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Abstract

Global human motion forecasting is important in many
fields, which is the combination of global human trajectory
prediction and local human pose prediction. Visual and so-
cial information are often used to boost model performance,
however, they may consume too much computational re-
sources. In this paper, we establish a simple but effective
baseline for single human motion forecasting without vi-
sual and social information, equipped with useful training
tricks. Our method “futuremotion ICCV21” outperforms
existing methods by a large margin on SoMoF benchmark1.
We hope our work provide new ideas for future research.

1. Introduction
Forecasting future human motion plays an important part

in activity understanding, which is fundamental to many ap-
plications, including autonomous driving, human-computer
interaction and public security. Previous work decomposes
this problem to global human trajectory prediction [3, 8, 9]
and local pose sequence prediction [16, 17, 18]. Recently,
Adeli et al. [1, 2] analyze the importance of jointly forecast-
ing human trajectories and pose dynamics, and establish a
new benchmark for further research. They also discuss the
necessity of learning with visual and social information (i.e.
human-human or human-object interactions).

Although image features and social interactions help hu-
man motion prediction, they may consume too much com-
putational resources and pose a great challenge to model
design. Instead, we try to improve the performance with
simple pose sequence on a single person as input. Based
on Graph Convolutional Networks (GCNs) [12], we es-
tablish a simple but effective baseline for single human
motion forecasting in the global scene. Many tricks are
employed for effective training. Our method, named as
“futuremotion ICCV21”, outperforms existing methods
by a large margin on SoMoF benchmark.

1https://somof.stanford.edu/results
This work was done when Chenxi Wang was an intern at Alibaba

Group.

2. Problem Definition

Let xt = (x1t , x
2
t , · · · , xJt ) be the global joint positions

of one person at time t, where xit(i = 1, 2, · · · , J) de-
notes the i-th joint coordinate of the body. Given X1:T =
(x1,x2, · · · ,xT ), i.e., a whole series of single human pose
from the 1st frame to the T -th frame, our goal is to forecast
XT+1:T+τ = (xT+1,xT+2, · · · ,xT+τ ), the global pose
trajectories of the future τ frames.

“Global” human pose trajectories indicate that the poses
at different time share the same coordinate system. Joint
positions can be in both 2D and 3D representations, where
2D joints are in pixel coordinate system and 3D joints are
in world coordinate system.

Note that in our problem, images of input or output
frames are not used for motion prediction. The prediction
can be conducted only on a single person, which means we
do not know other persons’ motion in the same scene.

3. Method

In this section, we will introduce our main method and
the tricks used to improve model performance, which con-
tains backbone modification, data processing and training
strategies.

3.1. Backbone

Following LTD [17], our method utilizes GCNs [12]
combined with Discrete Cosine Transform (DCT), where
the trajectories of a joint across all frames is encoded into
frequency domain. Different from RNN-based method,
the trajectories at all future frames are predicted in one
time. The task is transferred to trajectory completion
of (X1:T ||X̂T+1:T+τ ), where operator || denotes concate-
nation, X̂T+1:T+τ is the trajectory to be completed and
padded using xT in the input.

For (xj1, x
j
2, · · · , x

j
T ), the l-th DCT coefficient Cjl is

computed by

C j
l =

√
2

T

T∑
t=1

xjt√
1 + δl1

cos
π

2T
(2t− 1)(l − 1), (1)
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(a) XYZ as three nodes (b) XYZ as one node

Figure 1. Different node representations in adjacency matrix of
GCN. A 3-joint graph has 9× 9 = 81 edges in the left matrix, but
has only 3× 3 = 9 edges in the right matrix.

where l = 1, 2, · · · , T and

δij =

{
1 if i = j,

0 if i 6= j.
(2)

The sequence (Cj1 , C
j
2 , · · · , C

j
T ) is then considered as the

input feature vector of joint j. GCN takes the features of
all joints as input and output the frequency vector of the
completed trajectory (C̃j1 , C̃

j
2 , · · · , C̃

j
T ). Finally, the future

trajectory is recovered from frequencies using inverse DCT:

x̃jt =

√
2

T

T∑
l=1

C̃jl√
1 + δl1

cos
π

2T
(2t− 1)(l − 1). (3)

Our experiments are conducted on LTD with several
modifications in architecture and input representation.

XYZ as one node. In the original LTD implementation,
different channels of a joint are treated as individual nodes
in the graph, which means there are J×D nodes in a graph,
where D = 2 or 3 is the dimensionality of the joint. Such
representation ignores the association across different chan-
nels and hinders model performance. We instead bound dif-
ferent channels to the same node, and make them share the
same edge weights. In Fig. 1, there is an obvious reduction
in the number of edges of adjacency matrix, which makes
the edge weights easier to converge than before.

