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Abstract

The distance transform of a binary image is a classic tool
in computer vision and it has been widely used in the field
of Topological Data Analysis (TDA) to study porous media.
A common practice is to convert grayscale images to binary
ones to apply the distance transform. In this work, by con-
sidering the threshold decomposition of a grayscale image,
we prove that threshold decomposition and distance trans-
form together to formulate a two-parameter filtration. This
would offer the TDA community a concrete example to ap-
ply multi-parameter persistence on digital image analysis.
We demonstrate our method on the firn dataset.

1. Introduction
Topological data analysis (TDA) is a rising field at the

intersection of Mathematics, Statistics, and Machine Learn-
ing [9, 3, 33, 5]. Tools from TDA have proven successful
in analyzing a variety of scientific problems and datasets
(see e.g. [25] for a list of application areas). The develop-
ment of the persistent homology is the main driving force in
TDA (see e.g. introductory texts [6, 35]). In classical persis-
tent homology, we track changes in homology over a one-
parameter filtration, or a single sequence of spaces satisfy-
ing a nested subset relation ordered by inclusion. Recently,
a more general form of persistent homology, multiparame-
ter persistent homology has been studied [11, 19, 4, 27, 20].
Similar to the classic filtration, multiparameter persistence
uses a multi-parameter filtration. However, to the best of
our knowledge, multi-parameter filtration in the computer
vision literature is limited. In this paper, we provide a con-
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crete two-parameter filtration for 2D or 3D digital images.
Our motivation for this study is the analysis of firn data.

Firn is a type of porous media that is formed at the top
of glaciers and ice sheets where snow melting rarely oc-
curs. This area of firn, or old snow layers, comprises meta-
morphosing ice particles and interconnected pore space.
Understanding how the underlying microstructure of the
firn changes with depth is a difficult, yet important, task
that is required for better interpretation of satellite remote
sensing signals and ice core paleoclimate records. A non-
destructive method for retrieving firn microstructural infor-
mation is x-ray micro-computed tomography (micro-CT).
Micro-CT imaging of firn sample produces a stack of 2-
dimensional cross-sectional images in greyscale, that repre-
sent the 3-dimensional volume of the sample.

There have been several studies that analyze porous me-
dia with tools in TDA. For instance, in [21], authors de-
velop statistical inference of persistent homology over 3D
rock images to predict fluid flow; in [15], authors develop a
new index based on persistent homology to characterize the
degree of rock heterogeneity; in [13], authors use persis-
tent homology to relate microstructure and fluid trapping in
sandstones; in [30], authors study pore space and fluid phase
characterization in sands; in [26], authors study percolating
length scales; in [17], authors study evolution of a cell alu-
minium foam. The common pipeline of these work is to (1)
convert grayscale images to binary ones, (2) apply distance
transform (defined in Section 2.2) to those binary images,
and (3) use persistent homology to study transformed im-
ages.

In this paper, we extend the above pipeline by expanding
(1); we consider all possible binary images obtained from
threshold decomposition. For each resulting binary image,
we proceed down the pipeline. Most importantly, we prove
that the thresholding decomposition and distance transform
formulate a two-parameter filtration. Thus, our main con-
tribution to the field results in a new tool for practitioners to
use in applications and many concrete examples for those
researching multiparameter persistence to use while testing
and exploring theories.

4176



Our paper is outlined as follows. We introduce neces-
sary mathematical backgrounds for this work, including no-
tations, distance transform, persistent homology, and two-
parameter filtration in Section 2. In Section 3, we prove
our main result – the combination of distance transform and
thresholding operation forms a two-parameter filtration. Fi-
nally, in Section 4, we extract useful information from the
two-parameter filtration and apply it to the firn data.

2. Background and Notation

This section is split into three parts. First, we review
notations and basic properties of digital images used in this
paper. Next, we introduce the distance transform of digital
images and its connection to the filtration of images. We
follow notations in the work [29, 28, 22]. Finally, we give a
brief introduction to persistent homology.

2.1. Digital Images

We use R to denote the set of all real numbers. The set of
all non-negative real numbers is denoted by R≥0 = {a ∈
R : a ≥ 0}. Similarly, Z≥0 is the set of all non-negative
integers.

