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Abstract

We propose a novel manifold learning based end-to-end
prediction and video synthesis framework for bandwidth
reduction in motion transfer enabled applications such as
video conferencing. In our workflow we use keypoint based
representations of video frames where image and motion
specific information are encoded in a completely unsuper-
vised manner. Prediction of future keypoints is then per-
formed using the manifold of a variational recurrent neural
network (VRNN) following which output video frames are
synthesized using an optical flow estimator and a condi-
tional image generator in the motion transfer pipeline. The
proposed architecture which combines keypoint based rep-
resentation of video frames with manifold learning based
prediction enables significant additional bandwidth sav-
ings over motion transfer based video conferencing sys-
tems which are implemented solely using keypoint detection.
We demonstrate the superiority of our technique using two
representative datasets for both video reconstruction and
transfer and show that prediction using VRNN has superior
performance as compared to a non manifold based tech-
nique such as RNN.

1. Introduction
Global trends such as an increasing number of people

working from home or other remote locations, and with
project teams being dispersed across different geographic
locations, this has led to a proliferation of applications such
as live streaming and video conferencing. Motion Trans-

fer based video synthesis is an important technique that has
been proposed to efficiently implement such applications
with the goal of maintaining high video quality as well as
achieve a significant degree of compression for bandwidth
efficiency [24]. Previously proposed motion transfer frame-
works use keypoint based representations for the source im-
age and the driving video which are learnt in an unsuper-
vised manner [12] and then processed through an optical
flow estimation network and a conditional image genera-
tor [20]. In this paper we construct an end-to-end motion
transfer pipeline using prediction from the manifold of a
Variational Recurrent Neural Network [4] in conjunction
with Deep Learning (DL) models for video synthesis. This
framework enables improving the performance, latency and
quality of service across mobile client devices through the
content distribution network as well as in data centers as
listed below:

• Enhancing a motion transfer pipeline using prediction
for the keypoints enables the mobile or PC client de-
vices to reduce the amount of data that needs to be sent
over to the end device.

• It further allows the client device to reduce its compute
requirements, as the client does not need to capture or
process every single frame of video. This improves
power and performance of the application on the client
device.

• Over the network the prediction helps to further re-
duce the data bandwidth needed for the application,
and hence enable higher latency tolerance for appli-
cations like video conferencing.
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Figure 1. End to End Prediction and Video Synthesis Architecture
for Motion Transfer

During inference the higher compute nodes of CPU and
GPU in the data center or edge can be used to enable DL
based models for prediction and image synthesis, along
with other video and image analytics techniques to improve
the video and provide a higher quality stream to the end de-
vice. A drawing of this scheme is shown in Figure 1.

2. Manifold based prediction
Using keypoints extracted from videos for prediction

as compared to directly using pixels from the input video
frames have advantages in terms of error accumulation [16].
In addition keypoint based representations are more suit-
able for downstream tasks in a motion transfer workflow
such as optical flow estimation and therefore can be used
for prediction instead of raw pixels. Keypoint based rep-
resentations obtained from video frames constitute high di-
mensional time series. There are several options available
for forecasting of such data including models such as Vector
Autoregressive Models (VAR) [3] or Recurrent Neural Net-
works (RNNs) [15]. However in the context of such prob-
lems the manifold hypothesis states that high dimensional
data x ⊆ MX lie on an underlying low dimensional mani-
fold z ⊆ Mz [9, 17, 18]. Therefore for time series in high
dimensional space such as keypoints obtained from video
frames a prediction framework can be constructed in latent
space z by performing the steps as below:

• Map Xt where t = 1, 2, . . . , n in the original high di-
mensional manifold MX to zt lying on the low dimen-
sional manifoldMz by a mapping parameterized by ω.

