novel method shows that using an im-
plicit pose from the appearance and surrounding informa-
tion is simple, straightforward, requires less computation,
and gives high accuracy of over 84%. Computing the hu-
man pose explicitly and superimposing on the image boosts
the intention detection accuracy further by a small amount.
Our study on the effect of observation length shows that us-
ing the data from a quarter of a second (250msec) is faster
and achieves better accuracy compared to a commonly used
16 frames (530msec) duration or a single frame (33msec).
Our experiments show that 3D Convolution networks can
learn the pose and surrounding information well and can
determine the intention with reliable accuracy.

In future work, pedestrian intention estimation can ben-
efit from using additional information such as ego vehi-
cle speed, map information including pedestrian crossings,
traffic lights, etc.
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