An image domain in Z2 means a non-empty and finite
subset of Z2. Let P be an image domain in Z2. An (digital)
image is referred as a function f : P → R≥0. The set of all
images on P is denoted by IP . An image f ∈ IP is called
binary if it has range {0, 1}. Typically, 0 and 1 represent
black and white color, respectively. The set of all binary
images on P ⊆ Z2 is denoted by BIP . An image f ∈ IP
which is not binary is called a grayscale image. Based on
this setting, we have BIP ⊆ IP . One can also define an
order in IP . For two functions f, g : P → R, we say that
f ≤ g if and only if f(p) ≤ g(p) whenever p ∈ P .

For illustration, we also use the following convention to
represent an image f on the grid P :

P =
• •
• • and f =

a b
c d

(1)

where a, b, c, d ∈ R≥0. In this case, P is a 2-by-2 grid. and
the corresponding pixel values are a, b, c, b, respectively.

Let f ∈ IP . The support of f is defined by

supp(f) = {p ∈ P | f(p) ̸= 0}. (2)

In particular, the support of a binary image is the set of all
white pixels.

Given a grayscale image f ∈ IP , the binary image
thresholded at t is defined as

ft(p) :=

{
0 if f(p) ≤ t,

1 otherwise
(3)

(a) Image f (b) Image f79 (c) Image f194

Figure 1. An example of the thresholding operator. (a) A greyscale
image f which has size 800 × 600 pixels. The range of the pixel
values of f is {0, 80, 195, 227, 255}. Figures (b) and (c) are im-
ages created by applying thresholds 79 and 194 on the image f .

for every p ∈ P ⊆ Z2. Let f be an 8-bit grayscale image,
the threshold decomposition of f is the collection of all pos-
sible binary images, f0, f1, · · · , f255. One may verify the
following relation

ft ≤ fs, if s ≤ t. (4)

The following properties are used in the paper.

Proposition 1 ([29], Property 1.11). Let f, g ∈ IP be im-
ages. If f ≤ g, then g−1(0) ⊆ f−1(0). In addition, if
f, g ∈ BIP are binary images, then f ≤ g if and only if
g−1(0) ⊆ f−1(0).

The following proposition is an alternate form of Propo-
sition 1.

Proposition 2. For f, g ∈ IP . If f ≤ g, then supp(f) ⊆
supp(g). In addition, if f, g ∈ BIP are binary images, then
supp(f) ⊆ supp(g) if and only if f ≤ g.

Proposition 3 ([14], Lemma 1). For images f, g ∈ IP ,
f ≤ g if and only if ft ≤ gt for every t ∈ R≥0.

For example, the image f in Figure 1 contains two balls
with different pixel values, where parts near the center of a
ball have darker colors (i.e., lower pixel values). As a to-
pographic map, different thresholds capture objects in dif-
ferent depths. In Figure 1-(b), the threshold 79 detects the
darkest parts of two balls. On the other hand, the threshold
194 identifies all gray regions of the left ball as a single one
and erodes the pixels of the value 227 in the right ball.

Figure 1 shows that different thresholds detect different
objects. In this case, the sizes of the two balls lead to dif-
ferent distances between them. The distance transform in
image processing provides a way to describe this relation-
ship between local objects in digital images. In this work,
we would combine the thresholding and distance transform
techniques to study the firn data.

2.2. Distance Transform

In this subsection, we will review the notations for the
distance transform which we follow [29, 28, 22] and discuss
its properties.
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Let P ⊆ Z2 be an image domain. Let d be a metric on
P . The common choices of d are ∞-norm defined by

d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}, (5)

or q-norm defined by

dq((x1, y1), (x1, y2)) := (|x1 − x2|q + |y1 − y2|q)1/q .
(6)

In particular, d∞ is also known as Chebyshev distance [2],
d1 is known as the taxicab metric [18], and d2 is known as
the Euclidean distance.

The definition of the distance transform is as following.

Definition. Let P ⊆ Z2 be an image domain, f ∈ IP , and
d be a metric on P . A distance transform with respect to
metric d is a function Td : IP → IP which is defined by

Td(f)(x) = min{d(x,y) : y ∈ supp(f)}, ∀ x ∈ P. (7)

By switching the support of an image, the anti-distance
transform can be defined.

Definition. Let P ⊆ Z2 be an image domain, and d : P ×
P → R≥0 be a distance function. An anti-distance trans-
form with respect to metric d is a function T̃d : IP → IP
defined by

T̃d(f)(x) = min{d(x,y) : y ∈ P \ supp(f)}
= min{d(x,y) : y ∈ P, f(y) = 0}, ∀ x ∈ P.

