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Abstract

Leveraging the intrinsic symmetries in data for clear
and efficient analysis is an important theme in data sci-
ence. A basic example of this is the ubiquity of the discrete
Fourier transform which arises from translational symme-
try (i.e. time-delay/phase-shift). Particularly important in
this area is understanding how symmetries inform the al-
gorithms that we apply to our data. In this paper we ex-
plore the behavior of the dimensionality reduction algo-
rithm multi-dimensional scaling (MDS) in the presence of
symmetry. We show that understanding the properties of the
underlying symmetry group allows us to make strong state-
ments about the output of MDS even before applying the
algorithm itself. In analogy to Fourier theory, we show that
in some cases only a handful of fundamental “frequencies”
(irreducible representations derived from the correspond-
ing group) contribute information for the MDS Euclidean
embedding.

1. Introduction
The use of groups and representation theory in the data-

driven sciences has a long if understated history. The canon-
ical reference is Diaconis’ book [4] which shows the sur-
prisingly broad range of real world problems in statistics
and probability that can be solved by utilizing tools from
representation theory.

More recently, convolutional neural networks have made
remarkable strides toward solving problems in computer
vision by utilizing the group convolution for Z × Z to
achieve invariance to translation in images [8]. Researchers
in machine learning have been exploring how symmetries
and their corresponding groups can be built into machine
learning algorithms to achieve invariance to certain types
of structured variation. Some recent examples include
[3, 2, 7].

Finally, of particular relevance to this paper is [9] which
explores similar themes (albeit in a somewhat different con-
text) for the Karhunen-Loève decomposition rather than

multi-dimensional scaling. [9] shows that by utilizing the
intrinsic symmetries of a dataset, the computational bur-
den of calculating the Karhunen-Loève decomposition can
be significantly reduced. Similar results will hold in many
cases for MDS and we hope that in a future work we can
explore the efficiency gains (as a function of the group and
the metric) in greater depth.

The main contributions of this paper are the following.

• We show how intrinsic symmetries in a dataset con-
strain the output of the MDS algorithm, giving a corre-
spondence between the representation theory of the un-
derlying symmetry group and eigenvalues of the MDS
operator.

• In the case where data consists of elements of a group
and the associated metric is bi-invariant, we show how
character theory can be used to compute those irre-
ducible representations that contribute to MDS output
(Theorem 3.1).

• We explicitly compute this correspondence with Ham-
ming distance for both the symmetric group and the
elementary abelian 2-group (Section 4).

This paper is organized as follows. In Section 2 we
review the multidimensional scaling algorithm. Section 3
contains the primary content of this paper. Here we con-
sider what happens when MDS is applied to a dataset which
is also a group. We begin this section with a quick overview
of representation theory and character theory. In Section 4
we explore the particular case where MDS is applied to a
set of permutations with Hamming distance as the chosen
metric. Two examples of using MDS on groups for data vi-
sualization are explored in 5 followed by the conclusion in
Section 6.

2. Multidimensional Scaling
Our main reference for the MDS algorithm is [1]. Let

(X, d) be a finite metric space so thatX is a finite set of size
n and d : X×X → R≥0 is the metric on X which encodes
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some notion of distance between points in X . Note that
in this setting elements in X need not come with intrinsic
coordinates; only distances between elements. The input to
MDS is the n × n pairwise distance matrix D defined by
(X, d) and the output is an embedding of X into Euclidean
space where the Euclidean distance (or more generally the
pseudo-Euclidean distance) between points approximates d.

For data visualization, one takes k to be 2 or 3. Other-
wise, the size of the embedding dimension k is determined
by the magnitudes of eigenvalues computed in the follow-
ing way: define H := Hn − 1

n11T , where Hn is the n× n
identity matrix and 1 is the n× 1 vector of all ones. Define
the double mean centered inner-product matrix

M := −1

2
H(D ◦D)H,

where ◦ denotes the Hadamard or element-wise product.
Compute the spectral decomposition: M = FΛFH . A

fundamental property of MDS is that M is positive semi-
definite if and only if there exists a Euclidean configuration
of points for which D equals the Euclidean distances [1,
Theorem 14.2.1]. In the case where D is not the matrix of a
Euclidean configuration, there are two possibilities.