Position vs velocity. In LTD, frequency vector is gener-
ated from the joint positions directly, while velocities (posi-
tion difference between neighbour frames) can also be used
as input features. We make a comparison between posi-
tion representation and velocity representation, and decide
to use position representation for 2D task and velocity rep-
resentation for 3D task.

Figure 2. Interpolation of invisible joints. The red line shows the
trajectory of a joint with a few missing frames (in green box). The
blue lines shows the results of binary interpolation.

3.2. Data Processing

Coordinate transform. Human pose trajectories are an-
notated in global coordinate systems (pixel coordinate sys-
tem for 2D dataset and world coordinate system for 3D
dataset). However, centralizing human positions can reduce
coordinate range and boost model performance. Let xjc1 be
the human center at the 1st frame, the global human motions
are centered by

x
j(c)
t = xjt − x

jc
1 (t = 1 to T, j = 1 to J), (4)

where jc denotes the neck joint and J the number of joints
in human pose. Besides, we also scale the joint coordinates
for easier convergence.

Visibility padding. Joint visibility is essential to the
understanding of human-human relationship and human-
object interaction in 2D motion prediction, since the oc-
cluded parts are caused by others from the environment. In-
tuitively, visibility can be predicted with the help of images,
which is not allowed in our problem setting. Instead of pre-
dicting joint visibility using multi-modal input, we make a
strong assumption: the visibility of a joint from frame T +1
to T + τ is the same as the one at frame T (the last frame
of input sequence). Based on this, we directly pad the vis-
ibility with the T -th frame. Let vjt ∈ {0, 1} denote the
visibility of the j-th joint at the t-th frame, we generate the
future visibility v̂jt by

v̂jt = vjT (t = T + 1 to T + τ, j = 1 to J). (5)

While padding strategy is simple to implement, it is effec-
tive and accurate for most scenes, which establishes a strong
baseline for future research.

Interpolation of invisible joints. Some joint coordinates
are padded with zeros when they are invisible in an im-
age, which keeps the consistency of data format. However,
the incoherence in pose trajectories brings more instability
and makes the model hard to converge. To avoid missing
data in pose trajectories, we adopt linear interpolation in
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(a) t1 (b) t2

Figure 3. Joints truncated by image boundary. Compared with
frame t1, the person in the orange box of frame t2 loses half of
the joints because he goes out of the camera sight.

both training and inference (Fig. 2). For a pose sequence
(xjt , x

j
t+1, · · · , x

j
t+m) with xjt+i = 0 (i = 1 to m− 1), co-

ordinates are interpolated by

xj∗t+i =
i

m
× (xjt+m − x

j
t ) + xjt , (6)

where xj∗t+i stands for the interpolated value of joint j at
frame t + i. Although linear interpolation may not be suit-
able for all trajectories, there is still an obvious decrease in
prediction errors.

Boundary filtering. In some 2D scenes, joints become
invisible when a person is out of camera sight (Fig. 3).
Such cases cannot be detected by our models, and brings
unavoidable errors in final inference. Since such cases hap-
pen with an obvious trend, the joint positions output by
our model often cross the image boundary correspondingly.
Based on this, we adopt a boundary filtering strategy in
post-processing, where the visibility of all the predicted 2D
joints out of camera sight are set to 0.

3.3. Training

Data augmentation. Since human motion is a sequence
of body joints, the reversed sequence can also be used in
model training. The input sequence X1:T and label se-
quence XT+1:T+τ are concatenated first, followed by a re-
verse operation. Frame 1 to T in the reversed sequence are
taken as the new input and other frames as the new label.
Fig. 4 is an example of T = 8 input frames (data) and τ = 7
output frames (label). During model training of 3D motion
forecasting, we randomly flip the pose sequence to generate
new data.

Curriculum learning [5]. This approach is employed in
many machine learning tasks, which is to learn model pa-
rameters from easy samples first, and add harder ones step
by step. Since long-term human poses are more difficult to
predict than short-term ones, curriculum learning can also
be used in motion prediction [2]. Here we adopt a sim-
ilar strategy as [2]. As Fig. 5 shows, for a concatenated
sequence (X1:T ||XT+1:T+τ ), we only use frame 1 to T in

Figure 4. An example of sequence reversing with 8-frame input
and 7-frame output.

Figure 5. Curriculum learning for motion forecasting. The frames
are added to loss computation step by step.

loss computation in the firstE training steps, then add frame
T + t to the loss at the (E × t)-th step, where t = 1 to τ .

OHKM loss. In training we firstly use default smooth-l1
as the loss function, while we discover that the loss of some
joints are harder to decrease than other joints. Hence, we
adopt online hard keypoints mining (OHKM) approach [6]
in loss computation, which is to dynamically consider the
joints with top-k losses in training and set the loss of other
joints to 0. This strategy helps the model to concentrate
more on hard samples and effectively reduce prediction er-
rors. We use top-8 joints in PoseTrack dataset and top-6
joints in 3DPW dataset.

