Supplementary Materials for MRGAN: Multi-Rooted 3D Shape Representation
Learning with Unsupervised Part Disentanglement

A. Additional results

In Figure 1 we show additional samples generated from
our three classes. Figure 2 shows additional mixing results
for the chair and table classes.

Note in particular that part mixing does not simply con-
sist of copying the parts as-is, but that the network attempts
to maintain their identity while preserving the overall co-
herence. This is particularly prominent in the second row of
the chairs in Figure 2, where the round chair back is main-
tained, but its size and inclination are adjusted to fit with
the rest of the chair. A similar effect can be observed for the
table class, where the identity of legs (e.g. their inclination
or curvature) is maintained, but the height and width of the
resulting table are adjusted in order to avoid an imbalance.

B. Baseline Mixing Results

We provide qualitative evaluations of a shape-mixing ex-
periment conducted using the unsupervised baseline model
(BAE-Net [4] + CompoNet [7]). For each figure, we ran-
domly generated 10 shapes by randomly sampling latent
codes for each part and a code for shape composition (see
[7] for details on their latent structure). We randomly split
these shapes into two groups of five, and generated a pair-
wise mixing between the groups. For each such pair, we
generate a novel shape by assigning the latent codes from
one of the paired shapes to half the parts, and the latent
codes from the other shape for the reminder. The composi-
tion code was similarly taken from one of the paired shapes.

Figure 3 shows the results of mixing on the table and
airplane classes. The model often generates disconnected
parts, and some components show virtually no variability
(see for example the shape of the tails in the Airplane class).
These observations are similarly reflected in the quantitative
results of Table 3 of the core paper.

Figure 4 shows the results of mixing on the chair class.
In this scenario, some parts are not common across all in-
stances of the class, and the model fails to avoid the gener-
ation of redundant parts (both legs and a swivel base on a
chair) or meaningfully maintain their identity when mixing
shapes (armrests appearing when neither mixed shape has
them). Our model, meanwhile, has no such limitations.

C. Comparisons on additional metrics

We provide comparisons results with standard generative
frameworks on all metrics of [1] in Table 1. While our dis-
entangled representation’s quality metrics do not compete
with the state of the art, they remain within the same order
or improve upon some of the previous works.

We further compared the quality of our generated parts to
the recent Mo et al. [6], using standard point cloud metrics
and the PartNet dataset [9]. As our network does not learn
a representation of specific parts (e.g. ’legs’) we instead
assigned to each class all the roots that contain points within
that class. A root that contains both a table leg and a portion
of the table top would therefore be included in both the legs
and table top metrics.

This comparison shows that our self-learned inferred
parts do not fall far behind the state of the art, even though
the latter employs full part-level and hierarchy supervision.

Of note is the drop in coverage metrics between the
shape-level and part-level comparisons. We believe these
differences arise because the given object classes display
considerably more variation at the full-shape level than at
the part-level. As our supervision is only at the full-shape
level, the network can reasonably fool the discriminator by
learning to represent only a subset of commonly occurring
part shapes and devoting more effort to composing them in
varied ways.

D. Expanded ablation and mutual information

In addition to the meaningful distance metric, we eval-
uated the quality of disentanglement in our learned repre-
sentation using a mutual information based score. For each
scenario, we sampled 500 shapes and modified each of their
roots individually, one at a time. For each such modifi-
cation, we evaluated the empirical mutual information be-
tween the points sampled from each root (both modified and
unmodified) before one of them was changed, and the points
sampled from the same roots after the change. Mutual in-
formation was estimated using MINE [2]. Higher mutual
information scores indicate strong dependence between the
distribution of points before and after the change (e.g. if the
points saw minimal change, or if they all underwent a simi-



Figure 1. Additional samples generated for the chair, table and airplane classes. Points are colored according to the root they originate
from. We used 6 roots for the chairs and 5 roots for the tables and airplanes.

lar translation) while a lower score indicates the opposite.

