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Abstract

In this paper, we propose Attention Based Decomposi-
tion Network (ABD-Net), for point cloud decomposition into
basic geometric shapes namely, plane, sphere, cone and
cylinder. We show improved performance of 3D object clas-
sification using attention features based on primitive shapes
in point clouds. Point clouds, being the simple and compact
representation of 3D objects have gained increasing popu-
larity. They demand robust methods for feature extraction
due to unorderness in point sets. In ABD-Net the proposed
Local Proximity Encapsulator captures the local geometric
variations along with spatial encoding around each point
from the input point sets. The encapsulated local features
are further passed to proposed Attention Feature Encoder
to learn basic shapes in point cloud. Attention Feature En-
coder models geometric relationship between the neighbor-
hoods of all the points resulting in capturing global point
cloud information. We demonstrate the results of our pro-
posed ABD-Net on ANSI mechanical component and Mod-
elNet40 datasets. We also demonstrate the effectiveness of
ABD-Net over the acquired attention features by improving
the performance of 3D object classification on ModelNet40
benchmark dataset and compare them with state-of-the-art
techniques.

1. Introduction

In recent days 3D point cloud is making its ground in
every field like, CAD modeling, 3D printing, AR/VR enter-
tainment and self driving cars. There is a need for methods
to analyze, process and derive this huge volume of 3D point
clouds efficiently. A basic capability of human visual sys-
tem is to derive relevant structures and their relation from
3D objects. Unlike human vision, supervising a machine to
derive such geometrical information is a challenging task.
However, representing a 3D object with a set of basic geo-
metric parts simplifies its geometric surface. This simpler

Figure 1. Overview of Attention Based Decomposer (ABD-Net)
where basic shape features are used for 3D object classification.
Point color indicates the shape to which it belong. [Black for Pla-
nar, Blue for Spherical and Green for Cylindrical].

representation of a 3D object is vital for better shape under-
standing, shape information processing and shape analysis
tasks.

Unlike images, which have a defined regular grid, 3D
point clouds are irregular and unordered, restricting the di-
rect use of standard and powerful convolution techniques.
Some point set processing approaches transform 3D points
to voxel grid representations [15], [27] or image projections
[18], [23]. However, this transformation leads to loss of in-
formation and also suffers from high processing complex-
ity. To address these issues, considerable amount of work
has been done on point based methods that directly act on
3D points. The main idea is to process each point indi-
vidually using many filters of unit size, and sharing these
filters amongst all points capturing point set features [17],
[19]. However, these approaches use down-sampling step
for defining local neighborhood, which causes costly point
correspondence search during interpolation. However, if the
task demands to estimate point features for all the original
number of points, down-sampling might hinder the feature
representation of the 3D object.

To address the issue of lack of surfacial information in
3D point clouds, some works try to decompose a 3D point
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cloud into meaningful parts and try to infer a topological
graph by modeling relations between these parts [16]. How-
ever, this decomposition is highly dependent on the percep-
tual points selected. While some approaches try to recon-
struct a parametric form of the input point clouds, consider-
ing fixed geometric shapes [12], [22]. This task of fitting ba-
sic geometric shapes suffers from high computational com-
plexity.

In this work, we tackle the problem of missing surfa-
cial information by representing the inherent geometry of
3D point cloud using 4 basic shapes namely, plane, sphere,
cone and cylinder. We perform decomposition by assigning
per-point labels from one of the four shapes, making it a
simpler problem than basic shape fitting. Towards this, an
essential factor is, learning the local topological informa-
tion of the point sets as we want to represent a 3D object
at its lowest geometric abstraction. To address this, we pro-
pose Local Proximity Encapsulator, a permutation invariant
module, which encapsulates both local geometric variation
and spatial encoding around each point. Here, to overcome
the limitation of costly point correspondence search, we use
k-nearest neighbors around each point to define the local
neighborhood. However, learning only these local topolog-
ical information is not sufficient. The relationship between
local neighborhood should not be overlooked, as they are
not independent, but represent a whole 3D object. This
problem is similar to that of in Natural Language Process-
ing (NLP) where in, relationship between words is to be
modeled [25], [26], [3], [4]. We propose Attention Fea-
ture Encoder, to model relationships between neighborhood
and capture the underlying shape of the whole 3D object.
We use these two modules to train a 3D object decomposer
which is vital for any shape understanding and shape anal-
ysis tasks. We show improved 3D object classification per-
formance by using ABD-Net as a pre-processing step and
provide extensive study.