In the classical algorithm, one discards any negative or
zero eigenvalues of M and also the corresponding columns
of F. Define the n × k matrix X := F̂Λ̂1/2, where the
“hat” indicates that the coordinates corresponding to eigen-
values less than or equal to 0 have been removed. We fol-
low the usual ordering convention (Λ is put in descending
order). The rows of X give embedding coordinates to X in
Euclidean k-space. The Euclidean distance between rows i
and j approximates the input distance dij between points xi
and xj . MDS minimizes strain on inner-products [1, Sec-
tion 14.4]. If k is the number of coordinate directions used,
then the optimal MDS solution M̃ has strain

tr((M− M̃)2) =

n∑
i=k+1

λ2i , (1)

where {λi}ni=1 are the eigenvalues from Λ, i.e. the error is
measured by the norm of the discarded eigenvalues. Per-
fect reconstruction on finite dimensional metric spaces is
achieved by taking k = n.

Since our interest is in metric spaces which may be non-
Euclidean, we take a moment to describe how the positive
and negative eigenvalues from Λ fit together. One way [10]
to work with a non-Euclidean metric space is to keep both
positive and negative eigenvalues and measure distances by
a pseudo-Euclidean computation. The process is simple and
ought to be familiar to physicists working in Minkowski
space. Suppose there are p positive and q negative eigen-
values with p+ q = k (as before, discard any zero eigenval-
ues). Arrange Λ̂ into two corresponding blocks of size p×p

and q × q, and define the coordinates X := F̂|Λ̂|1/2. The
pseudo-Euclidean distance computation breaks up into two
parts - compute the Euclidean distance on the p “positive”
coordinates and subtract off the Euclidean distance on the
q “negative” coordinates. Just as in the Euclidean case, if
we take k = n, we achieve an exact reconstruction of D by
using the pseudo-distance computation on the rows of X:

d(xi, xj) = dCp(xi,xj)− dCq (xi,xj),

where xi denotes the coordinate free ith element of the set
X , and xi denotes its vector form from MDS.

Finally, it’s useful to understand MDS as a “kernel
method” [12], and think of the linear algebra outlined above
as taking place in a Hilbert space of (square integrable)
functions on X . In this language, the MDS kernel is
the symmetric function m : X × X → R defined by
m(xi, xj) = Mij . Equivalent to the matrix M is the
Hilbert-Schmidt operator M : L2(X) → L2(X), and the
columns of F determine a collection {f1, . . . , fk} of eigen-
functions forM . Then,m(xi, xj) =

∑n
t=1 λtft(xi)ft(xj).

3. MDS on groups
Suppose now that G is a finite set which is also a group

with group multiplication denoted by juxtiposition (i.e. if
g, h ∈ G then gh is the product of g and h). If d is a metric
on G, we say that d is left-invariant to the action of G if
d(g, h) = d(fg, fh) for all f, g, h ∈ G. We define a right-
invariant metric analogously. A metric which is both left
and right invariant is called bi-invariant.

For a given finite group G, consider the (non-centered)
MDS kernel m(g, h) = − 1

2d
2(g, h) for a G-invariant met-

ric d. Group invariance implies that M is a convolution
matrix. Formally, if φ, ψ ∈ L2(G) and g, h ∈ G, then con-
volution is defined by

φ ? ψ(h) :=
∑
g∈G

φ(hg−1)ψ(g).

Define µ(g) ∈ L2(G) by µ(g) := m(g, e). The MDS
operator M : L2(G)→ L2(G) is defined for g, h ∈ G by

M(φ)(h) =
∑
g∈G

m(h, g)φ(g)

=
∑
g∈G

µ(hg−1)φ(g)

= µ ? φ(h).

3.1. Representations and Characters

We briefly explain what is meant by “frequency” for
functions on an arbitrary finite group G. The reader is re-
ferred to [13, 5] for rigorous accounts of the character and
representation theory of groups. The short answer is that
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L2(G) decomposes into a set of mutually orthogonal sub-
spaces, the so-called irreducible representations specific to
the group G. The presence of a frequency in a signal φ ∈
L2(G) is determined by the amplitude of the projection co-
efficient onto the corresponding irreducible representation
subspace. Schur’s Lemma [13, Proposition 4] guarantees
that every linear G-equivariant operator (i.e. convolution
operator) has a spectral decomposition whose eigenspaces
are direct sums of irreducible representations.

In the classical case, when a signal is sampled at n evenly
spaced intervals, frequency information is determined by
the discrete Fourier transform. In our language, the classical
case corresponds to the cyclic group G = Cn, and the irre-
ducible representations are tagged by integers 0, . . . , n − 1
corresponding to the Fourier frequencies. Each irreducible
representation determines a one dimensional subspace in
L2(Cn), the kth such subspace spanned by the function
f(m) = exp 2πimk

n ∈ L2(Cn). The main difference for
an arbitrary group G is that a single frequency may account
for a subspace in L2(G) of dimension greater than 1. In
fact, such a frequency always exists for any group which is
non-abelian.