In Table 3 we expand on the ablation results of the core
paper, showing both the mutual information scores and two
additional scenarios.

The full model exhibits the best results on both metrics,
showing that it provides the best balance between the abil-
ity to affect meaningful changes in the modified part, while
limiting alterations to the unmodified parts. Note in partic-

ular the sharp decline in both metrics when the convexity
constraints (the hull-distance loss) are removed. In this sce-
nario, the network conceals the information required to sat-
isfy the reconstruction loss by inducing large displacements
on a small subset of the points in each part. This drastically
lowers the amount of change in the modified part, and leads
to significant decrease in disentanglement.



Figure 2. Additional part mixing results for the chair and table classes. For each class, the shapes in the left column and the top row were
generated from a single latent vector each. The rest of the shapes were generated by utilizing the latent vector from the top row for some

of the roots, and the latent vector from the left column for the rest.
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Figure 3. Baseline part mixing results for the table and airplane classes, using the combined BAE-Net + CompoNet model. For each class,
the shapes in the left column and top row were generated from randomly sampled latent codes. The rest of the shapes were generated by
utilizing the latent vectors from the top row for half the parts, and the latent vectors from the left column for the rest. Note that both classes
contain disconnected parts (red) and display significantly diminished variation compared to our model (see for example the airplane tails).

E. Mixing strategies

We evaluated several root mixing strategies as part of our
ablation study. A sample of the results is shown in Table 4,
and a discussion thereof is provided in the paper’s experi-
mental section.

We note here again that the key observation from these
experiments is that in order to achieve convergence along
with a part-level disentanglement, we require a strategy that
provides a gradient between the two scenarios at the ex-
treme ends - those where a single latent code is fed into all



Figure 4. Baseline part mixing results for the chair class, using the combined BAE-Net + CompoNet model. Shapes were generated in a
similar manner to Figure 3. The baseline is prone to generating disconnected parts (red), redundant parts (green) or adding parts that did
not exist in either of the source shapes (yellow).

Class Model JSD| MMD-CD| MMD-EMD| COV-CD{ COV-EMD t
r-GAN (dense) 0.238 0.0029 0.136 33 13
r-GAN (conv) 0.517 0.0030 0.223 23 4
Chair Valsesia et al. (noup.) 0.119 0.0033 0.104 26 20
Valsesia et al. (up.) 0.100 0.0029 0.097 30 26
tree-GAN 0.119 0.0016 0.101 58 30
MRGAN (ours) 0.246 0.0021 0.166 67 23
r-GAN (dense) 0.182 0.0009 0.094 31 9
r-GAN (conv) 0.350 0.0008 0.101 26 7
Airplane Valsesia et al. (noup.) 0.164 0.0010 0.102 24 13
Valsesia et al. (up.) 0.083 0.0008 0.071 31 14
tree-GAN 0.097 0.0004 0.068 61 20
MRGAN (ours) 0.243 0.0006 0.114 75 21
Table tree-GAN 0.077 0.0018 0.082 71 48
MRGAN (ours) 0.287 0.0020 0.155 78 31

Table 1. Comparisons to previous generative point cloud models on the metrics of [1]. We use the values reported by [8] where applicable.
For the airplane and chair classes, the best and second best results are colored in red and blue respectively.

roots and where a different code is fed into each root. work to learn that the different inputs are correlated and
We believe this balance is required, as providing too thus they can be ignored. On the other hand, providing this
great a weight to the single-code scenario allows the net- scenario allows the network to initially converge towards