To summarize, the main contributions of our work are as
follows:

• We propose ABD-Net that captures the inherent geom-
etry of a 3D point cloud and represents it using basic
shapes namely, plane, sphere, cone and cylinder help-
ing various 3D analysis tasks. Towards this:

– We propose Local Proximity Encapsulator (LPE)
to capture local geometry with spatial encoding
around each point, thus incorporating local at-
tention.

– We propose Attention Feature Encoder (AFE) to
learn basic shapes in point cloud by modeling ge-
ometric relationship between the neighborhood
of all the points, and call this as global attention
which is based on basic shapes.

• We train ABD-Net to learn basic shape features us-
ing ANSI mechanical components dataset, which has
shape labels assigned to each point in a point cloud.
We use these features on a different dataset for a dif-
ferent task, specifically 3D classification.

– We evaluate the performance of proposed ABD-
Net for decomposition task on ANSI mechani-
cal components dataset achieving an accuracy of
99.3%.

– We test the proposed ABD-Net on ModelNet40
dataset and demonstrate the performance of point
cloud decomposition.

• We show effectiveness of the ABD-Net by showing
improved classification performance of a 3D classifier
having 3 times less trainable parameters than state-of-
the-art and achieve comparable results.

• We provide exhaustive evaluation and ablation study
to demonstrate the effectiveness of ABD-Net for both,
decomposition and classification.

2. Related works
In this section we discuss methods related to 3D point

cloud decomposition. We classify 3D point cloud decom-
position methods into two classes, namely classical feature
learning and deep feature learning methods.

Classical feature learning. Previous works in computer
vision for shape decomposition and basic shape detection
were performed using RANSAC [5] and its variants [24],
[14], [2]. [20], tries to decompose a point cloud by con-
sidering it as a problem of basic shape fitting. [13] im-
proves on this by optimizing on extracted shapes, based on
their relations. However, weakness of RANSAC based ap-
proaches are that, the manual parameter tuning is labour-
intensive. This demands for careful supervision and makes
it non-scable for larger datasets. Another traditional way is
to extract hand-crafted features [8], where the authors pro-
pose a novel set of hand-crafted features namely metric ten-
sors and christoffel symbols. These features are further used
for decomposition using SVM as point classifier. They also
show applications of basic shape representation on 3D ob-
ject super resolution [7], 3D inpainting [6], 3D object cat-
egorization [8] and 3D object hole filling [21]. We think
that performance of this method may be constrained over
the representational power of the features defined.

Deep feature learning. Recent advances in deep learning
have eliminated the need of hand-crafted features. Many
works use deep learning models to extract feature represen-
tation of point cloud. [16] propose a boundary-based fea-
ture extractor, with curvature-based and variation of normal
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Figure 2. Proposed ABD-Net architecture for 3D point cloud decomposition.

vector constraints, to decompose 3D object into meaningful
parts based on perceptual points. Later using this part in-
formation, they construct a semantic graph giving explicit
shape information. However, this decomposition is highly
dependent on the perceptual points selected by the algo-
rithm. [9] propose to extract curve skeletons with a idea that
these can lead to point cloud decomposition. They estimate
point normals and local-adaptive thresholds to detect all the
possible candidate parts of a point cloud. Then skeleton rep-
resentations of all optimal parts are predicted followed by
linking part skeletons. SPFN [12] and ParSeNet [22] pro-
pose methods for basic shape fitting to point clouds. [12]
proposes a supervised method by first predicting per-point
segment labels, shape types and normals, and then uses a
differentiable module to estimate shape parameters. With
this [22] also include B-spline patch as a basic shape and
propose a differentiable spline-fitting network.