(8)

Remark. We note that Td(f) (resp. T̃d(f)) is not defined
here if supp(f) = ∅ (resp. P \supp(f) = ∅). We omit these
cases of images. However, one may consider the extended
real number system to solve this logic issue [24].

Distance and anti-distance transforms are tools for inves-
tigating the distribution of pixels. In this paper, we mainly
consider distance and anti-distance transforms applying on
binary images. In this case, as functions, these transforms
would send each binary image to a grayscale one, i.e.

f ∈ BIP =⇒ Td(f) ∈ IP . (9)

Example 1. Consider image f : P → {0, 1} with P ⊆ Z2

defined by

f =
1 1 1
1 0 0
1 0 0

with P =
• • •
• • •
• • •

(10)

and d2. Then

Td2
(f) =

0 0 0
0 1 1
0 1 2

and T̃d2
(f) =

√
2 1 1
1 0 0
1 0 0

. (11)

As shown in Example 1, each entry in Td2(f) (resp.
T̃d2

(f)) is the minimal distance of current pixel to a white
(resp. black) component in image f . Combining two dis-
tance transforms Td(f) and T̃d(f) leads to the Signed Eu-
clidean Distance Transform (SEDT) [34]. Specifically, let
f ∈ BIP , the SEDT is Td(f) := Td(f)− T̃d(f). Since we
consider Td(f) and T̃d(f) separately, our main result will
also hold for SEDT.

Filtration of objects (or sets) is crucial for constructing
persistent homology in TDA [23, 8]. We call a sequence of
images f1, f2, ..., fn ∈ IP a filtration of images if

f1 ≤ f2 ≤ · · · ≤ fn. (12)

There several methods for obtaining a filtration of sets from
a sequence of images. For instance, one may consider the
preimages of zeros of images in (12):

f−1
n (0) ⊆ · · · ⊆ f−1

2 (0) ⊆ f−1
1 (0). (13)

On the other hand, one can construct a filtration of sets by
considering their supports:

supp(f1) ⊆ supp(f2) ⊆ · · · ⊆ supp(fn). (14)

The following proposition is useful for constructing fil-
tration of images from distance transform.

Proposition 4. Let P ⊆ Z2 be an image domain, d a metric
on P , and f, g ∈ IP . Then the following hold:

(a) Td(g) ≤ Td(f) if supp(f) ⊆ supp(g);

(b) T̃d(f) ≤ T̃d(g) if supp(f) ⊆ supp(g).

Hence Td(g) ≤ Td(f) if and only if supp(f) ⊆ supp(g).

Proof. (a) If x ∈ P , then Td(g)(x) = min{d(x,y) :
y ∈ supp(g)}. Because supp(f) ⊆ supp(g), Td(g)(x) =
min{d(x,y) : y ∈ supp(g)} ≤ min{d(x,y) : y ∈
supp(f)} = Td(f)(x). Because P \ supp(g) ⊆ P \
supp(f), (b) follows by the same arguments as in (a).

Conversely, if supp(f) ⊈ supp(g), then there is an x ∈
P such that f(x) > 0 and g(x) = 0. This shows that
Td(f)(x) = 0 and Td(g)(x) > 0. Hence Td(g) ≰ Td(f).

Remark. We note that the filtrations in (13) and (14) only
work for the case of f1, ..., fn ∈ IP . Because Td(fi) may
contains negative entries, (13) and (14) may not hold. How-
ever, by Proposition 4, we may obtain a filtration of sets
supp(fn) ⊆ · · · ⊆ supp(f2) ⊆ supp(f1) if Td(f1) ≤
Td(f2) ≤ · · · ≤ Td(fn).

Figure 2 illustrates how the distance transform captures
the distance information in digital images. In this figure,
images in (c) and (d) are the heat maps of binary images in
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(a) Image f79 (b) Image f194

(c) Heat map T̃d(f79) (d) Heat map T̃d(f194)

(e) Image T̃d(f79)50 (f) Image T̃d(f194)50

Figure 2. An example of the distance transforms on images. (a)
and (b) are the images f79 and f194 defined in Figure 1. (c) and
(d) are the heat maps T̃d(f79) and T̃d(f194) of the images f79 and
f194. Images in (e) and (f) are obtained by applying the threshold
50 on the heat maps in (c) and (d). The distance d used here is the
Euclidean distance.