Class Part Model JSD, MMD-CD|, MMD-EMD| COV-CD1 COV-EMD 1

Legs PT2PC 0.069 0.068 0.320 50 49

MRGAN (ours) 0.319 0.101 0.550 23 15

Chair Back PT2PC 0.104 0.075 0.363 34 31

MRGAN (ours) 0.333 0.161 0.419 12 13

Seat PT2PC 0.089 0.081 0.370 32 26

MRGAN (ours) 0.168 0.138 0.392 13 14

Legs PT2PC 0.078 0.053 0.293 44 47

Table MRGAN (ours) 0.448 0.117 0.608 19 13

Top PT2PC 0.188 0.096 0.448 22 16

MRGAN (ours) 0.534 0.159 0.636 13 12

Table 2. Part-level comparisons to [6] on the metrics of [1].
Meaningful distance Mutual information
Model Modified Unmodified Ratio Modified Unmodified Ratio |
part parts part parts
Chair 0.096 0.017 5.36 0.577 0.977 0.590
Table 0.080 0.029 2.71 0.438 0.820 0.535
Airplane 0.122 0.026 4.66 0.429 0.837 0.513
Airplane - Mix + GAN 0.107 0.050 2.13 0.735 1.139 0.646
+ Hull-distance loss 0.109 0.048 2.23 0.490 0.913 0.537
+ Triplet loss 0.123 0.050 2.46 0.466 0.815 0.572
+ Reconstruction loss 0.122 0.026 4.66 0.429 0.837 0.513
* Full w/o Tripletloss 0115 0034 339 0798 0937 0852

Full w/o Hull-distance loss 0.067 0.066 1.01 0.627 0.830 0.756

Table 3. Expanded ablation results, showing both the meaningful distance metric and the mutual information scores for modified and
unmodified roots, as well as their ratio. In addition to the scenarios outlined in the core paper, we also present the scenarios where only the
hull-distance and only the triplet loss were removed from the full model (below the dashed line).

the simpler root-ignoring minima, at which point the latent
code reconstruction loss can drive the network to a solution
that does not ignore the additional roots.

This behaviour is reminiscent of the mixing experiments
in Karras et al. [5], where optimal separability scores were
achieved for a scenario that contains 50% mixing.

For all strategies that contain a gradient between these
two scenarios, the network successfully converges, reach-
ing similar scores on our disentanglement metrics. These
results indicate that the specific details of any chosen mix-
ing strategy are less crucial.

F. Qualitative ablation

The effects of some of our losses are better appreciated
visually. In Figure 5 we provide a visual contrast of their
effects. Removal of the root-dropping loss (top row) results
in the emergence of redundant parts (blue and orange roots).
Removal of the convexity loss (bottom row) results in con-
siderable degradation in the separation to meaningful parts.

We further provide a visualization of the disentangle-
ment afforded by the network via two distance based map-
pings. For each scenario outlined in our ablation studies we
show visualizations of both the meaningful distance metric
presented in the paper, and traditional euclidean distance.

Figure 5. Loss removal effects. Top row: the root dropping loss
was removed, leading to a redundancy between the orange and
blue roots. Bottom row: the convexity loss was removed, leading
to considerable degradation in separation into meaningful parts.

F.1. Meaningful distance visualization

Figure 7 shows a qualitative comparison of our ablation
scenarios using the meaningful distance metric. For each
row we consider a single generated shape and modify the
latent code provided to one root at a time. Points that un-
dergo a meaningful change, i.e. those that have moved a
distance comparable to the mean change between randomly
sampled shapes, are colored. If the points are part of the



Meaningful distance
Unmodified

Mixing Strategy Modified

Mutual information

Modified Unmodified

part parts Ratio part parts Ratio |
(same) No disentanglement
(different) Does not converge
(same) + (different) No disentanglement
* (same) + (different) + (one) 0.135 0030 453 0446 0853 0522
(same) + (different) + (half) 0.150 0.034 4.44 0.453 0.871 0.520
(same) + (different) + (one) + (half) 0.122 0.026 4.66 0.429 0.837 0.513