Short-term motion optimization. As is proven in previ-
ous research [16, 17], long-term pose trajectory prediction
is harder to model than short-term counterpart. We also dis-
cover that training for long-term motion decreases the per-
formance of short-term predictions, which indicates a trade-
off between them when using only a single model. Instead,
we adopt two models with the same architecture, to predict
the short-term motion and long-term motion respectively, in
which way short-term prediction will not be influenced. In
our experiments, we take the first 4 frames as the short-term
sequence, and make a result fusion in the final inference.

Data extension. The original pose sequences provided by
the dataset are cut from coherent video frames, which in-
spires us to find a way to expand the data. Sequences from
the same video are concatenated to be a long one. We ran-
domly select a frame t0 as the start frame and takes the pose
trajectory (Xt0:t0+T−1||Xt0+T :t0+T+τ−1) as one training
sample, in which way data can be well extended. We also
use AMASS [15] dataset for model pretraining in 3D task.
We notice that there are only a few annotated frames in
PoseTrack dataset, so we adopt Halpe pretrained model in
AlphaPose tracking module [7, 13, 14, 20] to annotate the
rest frames and use them for training in 2D task.
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Method
3DPW (VIM) PoseTrack (VAM)

Average milliseconds Average milliseconds
100 240 500 640 900 80 160 320 400 560

PF-RNN [18] + S-LSTM [3] 172.09 73.82 127.23 179.07 202.78 277.55 127.95 89.44 111.11 136.43 145.72 157.04
PF-RNN [18] + S-GAN [8] 180.29 83.35 138.48 182.84 204.84 291.96 122.99 87.23 106.23 131.12 139.94 150.44
PF-RNN [18] + ST-GAT [9] 158.69 66.95 117.77 165.99 190.52 252.23 121.18 86.76 102.61 127.87 137.87 150.80
Mo-Att [16] + S-LSTM [3] 162.96 64.64 111.67 168.67 202.16 267.65 124.83 86.76 109.02 130.82 142.35 155.21
Mo-Att [16] + S-GAN [8] 166.48 66.36 112.18 166.48 209.53 277.85 121.89 85.82 104.13 128.97 139.07 151.45
Mo-Att [16] + ST-GAT [9] 150.21 62.15 97.74 155.23 184.96 250.98 119.59 86.29 100.92 125.31 137.50 147.92

SC-MPF [1] 123.94 46.28 73.89 130.24 160.84 208.45 117.80 78.36 99.80 124.38 138.52 147.93
TriPOD [2] 83.66 30.27 51.84 85.09 104.79 146.33 72.74 30.00 49.66 80.32 93.32 110.40

Ours 49.40 9.49 22.89 50.94 66.22 97.44 51.76 19.03 32.53 56.23 67.83 83.17
Table 1. Evaluation results on 3DPW and PoseTrack testing sets.

Optimization
3DPW (VIM) PoseTrack (VAM)

Average milliseconds Average milliseconds
100 240 500 640 900 80 160 320 400 560

LTD 69.47 20.05 40.53 78.17 91.30 117.31 100.01 70.18 83.92 105.09 113.80 127.07
Coordinate transform 52.68 15.88 31.50 57.81 68.81 89.43 99.41 69.83 83.40 104.16 112.80 126.87

Visibility Padding — — — — — — 62.11 22.96 41.48 69.18 80.38 96.57
XYZ as one node 51.21 15.40 30.41 56.03 66.88 87.35 61.98 22.41 40.94 69.07 80.59 96.91

Curriculum learning 48.50 14.32 28.14 52.93 63.61 83.49 60.58 21.42 39.52 67.18 78.97 95.82
Velocity input 47.36 13.60 27.53 51.91 62.20 81.54 — — — — — —

Interpolation of invisible joints — — — — — — 59.37 20.88 38.27 65.55 77.36 94.80
Data augmentation 46.48 13.53 27.03 50.65 60.91 80.28 — — — — — —

Data extension 38.86 7.01 18.18 42.59 53.34 73.16 57.18 19.99 36.78 63.15 74.59 91.41
Boundary filtering — — — — — — 55.26 20.10 35.80 60.77 71.62 87.99

OHKM loss 38.78 6.93 18.17 42.54 53.29 72.99 55.20 19.88 36.58 60.69 71.27 87.59
Short-term optimization 38.66 6.57 17.65 42.40 53.35 73.33 60.39 19.54 36.11 69.70 80.83 95.78

Fusion 38.58 6.57 17.65 42.40 53.29 72.99 55.04 19.54 36.11 60.69 71.27 87.59
Table 2. Model improvements with cumulative optimizations on 3DPW and PoseTrack validation sets. “—” indicates skipping this step.