(a) and (b). By viewing each heat map as a greyscale image,
the value of a pixel in a heat map made by the anti-distance
transform is the minimal distance from the pixel to the black
regions in the original binary image.

For example, in Figure 2, colors in T̃d(f79) represent the
values of minimal distances between pixels to black regions
in f79. For the fixed threshold 50, T̃d(f79)50 is a binary
image where pixels in T̃d(f79)50 are black if they have dis-
tance values ≤ 50.

The set of black pixels in f79 is contained in the set of
black pixels in T̃d(f79)50. In this case, the information of
connected components in f79 and T̃d(f79)50 are the same.
On the other hand, T̃d(f194)50 changes the number of con-
nected components in f194 since the balls in f194 are finally
merged into a single component.

Homology, a mathematical tool developed in algebraic
topology [10, 12, 32], can measure this topological informa-
tion. As the thresholds change, one greyscale image f may
uncover various topologies. It motivates us to integrate the
persistent homology into this framework. The framework
of changing the 2-parametric thresholds derives a double
sequence of images. In this paper, we call this double se-
quence a bi-filtration of images and prove that it satisfies the
set inclusion relation (Proposition 5).

2.3. Persistent Homology

Homology is a tool from Algebraic Topology that allows
topologists to assign abstract topological spaces to com-
putable vector spaces [10, 12, 32]. We will not define it
here, but for our purposes, homology helps us count the
number of holes in a topological space. For example, if
X is a topological space, H0(X) helps us count the number
of 0-dimensional holes, or connected components, of X .
To be more precise, H0(X) produces a vector space whose
dimension, denoted β0 is called the zeroth Betti number.
In a similar way, H1(X) produces β1, a count of the one-
dimensional holes in X , and H2(X) produces β2, which
counts the number of “air pockets” in X . The index and
heuristic continue for Hn, n ∈ N. In TDA, we typically
concern ourselves only with H0, H1, and H2.

On the other hand, persistent homology [7, 3] lets us
compute and track homology over related spaces. A fil-
tration of topological spaces is an increasing sequence of
topological spaces

X1 ⊆ X2 ⊆ · · · ⊆ Xm. (15)

For a given non-negative integer n ∈ Z≥0, we can compute
Hn(Xi) for i = 1, . . .m. Due to the subset relations, we
are guaranteed linear maps fij : Xi → Xj , i ≤ j between
the resulting spaces.

We say a homology class α is born at b if we have α ∈
Hk(Xb) and α /∈ im fb−1,b. We say that α born at b dies
at d, d ≥ b if fb,d−1(α) /∈ im fb−1,d−1, but fb,d(α) ∈
im fb−1,d, i.e. if it merges with a previous class. In the case
where a class does not die, we assign it a death value of ∞.

We collect the birth-death pairs (b, d) for each class ap-
pearing in the filtration into a summary called a persis-
tence diagram, or just diagram associated to the filtration,
{Xi}mi=1, which we will denote by D({Xi}mi=1).

To apply persistent homology to images, we note that we
can assign topological spaces, called cubical sets to binary
images. Moreover, we can use a homology theory called cu-
bical homology to compute homology on such spaces [16].
Thus for a given grayscale image, our filtration is exactly
the threshold decomposition across all threshold values.
From here, the persistent homology discussion above ap-
plies.

We use images in Figure 3 to explain the geometric
meaning of the persistence diagrams of a filtration. For the
image f in Figure 1, the collections of black pixels in im-
ages T̃d(f79)j , j = 1, 2, ..., 255 form a filtration of cubes.
The barcode (1, 78) in the 0th persistence diagram of this
filtration is an approximation for the (half of) distance be-
tween the balls in f79.

In this paper, we focus on filtrations induced by fi for
i = 1, 2, ..., 255. We will prove in the next section that
filtrations associated with different binary images fi’s also
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(a) f79 (b) T̃d(f79)20 (c) T̃d(f79)40 (d) T̃d(f79)60 (e) T̃d(f79)80

Figure 3. An example of a filtration made by applying different thresholds on a transformed image T̃d(f79) where f is defined as in Figure
1. The 0th persistence diagram of this filtration is {(1,+∞), (1, 78)}.

satisfy the set-inclusion relations, and hence form a bi-
filtration of cubes.