Informally, a representation ofG assigns to each element
of G an invertible matrix so that the group multiplication
law of G is realized by matrix multiplication. Formally, an
n-dimensional representation of G is a pair (V, ρ) where V
is a (for our purposes, complex) n-dimensional vector space
and ρ is a group homomorphism from G to the general lin-
ear group on V , which is the group of all invertible linear
transformations on V with group law given by composition
of transformations. When the representation (ρ, V ) is un-
derstood from context we may, for convenience, omit the
ρ from our notation e.g. if g ∈ G, v ∈ V , we write g · v
to indicate the application of transformation g to vector v,
instead of ρ(g)v.

A representation V is reducible if there exists a non-
trivial, proper subspace W ⊂ V such that W is preserved
by all transformations of G i.e. for all w ∈ W and all
g ∈ G, ρ(g)w ∈ W . If V is not reducible, it is called ir-
reducible. Maschke’s theorem [13, Theorem 2] guarantees
that every complex representation V of a finite group G de-
composes into a unique set of irreducible representations,
which comprise a decomposition of V into orthogonal sub-
spaces.

Note that L2(G) is a representation of G: it is a vector
space of dimension n = |G| and each element of G acts as
a linear transformation on L2(G) by the rule g · φ(h) :=
φ(g−1h).

Next, we investigate how MDS filters frequencies in
L2(G) for the symmetric group. Doing so will be an ex-
ercise in the linear algebra of characters: Associated to any
representation (V, ρ) is the character χρ, which is an ele-
ment of L2(G) defined by χρ(g) = Tr(g), the trace of the

linear transformation. It turns out that characters uniquely
determine irreducible representations.

If (V, ρ) and (V ′, ρ′) are distinct irreducible representa-
tions, then the characters are orthogonal under the L2 inner
product:

〈χρ, χ′ρ〉 :=
1

|G|
∑
g∈G

χρ(g)χρ′(g)

=

{
0 (V, ρ) 6∼= (V ′, ρ′)
1 (V, ρ) ∼= (V ′, ρ′)

.

We now state the fundamental relationship between char-
acters, bi-invariant metrics, and multi-dimensional scaling.

Theorem 3.1. Let m be the MDS kernel and µ(g) :=
m(g, e). If d is a bi-invariant metric on G, then

i.

µ(g) =

k∑
i=1

σiχρi(g),

where σi ∈ R and each χρi is the character of an irre-
ducible representation ρi of G.

ii. Each irreducible (Vi, ρi) which appears in the sum
determines an eigenspace of the MDS operator M .
If di := dim(Vi), then the eigenvalue associated to
Vi ⊂ L2(G) is given by λi =

|G|
di
σi.

Equivalently, the spectral decomposition of the MDS matrix
is M =

∑k
i=1 λiViV

H
i .

The Theorem gives us a concrete way of computing
which frequencies are filtered by the MDS operator for a
given bi-invariant metric.

Also note that the trivial representation, whose charac-
ter is χ(g) = 1 for all g ∈ G, necessarily appears as an
eigenfunction of the MDS operator M . The double mean
centering step in the MDS algorithm will project the trivial
character to 0 and leave the other eigenfunctions fixed (by
the orthogonality of characters). Then, for simplicity, we
use the non-centered MDS kernel m(g, h) := − 1

2d
2(g, h)

for our computations and simply remember to project away
from the trivial representation.

The theorem follows from two facts. (1) If d is a
bi-invariant function in L2(G), then for all g, h ∈ G,
µ(hgh−1) = µ(g). It is said that µ is a class function on G.
(2) The characters of the irreducible representations form
an orthonormal basis for all class functions on G [5, Propo-
sition 2.30]. We leave it to the reader to verify the formula
for the eigenvalues, which follow from these two facts and
that M is convolution with µ.

4. MDS with Hamming distance
In this section we derive the eigendecomposition of

MDS under the Hamming distance on two frequently used
groups.
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4.1. Binary data and the Hamming metric

Let C2 be the cyclic group of order 2 and let G = (C2)
k

be the product of k copies of C2. The order of G is n = 2k

and elements of G can be represented by length k strings of
0’s and 1’s. The Hamming distance onG counts the number
of positions at which two binary strings differ. For example,
dH(00, 11) = 2. dH is a G bi-invariant metric, and by
Theorem 3.1 we are guaranteed that the MDS kernel can be
written as a sum of irreducible characters of G. Moreover,
since G is abelian, its irreducible representations are all 1
dimensional.