3. Attention Based Decomposition Network
In this section, we discuss the proposed Attention Based

Decomposition Network (ABD-Net) for 3D point cloud de-
composition as shown in Figure 2. The goal is to repre-
sent the inherent geometry of a 3D point cloud using a set
of geometric features revealing surfacial information using
basic shapes. This is achieved through two modules namely
Local Proximity Encapsulator (LPE) and Attention Feature
Encoder (AFE) to extract local and global features using
attention based on basic shapes. The first module of our
architecture is LPE whose goal is to extract representation
for each point using features of its neighborhood. Next, the

AFE learns basic shapes in a point cloud by estimating at-
tention point features which provides global point cloud in-
formation. The learnt attention features are discriminative
and can be used for many 3D analysis tasks like 3D classi-
fication, hole-filing, upsampling and inpainting. ABD-Net
can process input point clouds of various densities.

Consider 3D objects represented as point clouds. Let O
be the set of M point clouds O = {Pm}, 1 ≤ m ≤ M . Let
each point cloud Pm contain Nm number of points defined
by 3D space point in x, y and z direction, Pm = {pi}, 1 ≤
i ≤ Nm, where pi ∈ R3.

For our work, we formulate mapping of uniformization
theorem [1] as a function of point clouds. To capture the
shape information of a 3D point cloud in terms of basic
shapes, we propose a function defined as f : O → Ψ.
Here Ψ is set of the same M point clouds with a param-
eter for basic shape added to each pi in the set of 3D objects
Ψ = {P ′

m}, 1 ≤ m ≤ M and P
′

m = {p′

i}, 1 ≤ i ≤ Nm,
where p

′

i ∈ R4. The extra dimension in p
′

i is the decom-
position parameter l indicating the basic shape to which the
point pi belongs to. Here, l takes value 1 for plane, 2 for
sphere, 3 for cylinder and 4 for cone. We redefine Ψ as, set
of point clouds containing 4 sub sets, 1st being planar which
contains all the planar points from M point clouds, simi-
larly, 2nd, 3rd and 4th for spherical, cylindrical and coni-
cal shapes Ψ = {Ψl}, where 1 ≤ l ≤ 4. Example, Ψ1

is set of pi with label 1 corresponding to planar points of
all M objects. Similarly for Ψ2, Ψ3 and Ψ4 corresponding
to spherical, cylindrical and conical points of all M point
clouds respectively.
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The input to our model is a point cloud Pm = {pi}.
The proposed architecture works for pi ∈ R3 or pi ∈ R6,
by considering normals in addition to X , Y , Z coordinates.
For each point cloud the surface information is vital in cap-
turing the geometry which depends on both local as well as
global variations. The local and and global geometric vari-
ations are captured by LPE and AFE using basic shapes as
attention features. The proposed modules LPE and AFE are
explained in detail in the following sections.

3.1. Local Proximity Encapsulator (LPE)

The first module shown in Figure 2, extracts representa-
tion of each point considering features of its neighborhood,
capturing fine grain details of local point sets. LPE defines
patches on point cloud and processes each patch individu-
ally extracting local geometric information along with spa-
tial encoding, thus incorporating local attention. The mod-
ule consists of convolution layers (shared MLPs) and aver-
age pooling layer. The average pooling layer is a symmet-
ric function [17] used to aggregate features along a set of
points. Similar to convolution operations in 2D images that
capture spatial variations, these shared weights capture the
spatial encoding in 3D point clouds.

LPE initially transforms the points to higher dimen-
sional space using shared MLPs learning spatial encoding
of each point pi by adding C dimensional features. As each
point is represented with C dimensional features, we call it
(N × C). To account for local geometric information, k-
nearest neighbors around each point pi in Euclidean space
R3 are considered giving (N × K × 3). The number of
points required to define the neighborhood vary according
to the density of the point cloud. The neighborhood inter-
action of each point pi is defined with neighborhood Ni in
the local coordinate system of pi as pij = pij − pi. The
neighborhood information from R3 is transferred to higher
dimensional feature space for defining neighborhood points
in RC , giving (N×K×C). To encapsulate these spatial en-
coding and local geometric information, LPE concatenates
local coordinates from R3 and their corresponding feature
points in RC giving (N × K × (C + 3)). Each point is
further processed using set of shared MLPs, where shared
MLPs act as the local feature learners. In order to deal with
unordered nature of points in the neighborhood, LPE uses
symmetric average pooling function to aggregate the fea-
tures of the neighborhood.