3. Two-parameter Persistence via Distance
Transform

In this section, we introduce how to construct a bi-
filtration by applying distance transforms and thresholding
on a digital image.

Before defining bi-filtration of sets, we first define an
partial ordered ≤ on Z2. Given two vectors u = (x1, y1)
and v = (x2, y2), we define u ≤ v if and only if x1 ≤ x2

and y1 ≤ y2.

Definition ([4]). Let N be a subset of Z2, a bi-filtration of
sets is a collection {Su}u∈N of sets indexed by N which
satisfies Su ⊆ Sv whenever u ≤ v.

Let P ⊆ Z2 be an image domain and f ∈ IP . For
s ≤ t ∈ R≥0, we have ft ≤ fs where ft and fs are
binary images. By Proposition 2, supp(ft) ⊆ supp(fs).
Therefore, for a distance function d : P × P → R≥0,
if t1 ≥ t2 ≥ · · · ≥ tl ≥ 0, we can consider images
T̃d(ft1) ≤ T̃d(ft2) ≤ · · · ≤ T̃d(ftl). On the other hand,
if a1 ≥ a2 ≥ · · · ≥ ak ≥ 0, then T̃d(fti)a1 ≤ T̃d(fti)a2 ≤
· · · ≤ T̃d(fti)ak

for each i ∈ {1, 2, ..., l} by Proposition 3.
Finally, we obtain the net

T̃d(ft1)a1 ≤ T̃d(ft1)a2 ≤ · · · ≤ T̃d(ft1)ak

≥ ≥

... ≥

T̃d(ft2)a1
≤ T̃d(ft2)a2

≤ · · · ≤ T̃d(ft2)ak

≥ ≥

... ≥

T̃d(ft3)a1
≤ T̃d(ft3)a2

≤ · · · ≤ T̃d(ft3)ak

≥ ≥

... ≥

...
...

...
...

≥ ≥

... ≥

T̃d(ftl)a1 ≤ T̃d(ftl)a2 ≤ · · · ≤ T̃d(ftl)ak

(16)
of binary images. Alternatively, if we define

Ũ(ti,aj) =
(
T̃d(fti)aj

)−1

(0) (17)

we have the bi-filtration

Ũ(t1,a1) ⊇ Ũ(t1,a2) ⊇ · · · ⊇ Ũ(t1,ak)

⊇ ⊇ ...

⊇

Ũ(t2,a1) ⊇ Ũ(t2,a2) ⊇ · · · ⊇ Ũ(t2,ak)

⊇ ⊇ ...

⊇

Ũ(t3,a1) ⊇ Ũ(t3,a2) ⊇ · · · ⊇ Ũ(t3,ak)

⊇ ⊇ ...

⊇

...
...

...
...

⊇ ⊇ ...

⊇

Ũ(tl,a1) ⊇ Ũ(tl,a2) ⊇ · · · ⊇ Ũ(tl,ak)

(18)

of black pixels in binary images. This defines a bi-filtration
over the index set

N = {(ti, aj) : i = 1, ..., l, j = 1, 2, ..., k}. (19)

where (t, a) ≤ (s, b) in N is defined by t ≤ s and a ≤ b.
We summarize the main result as the following proposi-

tion by computing filtrations for T̃d and Td:

Proposition 5. Let P ⊆ Z2 be an image domain, d a dis-
tance function on P , and f ∈ IP . For s ≤ t and a ≤ b in
R≥0, the following order relations hold:

Td(ft)b ≤ Td(ft)a

≤ ≤

Td(fs)b ≤ Td(fs)a

, (20)

T̃d(ft)b ≤ T̃d(ft)a

≥ ≥

T̃d(fs)b ≤ T̃d(fs)a

, (21)

and
Td(ft)b ≤ Td(ft)a

≤ ≤

Td(fs)b ≤ Td(fs)a
. (22)

In particular, if Ũ(α,β) :=
(
T̃d(fα)β

)−1

(0), then (21) de-
fines a bi-filtration of sets:

Ũ(t,b) ⊇ Ũ(t,a)

⊆ ⊆

Ũ(s,b) ⊇ Ũ(s,a)

. (23)
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(a) Image f

(b) Ũ(194,100) (c) Ũ(194,50)

(d) Ũ(79,100) (e) Ũ(79,50)

Figure 4. A toy example of the distance transform bi-filtration (18)
of images of the size 800 × 600 pixels. In this bi-filtration, we
consider the sets of black pixels. The darker the image, the larger
the set. The based image f is defined as in Figure 1.