Table 4. Meaningful change and mutual information metrics for the Airplane class utilizing different mixing strategies. (same) indicates
the same input to all roots, (half) indicates a half-and-half mixing of 2 latent codes between the roots, (one) indicates mixing a single latent
code for one random root and a second latent code for all other roots and (different) indicates a different latent code for each root. For each

strategy, all scenarios are sampled uniformly.
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Figure 6. Chairs produced from a varying root model. At train-
ing time, the model was allowed to uniformly sample a number
of roots with which to generate each chair. At inference time, we
manually choose a number of roots, sample a latent code for each
and produce a novel chair. The choice of the number of roots dic-
tates the type of generated shape - 4-legged (6 roots, left) or swivel
chairs (8 roots, right). However, root identities are not maintained
between the two types - with the teal and pink parts, for example,
shifting from legs to parts of the seat.

modified root, they are colored in green. Otherwise they are
colored in red.

We can observe the effect of the different losses on the
generated shapes. The hull distance loss better localizes the
roots in meaningful parts, but it does not sufficiently drive
disentanglement, with some latent codes controlling multi-
ple parts and others controlling none. The triplet loss aids in
achieving part-control but the points of each part are poorly
localized. Finally, combining all our losses yields results
which are both well localized and lead to visible changes.

F.2. Traditional locality visualization

We provide an additional visualization of the disentan-
glement via a traditional distance-based mapping (Figure
8). In each image, we modify the latent code of a single root
and color all points in the cloud according to their euclidean

(L2) distance from their location in the source shape. Red
indicates a greater shift in the coordinates of a point, while
green indicates a smaller or no change.

This distance-based visualization offers us another indi-
cation that the results of modifying a single root are largely
constrained to a single part. Some changes lead to a more
global shift. In particular, the bottom right airplane had an
overall translation upwards due of the addition of a wheel
to the nose. Despite this overall shift, the identities of the
other parts are largely unchanged.

G. Varying number of roots

In Figure 6 we provide qualitative results for the vary-
ing root experiment. In this experiment, we investigated the
effects of allowing the model to uniformly sample the num-
ber of roots used to generate each point cloud. The chair
class was chosen due to the greater intra-class variance in
the number of convexes required to decompose each of its
members. By manually choosing a number of roots at infer-
ence time, we gain an additional measure of control over the
type of chair produced (swivel or 4-legged). However, root
identities are not maintained between shapes with a varying
number of roots, and control over individual parts is lost.
Additional discussion is provided in the experiments sec-
tion of the paper.

H. Feature sharing layer

The feature sharing layer is implemented by a series of
operations. We first max-pool all feature vectors over the
point dimension. The resulting maximal feature vector is
passed through a dense layer and then concatenated back
to the feature vector of each individual point. Finally, the
features of each point are passed through a 1D convolutional
operator (with weights shared between the different points),
using a kernel size of 1 and a number of filters equal to the
original dimension of point features.

A visualization of this process is provided in Figure 9.
The layer dimensions are provided in Table 5.
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Figure 7. A visualization of root modification locality, using the meaningful distance metric. Each row displays one of our ablation
scenarios. For each row we consider a single generated shape and modify the latent code provided to one root at a time. Points which have
undergone a meaningful change are colored in green if they belong to the modified root and in red if they belonged to an unmodified root.
Points which did not display a significant enough change are colored in grey. In the basic scenarios some modifications result in a complete
change of identity (top row, second image from the left) or result in no visible change (second row, last image).

Layer type = Kernel size Stride  Activation  Output dimension
MaxPool1D P 1 - I1xF
Dense - - - 1x16
Concat - - - Px (F+16)
ConvlD 1 1 LeakyReLU PxF

Table 5. Network architecture of a feature sharing layer with P input points and F input features.

I. Network architecture

We describe the full network architecture for a generator
with R roots in Table 6. The discriminator architecture is
provided in Table 7. Table 8 provides the architecture de-
tails for the additional head used to reconstruct the initial
latent codes from the discriminator features.