4. Experiments
In this section, we first detail our experimental settings,

followed by the comparison between our method and other
representative methods. Then we explore the model perfor-
mance with different parameters. Finally, the optimization
steps across the whole process are listed in detail.

4.1. Experimental Settings

Implementation details. We use the same GCN architec-
ture with LTD [17], with 30-d DCT matrix, 12 GCN blocks
and 256-d hidden features. All the models are trained for 50
epochs with Adam [11] optimizer, where the initial learning
rate is set to 0.001, and multiplied by 0.95 every one epoch.
For curriculum learning, we add one frame to the loss every
two epochs.

Datasets. For 2D motion forecasting, we use Pose-
Track [4] for training and evaluation, which is widely used
in research on pose estimation and pose tracking, and con-
tains both pose sequences and joint visibility annotations.
For 3D motion forecasting, we use 3DPW [19] dataset,
which contains a large amount of accurate 3D poses in 60
scenes. Besides, we also use AMASS [15] dataset for pre-
training in 3D task, which is a large database of various
human motions. Following [2], we use T = 16 and τ = 14
in both 2D and 3D tasks.

Evaluation metrics. Following [2], we use Visibility-
Ignored Metric (VIM) for 3D motion forecasting and
Visibility-Aware Metric (VAM) for 2D motion forecasting
in evaluation. VIM aims to compute the position error
only on visible joints, and invisible joints are not penalized.
Since 3DPW has no invisible joints, VIM becomes similar
to MPJPE [10] metric. VAM computes joint position er-
ror when visibility prediction is correct, otherwise a penalty
item β will be added to the error. In evaluation, VIM is
scaled from meters to centimeters and β = 200 in VAM
calculation.

4.2. Main Results

Our method is compared with two lines of representa-
tive methods shown on SoMoF leaderboard. The first line
is the combination of global human trajectory prediction (S-
LSTM [3], S-GAN [8] and ST-GAT [9]) and local pose dy-
namic prediction (PF-RNN [18] and Mo-Att [16]), and the
other line adopts direct prediction for global human pose
sequence.

The results of these approaches on 3DPW and PoseTrack
are detailed in Tab. 1, where VIM and VAM are computed at
different frames. Our method outperforms all the previous
ones across both short-term and long-term predictions by a
large margin, which proves the effectiveness of this simple
baseline model.
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Parameters 3DPW (VIM) Parameters PoseTrack (VAM)
Scale #Block #Channel Average Scale #Block #Channel Average
10 12 256 39.24 0.5 12 256 55.30
50 12 256 38.90 1 12 256 55.20

100 12 256 38.78 5 12 256 55.29
100 8 256 39.13 1 8 256 55.43
100 12 256 38.78 1 12 256 55.20
100 16 256 38.97 1 16 256 55.26
100 12 128 39.59 1 12 128 55.75
100 12 256 38.78 1 12 256 55.20
100 12 512 38.82 1 12 512 55.34

Table 3. Evaluation of models with different parameters on 3DPW and PoseTrack validation sets.

Figure 6. Visualization of results on 3DPW dataset. Poses are sampled every two frames from frame 1 to frame T + τ . The gray poses
indicate the input motion, and the blue ones and red ones stand for predictions and ground truth respectively.

Figure 7. Visualization of results on PoseTrack dataset. We visualize the predictions (green) and ground truth (red) at frame 4, 10 and 14
of the output sequences. (c) and (d) show the results in scenes with occlusion and camera shake respectively. Note that the images are only
used for clearer display, but not used in our training and inference.

Fig. 6 and 7 visualize the results on 3DPW and Pose-
Track respectively, which indicates long-term motions are
usually harder to predict than short-term motions. We can
also find that occlusion and camera shake make 2D motion
forecasting more difficult.

4.3. Step-by-step Optimization
Tab. 2 records our attempts to improve model perfor-

mance in the whole process. During exploration, we found
that the improvements on PoseTrack are less obvious com-
pared with 3DPW. On the one hand, 2D coordinates and 3D
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counterparts do not follow the same translation rules due to
the difference of coordinate systems. On the other hand,
the manual annotations in PoseTrack may be imprecise and
decrease the effectiveness of these tricks.

4.4. Model Parameters

We change the coordinate scale, number of GCN blocks
and number of hidden layer channels and make a compar-
ison on 3DPW and PoseTrack validation sets. The results
are demonstrated in Tab. 3. We choose the parameters with
the minimum validation errors as the main training setting,
and other models are used in the final result fusion.

5. Conclusion

We establish a simple but effective baseline for single hu-
man motion forecasting without visual and social informa-
tion. Practical tricks are applied to reduce prediction error.
Experiments demonstrate the effectiveness of our method
and optimization strategies. Our method significantly sur-
passes existing methods on SoMoF benchmark. We hope
our work provide more inspirations for future research on
both single and social human motion forecasting.
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