Represent an element in G by g = (n1, . . . , nk), ni ∈
{0, 1}. It is well-known that the irreducible characters are
indexed by elements of the power set on {1, . . . , k}. For a
non-empty subset S of {1, . . . , k}, define

χS(n1, . . . , nk) := (−1)
∑

s∈S ns ,

and define the character corresponding to the empty set to
be the one’s function on G. In discrete signal processing,
these are called the Walsh functions. What group theorists
call the character table is exactly the same as the Walsh-
Hadamard matrix. If k = 2, the character table is:

00 10 01 11
χt2 1 1 1 1
χta 1 1 −1 −1
χat 1 −1 1 −1
χa2 1 −1 −1 1

,

where t and a refer to trivial and alternating which is the
language used by group theorists.

Theorem 3.1 suggests that we should decompose
µ(g) := m(g, e) into irreducible characters. To begin, note
that the distance between any string g = (n1, . . . , nk) and
the identity string e = (0, . . . , 0) counts the number of ones
in string g. We may decompose this function as a sum of
irreducible characters:

dH(g, e) =
1

2
(k −

k∑
i=1

(−1)ni).

Then, the MDS kernel is given by:

µ(g) := −1

2

(
1

2
(k −

k∑
i=1

(−1)ni

)2

= −1

8

k2 − 2k

k∑
1

(−1)ni +

(
k∑
1

(−1)ni

)2


= −1

8

(
k2 + k

)
+
k

4

k∑
1

(−1)ni − 1

4

∑
1≤i<j≤k

(−1)ni+nj .

character eigenvalue num principal directions
χtk−1a λ1 = 2k−2 · k k

χtk−2a2 λ2 = −2k−2
(
k
2

)
else 0 2k − (k +

(
k
2

)
)

Figure 1. The MDS eigenvalues and number of principal direc-
tions associated with Hamming distance on G = Ck

2 .

Now we simply read off the eigendecomposition of the
MDS operator. In particular, the appearance of a character
in the sum gives an eigenfunction, and the coefficients give
eigenvalues (after multiplication by |G| = 2k). Remember
also that the MDS algorithm calls for projection away from
the trivial representation, and so we discard the translation
term out front. We summarize the eigendecomposition in
Figure 1.

A few observations are in order. First, the computation
reveals low dimensional structure, as the distance matrix it-
self is 2k × 2k, yet the rank is only k +

(
k
2

)
.

Next, using strain (1) as our measurement of projection
error, principal directions corresponding to λ1 contribute
more than those corresponing to λ2, and any directions with
the same eigenvalue are equally strong.

Finally, note that the first k coordinates are tagged with
a positive eigenvalue and the last

(
k
2

)
are tagged with a neg-

ative eigenvalue. This gives a measure of the extent to
which the metric space (Ck2 , dh) is Euclidean. Formally,
this means that we use a pseudo-Euclidean inner-product to
make geometric measurements.

4.2. Hamming metric on the symmetric group

In this section we explore another type of Hamming met-
ric, only this time on the symmetric group G := Sn. As a
prerequisite for this section, the reader should understand
what is meant by the “standard representation” of Sn. We
refer the reader to [11, 5] for more details.

Of fundamental importance to the representation theory
of Sn is that there is one irreducible representation for each
integer partition of n. Compare this to the discrete Fourier
case where frequencies are tagged by integers 0, . . . , n− 1,
or, as in the last section, to the case Ck2 , where frequencies
are tagged by elements of the power set on {1, . . . , k}.

We use square brackets to denote partitions e.g. If n = 3
then 2 + 1 = 3 is denoted [2, 1], and the trivial partition
3 = 3 is denoted [3], etc. We denote the character associated
to the irreducible [2, 1] by χ2,1.

The Hamming distance dH between two permutations
counts the number of places where the two permutations
differ e.g. Using the cycle notation for permutations we
have dH((12), (123)) = 2, since the two permutations
agree only on 1 7→ 2. It’s straight-forward to check that
this metric is bi-invariant on Sn.

As in the last section, our goal is to produce the MDS
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eigendecomposition by decomposing µ(g) into characters.
The Hamming distance between permutation g and the
identity permutation e is given by the difference between
n and the number of fixed points of the permutation g. i.e.

d(g, e) = n−#f.p.(g).