We set C = 64 and K = 32 and C‘ = 512. After each
convolution layer we use batch normalization to reduce the
covariance shift and use rectified linear unit (ReLU) activa-
tion function to add non-linearity to the network for con-
trolling the vanishing gradient problem. After the local
geometry with spatial encoding around each point is cap-
tured, AFE extracts basic shapes in point cloud and provides
global features.

3.2. Attention Feature Encoder (AFE)

AFE models geometric relationship between the local
neighborhood of all the points incorporating global atten-
tion as shown in Figure 2. This module takes in the lo-
cal neighborhood information provided by LPE, and ex-
tracts global features of point cloud Pm which are attention
features. The attention mechanism used here is known as
”Scaled Dot-Product Attention” given by: [25]

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q, K and V are queries, keys and values matrices and
dk is dimension of keys. Here, Q, K and V are abstractions
of the input in transformed space. The query matrix repre-
sents the target input point which is to be processed, key ma-
trix represents key features of the input and value matrix is a
representation of the input. Attention mechanism has been
first proposed and widely used in NLP tasks [25] to give im-
portance to selected words depending on the language con-
text. Here, we aim to bring attention mechanism in point
clouds to model relationship between the neighborhoods of
all the points resulting in capturing global point cloud infor-
mation. The attention features are extracted based on basic
shapes in a point cloud. The idea is whenever we are re-
quired to calculate the attention of a target point with respect
to the input points, we should use the query of the target and
the key of the input to calculate a score. The score is then
multiplied with the value matrix to keep intact the values
of the points we want to focus on, and diminish irrelevant
points. The attention mechanism is performed in different
representational sub-spaces, each sub-space is referred as
head. AFE consists of two sub-layers. The first is a multi-
headed attention layer and the second is a fully connected
feed-forward network. Attention mechanism is used to find
the set of points that should influence the target encoding
of the query point. AFE is equipped with multiple atten-
tion mechanism (termed as head: h) to directly model geo-
metric relationships between all the points in a point cloud
in different representational sub-spaces, regardless of their
respective position.

AFE first embeds the local features provided by LPE in 3
different spaces to get respective query, key and value ma-
trices using 3 independent linear layers. These linear lay-
ers learn the transformation from the local feature space to
Q, K, V spaces. The dot-product of query and key ma-
trices are passed to softmax function to generate attention
weights which are further multiplied with value matirx to
get attention features. The following process is performed
parallelly across multiple heads dealing with different rep-
resentational sub-spaces. The multi-headed attention fea-
tures are then refined by a set of fully connected layers to
output global attention features. The attention features cap-
tures the inherent geometry of a 3D point cloud and rep-
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Figure 3. ABD-Net + 3D Classifier.

resents it using basic shapes namely, plane, sphere, cone
and cylinder which is vital for 3D shape analysis. There-
fore attention features can be used as geometrical features
for the various 3D analysis task like 3D classification, 3D
hole-filling and 3D upsampling.

We use 3 Attention Feature Encoders connected consec-
utively in our model architecture. In each AFE, we set
h = 4. After each fully connected layer in our network, we
use batch normalization and Rectified Linear Unit (ReLU)
activation function. LPE and AFE together capture local
and global geometric variations using basic shapes as atten-
tion features. The attention features can be used for classi-
fication of 3D objects.

4. 3D classification
The ABD-Net is trained only on ANSI mechanical com-

ponents dataset which has 3D point clouds with basic shape
label assigned to each point. ABD-Net learns attention
features based on basic shapes present in 3D point clouds
of ANSI mechanical components dataset. Representing a
point cloud with basic shapes can improve the performance
of 3D classification. The classification of 3D objects is
carried out on ModelNet40 dataset with the attention fea-
tures acquired by pre-trained ABD-Net as shown in Figure
3. Similar to transfer learning, the weights of ABD-Net are
freezed while training the 3D classifier. A set of 4 shared
MLPs are used to classify 3D objects based on their atten-
tion features. To each MLP in the 3D classifier we addition-
ally provide the point coordinate information of the input
point cloud.

5. Experimental details
In this section we discuss about the dataset used for train-

ing our ABD-Net and 3D object classifier, with their imple-
mentation details while training.