Proof. Because s ≤ t, ft ≤ fs. By Proposition 2,
supp(ft) ⊆ supp(fs). Therefore, Td(fs) ≤ Td(ft) and
T̃d(ft) ≤ T̃d(fs) by Proposition 4. Hence Td(fs) ≤ Td(ft).
The row relations in (20), (21), and (22) follow from Propo-
sition 2.

Example 2. Consider grayscale image

f =
3 2 2
2 0 0
2 0 0

with P =
• • •
• • •
• • •

. (24)

Let d2 be the 2-norm distance function on P . For s = 1 and
t = 2, we have

ft =
1 0 0
0 0 0
0 0 0

and fs =
1 1 1
1 0 0
1 0 0

. (25)

Hence

Td2(ft) =

0 1 2

1
√
2

√
5

2
√
5

√
8

, Td2(fs) =
0 0 0
0 1 1
0 1 2

,

T̃d2
(ft) =

1 0 0
0 0 0
0 0 0

, T̃d2
(fs) =

√
2 1 1
1 0 0
1 0 0

.

(26)

For a = 0.5 and b = 1.4,

Td2(ft)b =
0 0 1
0 1 1
1 1 1

, Td2(ft)a =
0 1 1
1 1 1
1 1 1

,

Td2
(fs)b =

0 0 0
0 0 0
0 0 1

, Td2
(fs)a =

0 0 0
0 1 1
0 1 1

.

(27)

Similarly, for the anti-distance transform:

T̃d2
(ft)b =

0 0 0
0 0 0
0 0 0

, T̃d2
(ft)a =

1 0 0
0 0 0
0 0 0

,

T̃d2(fs)b =
1 0 0
0 0 0
0 0 0

, T̃d2(fs)a =
1 1 1
1 0 0
1 0 0

.

(28)

This induces the bi-filtration (23).

Note that the nets of preimages of zero induced by (20)
and (22) are not bi-filtration since the index orders be-
tween index set Z2 and sets of pixels are not consistent.
However, by re-defining the partial orders on Z2, one may
obtain different bi-filtrations. For example, if we define
U(α,β) = supp(Td(fα)β) = Z2 \ (Td(fα)β)

−1
(0) and

(x1, y1) ≤′ (x2, y2) if and only if x1 ≤ x2 and y1 ≥ y2,
then for s ≤ t and a ≤ b,

U(t,b) ⊆ U(t,a)

⊆ ⊆
U(s,b) ⊆ U(s,a)

(29)

is a bi-filtration for the new partial order ≤′ on Z2. In other
words, the index order on Z2 could be freely modified for
different tasks. By choosing suitable indexes, homology of
bi-filtrations induced by equations (20), (21), and (22) pro-
vide concrete examples of multi-persistence. As we showed
in Example 1, except the topological barcodes from thresh-
olding, the persistent homology on the bi-filtration may re-
veal additional geometric information for images.

4. Application to Firn
Understanding the number and average size of pores

within a firn layer is important for modeling air flow through
the firn column. As firn layers are buried, they undergo den-
sification with depth due to the overburden pressure of the
accumulating snow at the surface. This causes the number
of pores, as well as the volume of those pores, to shrink
with depth. Ultimately, the firn layers reach the density of
glacial ice at the bottom of the firn column, and the intercon-
nected pore space is transformed into individual closed-off
bubbles. These bubbles trap a direct sample of atmospheric
air, and make up an important paleoclimate record of past
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Figure 5. Illustration of the distance transform bi-filtration (18). In this bi-filtration, we consider the sets of black pixels. The darker the
image, the larger the set.

Figure 6. The workflow for extracting a distance transform persis-
tence diagram

atmospheric composition within the glacial ice. A better un-
derstanding of the size and number of pores with depth in
the firn will help to improve the age estimates of the trapped

atmospheric samples within those bubbles.

4.1. Description of the dataset

The firn dataset used in this study comes from a firn core
drilled at the NEEM Drilling Camp, Greenland in 2009.
From the main core, 1x1x1.5 cm samples were cut at se-
lected depths and scanned with the micro-CT. Reconstruc-
tions of the micro-CT data resulted in a stack of approxi-
mately 900 cross-sectional images representing the volume
of the sample. Each cross-sectional image is approximately
500x500 pixels with a pixel resolution of 15 µm. Here we
analyze the samples from 7, 23, 47, 59, and 78 m depth,
which span the full range of depths in the NEEM firn col-
umn.