ψω : Xt → zt

• Perform prediction in the low dimensional space Mz

to generate zn+k where k ≥ 1

• Generate the predicted value of X by the inverse map-
ping:

ψ−1
ω : zn+k → Xn+k

Two principal approaches for prediction of time series on
manifolds are outlined as below:

• The mapping ψω can be obtained using nonlinear di-
mensionality reduction techniques such as Diffusion
Maps [6] or Laplacian eigenmaps [2]. In such cases
the data Xt is transformed to the eigenvectors zt of
its associated graph Laplacian matrix. However such
methods are unsuitable for handling large datasets and
also fail to generalize to out-of-sample data. Deep
Learning based approaches in conjunction with nonlin-
ear dimensionality reduction techniques such as Diffu-
sion Maps for obtaining the mappings ψω, ψ

−1
ω have

been proposed to overcome these problems [14, 19].
However handling time series prediction using such
approaches is still problematic as the obtained low di-
mensional embedding z does not specifically take into
account the time order of the measurements. [21, 22].
In addition generating the map ψ−1

ω is often difficult
and not designed for streaming data or high dimen-
sional time series [1, 5].

• The mapping ψω is obtained using Deep Learning
based architectures such as Autoencoders [25] or Vari-
ational Autoencoders [13]. In such cases the trans-
formations ψω, ψ

−1
ω are constructed using the training

data and the latent space zt can be used for prediction.
Details are described in the next section.

3. Prediction using Variational Autoencoder
A Variational Autoencoder (VAE) is a Deep Generative

Model which learns a smooth mapping from the modeled
distribution of the data X lying on a high dimensional man-
ifold MX to a user-defined prior distribution z lying on a
manifold Mz . For our problem, keypoints Xt, Xt+k are de-
rived from successive video frames at times t, t + k where
k ≥ 1. Two key properties of the mapping of the input
space Xt to the latent space zt which enable prediction are
outlined as below:

• P1: Every point Xt in the input space where t =
1, 2, . . . , n can be mapped to a point zt in the latent
space

• P2: Points which are close in X are also close in z.
This is owing to the Lipschitz continuity property of
neural networks with respect to their inputs [10] which
also hold for the VAE encoder and is mathematically
described as below:
Given condition on keypoints: ||Xt − Xt+k|| < ϵ it
follows that:

||fθ(Xt)− fθ(Xt+k)|| < L||Xt −Xt+k||
i.e. ||fθ(Xt)− fθ(Xt+k)|| < Lϵ

Here L is the Lipschitz constant of the VAE encoder f
which is parameterized by θ.
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While it is possible to directly use zt to predict Xn+k

where k ≥ 1 [11] it is often advantageous to build a
prediction framework in the latent space owing to possible
complex nonlinear relationships between the underlying
factors of variation and the observed data Xt. We therefore
use a Variational Recurrent Neural Network (VRNN) for
prediction of keypoints [4].

For inference using an RNN with inputs Xt where
t = 1, 2 . . . , n and the RNN hidden state is denoted by ht
we have the following:

ht = f(xt, ht−1; θ)
where f is a nonlinear activation function, θ denotes a set
of parameters and

p(Xt|Xi, i < t) = g(ht−1; τ)
where g is a function mapping the hidden state ht−1 to
the output conditional probability distribution p whose
parameters are given by τ .

In contrast a VRNN contains an RNN at each timestep

whose hidden state ht is given by:

ht = f(ψX
τ (Xt), ψ

z
τ (zt), ht−1; θ)

where f is a nonlinear activation function and ψX
τ , ψ

z
τ

denote feedforward neural networks on the input X and
VAE latent variable zt respectively.

In case of the VRNN the probability distribution of the
output Xt in the VAE decoder is a nonlinear function of
both the VAE latent variable zt as well as the RNN hidden
state ht−1.

Kernel PCA (kPCA) embeddings from the VRNN mani-
folds of the keypoints corresponding to the source video
frames are shown in Figure 2. From this figure we see that
the aforementioned properties P1 and P2 of the mapping
between Xt and zt are obeyed i.e. every input video frame
Xt is mapped to a unique zt and points which are close in
X are also close in z. In addition the simplicity of the low
dimensional embedding in this visualization supports our
intuition that temporal prediction is easier on the manifold
Mz as compared to directly performing it on MX .