We can write this in terms of the characters of irreducible
representations:

d(g, e) = (n− 1)χn(g)− χn−1,1(g),

where χn is the character of the trivial representation
(which equals 1 on all elements of Sn) and χn−1,1 is the
character of the standard representation. Squaring this ex-
pression gives the MDS kernel m:

−2µ(g) = ((n− 1)χn(g)− χn−1,1(g))2

= (n− 1)2χn(g)− 2(n− 1)χn−1,1(g) + χ2
n−1,1(g)

All that remains is to decompose the squared character
χ2
n−1,1 into a sum of irreducible characters, which we can

do since irreducible characters form an orthogonal basis for
class functions. This is accomplished using the fact that
the square of a character corresponds to the tensor product
of the underlying representation space. From there we can
extract the Kronecker coefficients. In our case, the formula
is simply [5]:

χ2
n−1,1 = χn + χn−1,1 + χn−2,1,1 + χn−2,2.

Table 2 then summarizes the MDS embedding of Hamming
distance in terms of its decomposition into irreducibles.
Note that the formula for each eigenvalue relies on the di-
mension of the corresponding representation, which may be
computed using the “hook-length” formula [5].

Here, the energy is highly concentrated in only three sub-
spaces. Moreover, while the group has order n! the rank
of the MDS matrix is on the order of n4. The Euclidean
coordinates of the metric are picked up by the standard
representation, which is also the dominant representation,
whereas the pseudo-Euclidean coordinates are given by the
subspaces of χn−2,1,1 and χn−2,2.

5. Data Visualization Examples
In this section we apply MDS to two datasets that take

values in a group (in this case the symmetric group) with a
bi-invariant metric. Note that rather than going through the
standard MDS algorithm to produce these, we can instead
project directly into the relevant irreducible representations.

The first dataset is a set of rankings from the Ameri-
can Psychological Association (APA) presidential election
in 1980. This dataset can be found in [4, Chapter 5B]. It
consists of 5,738 full rankings of 5 candidates. The origi-
nal dataset included partial rankings, but we have omitted

character eigenvalue num principal directions
χn−1,1

(2n−3)n!
2n−2 (n− 1)2

χn−2,1,1
−n!

(n−1)(n−2)
(
1
2 (n− 1)(n− 2)

)2
χn−2,2

−n!
n(n−3)

(
1
2n(n− 3)

)2
Figure 2. The MDS eigenvalues and number of principal direc-
tions associated with Hamming distance decomposed in terms of
irreducible representations of the symmetric group Sn. Note that
only a minority of the irreducible representations of Sn (indexed
by all partitions of n) have support here.

these. Of course we can interpret these full rankings as per-
mutations by choosing an initial order of the candidates. A
given ranking corresponds to the permutation that takes the
original order to the order given by the ranking.

In Figure 3 we show the MDS approximation of the per-
mutations in this dataset in R3 with respect to Hamming
distance (without scaling). We use the size of points in the
scatterplot to indicate the frequency of a particular permuta-
tion and use color to indicate a fourth coordinate (also taken
from the block of standard representations).

The second dataset is the SUSHI preference dataset [6]
which contains 5000 full rankings of 10 types of sushi. Note
that whereas in the APA election dataset there are more data
points than there are permutations (5, 738 vs 5! = 120), in
this dataset there are far more possible permutations (5, 000
vs 10! = 3, 628, 800) than there are data points. In Figure
4 we show a visualization of all these rankings in R3 using
MDS. As seen above, despite the fact that distances on per-
mutations have the capacity to be quite high dimensional, by
understanding what symmetric group representations actu-
ally contribute information to the Euclidean embedding, we
can directly project into these representations before apply-
ing the MDS dimensionality reduction algorithm.

6. Conclusion

In this paper we have shown how unstructured data can
be analyzed and synthesized using the general notion of fre-
quency on a group and the MDS algorithm. We have seen
how the principal directions extracted from MDS are given
geometric meaning as irreducible representations, and how
each representation contributes to the pseudo-Euclidean
structure of the group metric space.

In practical terms, the theory and examples presented
here may be used for dimensionality reduction. In a fu-
ture work we plan to more closely investigate the efficiency
gains brought by group theory considerations as well as
analysis of other commonly encountered groups and met-
rics.
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Figure 3. A visualization of rankings of the American Psycholog-
ical Association presidential election from 1980 [4, Chapter 5B]
using MDS.

Figure 4. A visualization of the SUSHI dataset [6] using MDS.
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