J. Hull-distance network details

The network architecture for our auxiliary distance-to-
hull prediction network is given in Table 9. For pooling, we
employ both a maximum pooling and a minimum pooling
operation over the point dimension, and concatenate their
results along the feature axis.

We train the network on a combination of sparse point
samples from the ShapeNet [3] training set (including all
available classes) as well as synthetic points sampled from a



Base + Triplet

Figure 8. A visualization of root modification locality, using an euclidean distance metric. Each image displays a heat map of individual
point coordinate changes. Red indicates the point that had the largest shift while green indicates the smallest (or no) shift. While localization
visibly improves for the full model, this metric is prone to over-representing changes borne from a more global shift. Note for example the
wings on the bottom right plane, which have not changed their identity but display considerable movement due to an overall upwards shift
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resulting from the addition of a wheel to the nose.
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sphere, a box, or any combination of the two with randomly
sampled positions.

For each sampled cloud, we calculate the convex hull
and compute the distance-to-hull metric analytically. The
network is trained to predict this value for the input cloud,
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Figure 9. A visualization of the steps undertaken in the feature sharing layer.

using an Lo distance as the loss.

We employ an Adam optimizer with a learning rate of

0.001, A1 = 0.9 and 5 = 0.999.
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The network is trained over 20,000 batches of 64 clouds
each. In order to match the number of points in our genera-




Layer type Branching ratio  Activation = Output dimension

Learned root constants - - R x 256

TreeGCN 2 - 2R x 128
Feature sharing - LeakyReLU 2R x 128
TreeGCN 2 - 4R x 128
TreeGCN 2 - 8R x 128
TreeGCN 2 - 16R x 128
TreeGCN 16 LeakyReLU 256R x 3

Table 6. Network architecture of the multi-rooted generator with R roots. The root constants are normalized via an AdalN layer, using a
different latent vector as input for each root.

Layer type Kernel size  Stride  Activation  Output dimension
ConvlD 1 1 LeakyReLU 256R x 3

ConvlD 1 1 LeakyReLU 256R x 64
ConvlD 1 1 LeakyReLU 256R x 128
ConvlD 1 1 LeakyReLU 256R x 512
ConvlD 1 1 LeakyReLU 256R x 1024
MaxPool1D 256R 1 - 1x 1024
Dense - - - 1 x 1024
Dense - - - 1x512
Dense - - - 1x512
Dense - - - Ix1

Table 7. Network architecture of the discriminator, adapted from [1].

Layer type Kernel size  Stride  Activation  Output dimension
Discriminator-Conv - - LeakyReLLU 256R x 1024
MaxPool1D 256 256 - R x 1024
ConvlD 1 1 LeakyReLLU R x 512
ConvlD 1 1 LeakyReLU R x 128
Conv1D 1 1 LeakyReLU R x 128
ConvlD 1 1 Tanh R x 96

Table 8. Network architecture of the discriminator’s reconstruction head, used for the identity regularization term. The network begins
from the outputs of the last convolutional layer of the discriminator.

Layer type Kernel size Stride  Activation  Output dimension

ConvlD 1 1 LeakyReLU Nx3
ConvlD 1 1 LeakyReLU Nx 64
ConvlD 1 1 LeakyReLU Nx 128
ConvlD 1 1 LeakyReLLU N x 256
ConvlD 1 1 LeakyReLU Nx 512
Pooling N 1 - 1 x 1024
Dense - - LeakyReLU 1x512
Dense - - LeakyReLU 1x256
Dense - - LeakyReLU 1x 128
Dense - - LeakyReLU 1 x 64
Dense - - LeakyReLU 1x31
Dense - - LeakyReLU Ix1

Table 9. Network architecture of the auxiliary hull-distance prediction network. The pooling operation is the concatenation of both a
min-pool and a max-pool operation employed along the point dimension.

tor’s paths, we sample 256 points per cloud.
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