Figure 2. kPCA embedding from latent space of keypoints for 4 different video sequences of faces

4. Synthesis and Prediction pipeline for Motion
Transfer

4.1. Architecture

The architecture of the Motion Transfer pipeline en-
abling keypoint prediction and video synthesis is shown in
Figure 3. The keypoint detector K1 is constructed based on
[12] however in this case it is applied to successive driving
video frames 1, 2, . . . , n of spatial dimensions H x W . The

keypoint detector K2 is applied to a source image which
can be the first frame of the same video sequence or from
a different sequence. These two kinds of operations are de-
noted as reconstruction and transfer respectively and predic-
tion can be performed in each mode for obtaining the final
video sequence as described in Section 5. The number of
keypoints K is a hyperparameter and the detector produces
K heatmaps. The actual keypoints are estimated as the ex-
pectation of the corresponding heatmaps where the averag-
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ing is performed over all x ∈ H and y ∈ W [12]. These
expected values along with the mean intensity which is a
continuous valued indicator of the modeled object [16] is
then used to train the VRNN. Given keypoints correspond-
ing to M video frames the VRNN is used for prediction of
the keypoints in the nextN video frames. Hence a full video
sequence is composed of multiple groups of frames where
each group is of length M + N . Following the predicted
values from the VRNN the final videos are synthesized us-
ing the optical flow estimator E and a conditional image
generator G [20].

4.2. Training and Inference

The pipeline is first trained end-to-end for video recon-
struction (i.e. without prediction) using the loss functions
given in [20]. Following this the keypoint detector from

the trained model is used to generate keypoints to train the
VRNN as per the loss function below which includes a
reconstruction loss and a Kullback-Leibler divergence term
between the prior Nprior

t and posterior Nenc
t [4]:

LV RNN=Σn
t=1E

[
log p(Xt|z≤t,x≤t)−βKL(Nenc

t ||Nprior
t )

]
During inference a source image (A) and a sequence of

video frames (B) are input to the keypoint detectors during
the first M frames of a video sequence. After this no inputs
are supplied for the next N frames during which phase the
VRNN is used to predict the keypoints followed by which
the optical flow and conditional image generation networks
are used to synthesize the N video frames.

Figure 3. Components of pipeline for Motion Transfer synthesis and prediction

5. Experiments and Results
We perform our experiments with two networks, namely

VRNN and RNN, on UvA-Nemo [7] and BAIR [8] datasets
in both reconstruction and transfer modes. In the following
subsections we first briefly describe our datasets and how
these two modes operate during prediction. Following this
we describe our experimental results and demonstrate im-
proved performance of VRNN over RNN for both the Nemo
dataset and the BAIR dataset in both modes.

5.1. Types of analysis

We evaluate the video generation quality on two video
datasets. The UvA-Nemo dataset (hereby denoted as the
Nemo dataset) contains 1240 videos, we split it into 1110
training data and 124 testing data of facial expressions

with 32 frames for each. Each video consists of a person
starting from no expression to a smiling face, which can
help test the ability of capturing subtle changes from each
frame. We also use 5001 training and 256 test videos
from the BAIR dataset, with 30 frames for each video,
consisting of moving robotic arms grabbing different
objects. This dataset is useful to evaluate the performance
of our proposed architecture in a complicated environment
with varying backgrounds and irregular movements.

We compare the predictive performance of VRNN and
RNN on Nemo and BAIR datasets for both reconstruction
and transfer modes. In reconstruction mode the network
takes the source image S and driving video D from the
same video A. In this case the first frame of A is the source
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image S and the following frames are the driving video
frames, D. We use the first M key points Kd generated
from D as input to the prediction network P (Figure 3)
to generate the rest of N video keypoints Kp. Following
this we use S and the combination of keypoints Kd and
Kp to reconstruct the video through the whole pipeline
and calculate the Mean Square Error (MSE) and Frechet
Video Distance (FVD) [23] of the generated video versus
the corresponding original ground truth video to evaluate
the performance.