5.1. Datasets

We use American National Standards Institute mechani-
cal component dataset, provided by Traceparts [10] to train

our ABD-Net. It includes 3D models of mechanical tools
such as nuts, bolts with basic shape labels, as shown in Fig-
ure 4. We use a train/test split of 12984/3172 respectively.
The categories are different in both sets, making training
and testing sets disjoint. Each object has 8096 points, with
their coordinates and normals. The associated groud truth
basic shape labels for each object in the dataset is provided
by Traceparts. As data preparation procedure, we uniformly
sample 1024 points from each point cloud with the associ-
ated normal vectors. We keep normal vectors as optional
additional feature for training ABD-Net. We exclude the
point clouds from train and test set, having more than 90%
planar shape category to prevent dataset skewness towards
planar shape.

We use ModelNet40 [27] dataset to train a 3D classifier
with pre-trained ABD-Net as a pre-processing unit. Mod-
elNet40 consists of 12, 311 CAD models with a total of 40
categories, where 9, 843 objects are used for training and
2, 468 for testing. As data preparation procedure, we uni-
formly sample 1024 points from each CAD model with the
normal vectors from the object meshes. We keep normal
vectors as optional additional feature for training 3D object
classification.

5.2. Implementation details

During training both decomposer and classifier, we aug-
ment the networks input by random rotation, scaling. In
addition to these augmentation we also use random points
dropout for classifier training. We train our decomposer net-
work for 50 epochs and classifier network for 200 epochs.
For training, we use Adam optimizer [11] with batch size
16 and learning rate 0.001 with learning rate decay of 0.5.
We train our decomposer ABD-Net on NVIDIA Corpo-
ration GV100GL [Quadro GV100] 230 Volta GPU with
32GiB memory and classifier on NVIDIA GeForce RTX
3090 ICHILL X4 GPU with 24GiB memory. Both the net-
works are implemented in PyTorch framework.

6. Results and discussions

In this section, we show the results of proposed ABD-
Net architecture using ANSI mechanical components and
ModelNet40 dataset. We also compare the results of 3D ob-
ject classification with state-of-the-art techniques and show
comparable results.

6.1. Shape decomposition

We show decomposition results on ANSI mechanical
components dataset in Figure 4 and on ModelNet40 dataset
in Figure 5. Our proposed ABD-Net achieves an overall ac-
curacy of 99.3% for basic shape decomposition on ANSI
test set. In Figure 4, we can see that there is clear demarca-
tion at the edges of all objects, demonstrating the ability of
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Figure 4. Visualization of results of basic shape decomposition using our proposed ABD-Net architecture on ANSI mechanical components
dataset. The top row shows the original point clouds, the middle row shows the ground-truth point cloud decomposition, and the bottom
row shows the decomposition result of our architecture. The points in black represents planar shape, the points in blue represents spherical
shape, the points in green represents cylindrical shape and points in magenta represents conical shape.

Figure 5. Visualization of results of basic shape decomposition using our pre-trained ABD-Net on ModelNet40 dataset. The top row shows
the original point clouds and the bottom row shows the decomposition result of our architecture. The color coding of decomposition remains
the same as that of results shown in the Figure 4. Even though ABD-Net is trained on ANSI dataset, these results show generalizability for
decomposition on completely diverse set of objects from ModelNet40.

our model to predict inherent shape of the model by look-
ing at its surface. For objects from ModelNet40 as shown in
Figure 5, the transition between basic shapes is smooth, thus
increasing the difficulty of decomposition. We can observe
that, our model retains its decomposition performance even
when the surface complexity of the objects increases. Also,
the object shapes are totally diverse as compared to the ob-
ject on which our ABD-Net is trained on, showing general-
izability for decomposition. We provide ablation study for
shape decomposition in Section (6.3).

6.2. Shape classification

We use a 3D classifier with 4 shared MLPs followed
by a max-pooling layer, with a pre-trained ABD-Net for
point cloud decomposition as a pre-processing step. The
trainable weights of pre-trained ABD-Net are freezed while

training this classifier. We compare the performance of
the classifier with and without the decomposition method,
demonstrating the effectiveness of ABD-Net. Table 1 shows
improved classification performance using our pre-prained
ABD-Net as a plug-in network before 3D classifier. We can
observe, that the classification accuracy of 3D classifier in-
crease from 92.1% to 92.8% by incorporating ABD-Net as
a pre-processor. This shows that, the shape decomposition
features are well exploited by the 3D classifier increasing
the classification performance. This also implies, that the
basic shape representation of a point cloud is well suited for
better 3D visual analysis tasks.