4.2. Results

The firn images are grayscale images whose pixel values
are integers between 0 and 255. Given a grayscale image,
for each integer t ∈ {0, 1, . . . 255}, we can threshold the
image to extract a binary image. On each of these threshold
images, we apply the distance transform. Next, we com-
pute persistent homology on these images, and extract the
relevant statistics from the resulting diagrams. Figure 6 il-
lustrates the common practice, where (a) is a firn image, (b)
is a thresholded binary image, (c) the distance transform of
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Figure 7. This displays nt vectors for five depths of firn-core sam-
ples. t = 4i for i = 1, 2, 3, · · · , 64. For each depth, 10 images
were sampled.

the (b), and (d) is the persistence diagram of (c).
In this work, we consider the bi-filtration {Ũ(t,a)} in

(18). Figure 5 shows an example of this bi-filtration. For
each t, we consider the persistence diagram along the verti-
cal path, i.e. D({Ũ(t,a)}Ma=1). For each persistence diagram
along the vertical path, we use the number of points in the
diagram and the total lifespan,

∑
(b,d)∈D d− b, i.e.

nt = #D({Ũ(t,a)}Ma=1); (30)

Lt =
∑

(b,d)∈D({Ũ(t,a)}M
a=1)

d− b. (31)

We consider ti = 4i for i = 1, 2, 3, · · · , 64. Hence, for
each image, both nt and Lt are of 64-dimensional vector.
Both of nt and Lt reveal something about the underlying
image. The nt vector reveals how many generators there
were and can help us count the number of contiguous ice or
air regions. The Lt vector gives us an idea of how big these
contiguous regions are. Figure 7 shows a plot of the nt

vector for 10 sample images of five different depths of ice-
core samples. We note the image shows a nice separation of
these values by depth. Similarly, Figure 8 shows a plot of
the Lt vector for the same 10 sample images of five differ-
ent depths of ice-core samples. We note the image shows a
nice separation of these values by depth. We also note that
it takes about 120 seconds to process one slice and produce
a vector. In the demonstrations and experiments, the per-
sistence diagrams were computed by the software GUDHI
[31]. The distance transforms were computed with OpenCV
[1].

4.3. Discussion

From Figure 7, we observe that the shapes of the point-
count curves vary with respect to depth. At each depth, the
ten curves from the ten randomly selected images in the
sample stack are very similar, yet not the same. The dif-
ferences between the ten curves for each sample are due

Figure 8. This displays Lt vectors for five depths of firn-core sam-
ples. t = 4i for i = 1, 2, 3, · · · , 64. For each depth, 10 images
were sampled.

to heterogeneity within the firn samples themselves. The
curves suggest that images at one sample depth have sim-
ilar characteristics, and that samples from different depths
are distinct.

Additionally, The group of point-count curves for sam-
ples 23, 47, 59, and 78m are unimodal while the curves for
sample 7m is bimodal. At very shallow depths in the firn
column, such as in sample 7m, the amount of ice- and pore-
space is relatively equal within the sample. On the other
hand, the ice-space dominates the firn microstructure for the
samples at greater depths because of their much larger den-
sities. Therefore, as we scan through the threshold values
for shallow firn samples, we can expect a bimodal distribu-
tion of the point count. The transition between bimodal and
unimodal point-count curves likely corresponds to a conse-
quential shift in firn density.

In Figure 8, we observe the maximum values of the
curves, which reveal the size and complexity of the ice
space for each firn sample. In general, as images become
darker and darker, as the threshold value increases, more
white holes will be formed. If these images contain a large
portion of white pixels, it will take a lot of effort to fill in all
the white regions, and therefore, the total lifespan would be
larger. Looking at the firn samples, the maximum count val-
ues are approximately 4000 for 7m (blue curves), 5000 for
23m (orange curves), 6000 for 47m (green curves), 6500 for
59m (red curves), and 8000 for 78m (purple curves). As we
go deeper in the firn column, the firn layers contain more ice
space and have increasingly simple structures. Therefore,
we expect the deeper samples to have larger point counts
than shallower samples, as we’ve seen here, because the
complexity decreases with depth and the portion of white
space (ice space) increases with depth.
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