In transfer mode, the network takes the source image S

and driving video D from different videos A and B. In this
case the first frame of video A is used as the source image
S and the frames from video B are used as the driving video
D. Similar to what we do in reconstruction mode, we use
the first M keypoints, Kd as input to prediction network P
and then use the combination of S, Kd and Kp to generate
the motion transfer video. Note that in this case there is no
source video to use as ground truth for the transferred video.
We therefore generate the M + N video frames without
prediction as ground truth to evaluate the performance of
both VRNN and RNN.

Figure 4. Nemo dataset examples

Figure 5. Bair dataset examples

5.2. Results on Nemo dataset

For the Nemo dataset, we use Kd from the driving video
to get Kp in the following manner:

• M1: Using the first 5 frames’ keypoints to predict the
following 27 frames’ keypoints. In this case M =
1, 2, 3, 4, 5 and N = 6, 7, . . . , 32. For our experiments
we apply 10 model initializations.

• M2: Using 1 video frame’s keypoint to predict the next
1 frame’s keypoint for all video frames. In this case
M = 1, 3, 5, . . . , 31 and N = 2, 4, . . . , 32. For our
experiments we apply 5 model initializations.

Prediction results for Nemo dataset for the above cases
are shown in Figures 6,7,8,9. It can be seen that in all cases
VRNN conclusively outperforms RNN for both tasks of re-
constructing ground truth video as well as generating mo-
tion transfer video as shown by Mean Square Error (MSE)
and Frechet Video Distance (FVD). Moreover, we see that
FVD shows a larger relative improvement for VRNN ver-
sus RNN than MSE. As MSE only focuses on reconstruc-
tion quality i.e. pixel-wide difference, between ground truth
and generated videos, and FVD considers not only the video
quality but also temporal coherence and diversity. Based
on these results we can conclude that the compared to non-
manifold based prediction based approach using RNN, out-

puts generated from VRNN have superior video quality,
temporal coherence and diversity.

5.3. Results on BAIR dataset

For the BAIR dataset, we use the keypoints correspond-
ing to the first 5 frames to predict the keypoints correspond-
ing to the next 25 frames i.e. in this case M = 1, 2, 3, 4, 5
and N = 6, 7, 8, ..., 30. For our experiments we apply
5 model initializations. Prediction results for the BAIR
dataset are shown in Figures 10,11. It can be seen that also
in this case with a more complex dataset the VRNN outper-
forms RNN. Moreover, the results from the BAIR dataset
also share the same trend as those from Nemo dataset where
FVD shows a larger relative improvement for VRNN versus
RNN than MSE. This signifies that using prediction with
VRNN versus RNN leads to the generation of outputs with
better video quality, temporal coherence and sample diver-
sity.
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Figure 6. Nemo reconstruction mode MSE error. Left: M1 Right: M2

Figure 7. Nemo reconstruction mode FVD error. Left: M1 Right: M2

Figure 8. Nemo transfer mode MSE error. Left: M1 Right: M2

Figure 9. Nemo transfer mode FVD error. Left: M1 Right: M2
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Figure 10. Bair reconstruction mode error. Left: MSE Right: FVD

Figure 11. Bair transfer mode error. Left: MSE Right: FVD

6. Conclusions and Future Work
In this paper we demonstrate a VRNN enabled manifold

learning based prediction and synthesis flow for implement-
ing motion transfer in streaming applications such as video
conferencing. Using prediction in the motion transfer ar-
chitecture enables bandwidth savings of 2x or more for the
driving video data as compared to case where prediction
is not used. With representative datasets and different pre-
diction horizons we compare the performance of manifold-
based prediction method using VRNN over a non-manifold
based prediction method using RNN. For all datasets we
demonstrate the superior performance of VRNN for video
prediction in both cases of reconstruction and transfer. Our
future plans include developing manifold based prediction
techniques for high dimensional time series which com-
bine nonlinear dimensionality reduction and Deep Gener-
ative Models such as VAEs for enabling superior perfor-
mance in motion transfer based applications.
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