The quantitative comparisons with the state-of-the-art
techniques is shown in Table 1. Our proposed classifier
achieves improved results over many techniques. Point
transformer [28] based classifiers are current state-of-the-
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Table 1. Results of 3D object classification of ModelNet40 bench-
mark dataset and comparison with state-of-the-art techniques with
1024 point cloud density (nor: normal).

Method input #params acc.
PointNet xyz 3.50M 89.2
PointNet++ xyz 1.48M 90.7
KCNet xyz - 91.0
MRTNet xyz - 91.2
Spec-GCN xyz - 91.5
Spec-GCN xyz, nor - 91.8
∗ 3D Classifier xyz, nor 500K 92.1
DGCNN xyz - 92.2
PCNN xyz 8.20M 92.3
PointWeb xyz - 92.3
∗ ABD-Net+3D classifier xyz 500K 92.2
PointConv xyz, nor - 92.5
Point Transformer xyz, nor 13.5M 92.8
∗ ABD-Net+3D classifier xyz, nor 500K 92.8
RSCNN xyz 1.41M 92.9
PCT xyz 2.88M 93.2
Point Transformer xyz - 93.7

art techniques that directly work on raw point cloud. How-
ever, the number of trainable parameters in these methods
are quite high. The 3D classifier achieves 92.8% overall
classification accuracy on ModelNet40 dataset with 500K
trainable parameters, which is 3 times less than the other
methods.

6.3. Ablation study

6.3.1 Robustness test for shape decomposition

To test the robustness of our proposed ABD-Net for point
cloud decomposition, we perform point density variation
and point perturbation test as a part of ablation study.

Figure 6. Visualization of results of basic shape decomposition us-
ing proposed ABD-Net on a sample point cloud from ANSI dataset
with varying point density. The color coding of decomposition re-
mains the same as that of results shown in the Figure 4.

Affect of density. We sample 128, 256, 512, 1024, 2048,
4096 and 8096 as shown in Figure 6, and demonstrate
robust decomposition by ABD-Net for varying sampling
density. We observe that as point density increases the
spread of neighboring points over the surface starts de-
creasing, making the defined local patches too small to
capture local geometrical information. To handle this, a

Figure 7. Decomposition
analysis of ABD-Net for
varying point density on sam-
ple point cloud from ANSI
dataset shown in Figure 6.

Figure 8. Decomposition
analysis of ABD-Net for
various degrees of point
perturbation on sample point
cloud from ANSI dataset
shown in Figure 9.

simple way is to increase the number of points defining
a neighborhood as the density of points in a point cloud
increases. We use k as 4, 8, 16, 32, 64, 96 and 128 for
point clouds with 128, 256, 512, 1024, 2048, 4096 and
8096 points. Figure 7, shows the instance decomposition
accuracy of our proposed ABD-Net on a sample from
ANSI dataset shown in Figure 6. We can observe that
decomposition accuracy is 100% when number of points
is 1024. It also maintains good performance for 8096,
4096, 2048, 512 and 256 point densities. However, we
observe a 23.8% drop in decomposition accuracy with point
density as 128. This is observed because, with increase in
sparsity of the point clouds, there is proportional increase
in difficulty for surface prediction and thus, increasing the
difficulty for basic shape decomposition. Even though our
ABD-Net is trained on 1024 points, it manages to keep
up its performance with varying densities exhibiting its
density-invariant property.

Figure 9. Visualization of results of basic shape decomposition us-
ing proposed ABD-Net on a sample point cloud from ANSI dataset
with various degrees of point perturbations.

Point perturbation. We also show decomposition perfor-
mance of our proposed ABD-Net with input point pertur-
bations. Gaussian noise is randomly added to each point
independently as shown in Figure 9, with standard devia-
tion of noise being 0.0, 0.02, 0.03, 0.04 respectively. Fig-
ure 8, shows quantitative analysis of decomposition accu-
racy with addition of noise to input point cloud having 1024
points. Our ABD-Net achieves an decomposition accuracy
of about 91% even when the point clouds are distorted with
severe noise with a standard deviation of 0.05. Similar to
point cloud sparsity, with increase in point cloud distortion,
there is proportional increase in surface prediction making
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Figure 10. Visualization of the attention weights extracted by four
heads, from the third AFE module. The star represents the query
point for which attention is computed.

the task of basic shape decomposition difficult. These re-
sults indicate that our proposed ABD-Net is robust to point
distortions, thus exhibiting its noise-invariant property.

Figure 11. Comparison of
density variation test between
3D classifier and ABD-Net +
3D classifier.

Figure 12. Comparison of
point perturbation test be-
tween 3D classifier and ABD-
Net + 3D classifier.

6.3.2 Attention visualization

In Figure 10, we visualize the attention weights given by
our attention mechanism in AFE for a target (query) point.
We call these attention as the importance score given by
the our model to all the points. The query point embed-
ding is computed by considering each point, in accordance
with its importance. We show the top 100 points selected
for the query point, extracted by each head from the third
AFE module. Figure 10 shows a sample 3D point cloud
from ANSI dataset and its corresponding basic shape de-
composition with 100% instance accuracy, followed by the
visualization of attention points from each head. We can
observe that each head models different kind of importance
relationship. The head 1 is trying to capture points hav-
ing planar property, where as head 2 is trying to capture an
overall geometry by relating points from each basic shape.
The head 3 refines the planar points captured by head 2. At
last head 4 captures points having conical property. In this
way all the head combinedly capture the whole point cloud
shape information, thus incorporating global attention.

6.3.3 Robustness test for shape classification

We demonstrate the robust performance of our proposed
architecture ABD-Net by showing the classification accu-
racy on variation in input point clouds.
Point density variation. In Figure 11, we show an
analysis of point density variation. It shows instance
classification confidence of 3D classifier and 3D classifier
with a pre-trained ABD-Net as pre-processor (ABD-Net

+ 3D classifier). This experiment is done on a random
sample 3D point cloud from airplane class in ModelNet40
dataset. We sample 8096, 4096, 2048, 1024, 512, 256 and
128 points and show performance of both the classifiers.
We can observe that, the classification confidence remains
constant of ABD-Net + 3D classifier, where as 3D classifier
alone struggles with varying point densities. This implies
that the basic shape representation of the point cloud
acquired by ABD-Net is better for classification task. Also,
the extracted significant features are not affected by point
point density, which helps for better classification.
Point perturbation. In Figure 12, we show an analysis
of point perturbation. It shows instance classification con-
fidence of 3D classifier and 3D classifier with a pre-trained
ABD-Net as pre-processor (ABD-Net + 3D classifier). We
use the same point cloud which was used for the density
variation test. Gaussian noise is randomly added to each
point independently, with standard deviation of noise vary-
ing from 0.01 to 1.0. We can observe that even with severe
point cloud distortion with a noise having standard devia-
tion of 1.0, ABD-Net + 3D classifier performs exceedingly
well than that of 3D classifier alone. The 3D classifier starts
to struggle when standard deviation of noise approaches to
0.06, where as ABD-Net + 3D classifier maintains its confi-
dence score above 94% at all noise levels. This implies that
the basic shape representation of the point cloud acquired
by ABD-Net is in-variant to noise which improves the clas-
sifier performance to a large extent.

7. Conclusion
In this paper, we have proposed ABD-Net, a deep archi-

tecture that captures the inherent geometry of a 3D point
cloud and represents it using basic shapes namely, plane,
sphere, cone and cylinder. The proposed model contains
LPE to capture local geometry with spatial encoding around
each point. Next, AFE models geometric relationship be-
tween the neighborhoods of all the points resulting in cap-
turing global point cloud information. We demonstrated
the results of the proposed ABD-Net on ANSI mechani-
cal components dataset and ModelNet40 dataset. Further,
we have also shown that the basic shape representation ac-
quired by ABD-Net is better for 3D classification task. We
have demonstrated improved classification results of using
attention features acquired by proposed ABD-Net and com-
pared with other classification methods.
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