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Abstract

As data grows in size and complexity, finding frameworks
which aid in interpretation and analysis has become criti-
cal. This is particularly true when data comes from complex
systems where extensive structure is available, but must be
drawn from peripheral sources. In this paper we argue that
in such situations, sheaves can provide a natural framework
to analyze how well a statistical model fits at the local level
(that is, on subsets of related datapoints) vs the global level
(on all the data). The sheaf-based approach that we propose
is suitably general enough to be useful in a range of applica-
tions, from analyzing sensor networks to understanding the
feature space of a deep learning model.

1. Introduction
Data is being collected at an ever-increasing rate in an

ever-broader range of modalities. It is more and more fre-
quently the case that extracting useful information from such
large datasets requires the integration of sophisticated analyt-
ical techniques in combination with deep domain knowledge
(often drawn from independent databases). While progress
has been made in developing approaches to better visualize
and explore the data itself, techniques for bringing outside
knowledge into the analysis of the statistical models built
on top of this data either remain mostly ad hoc or have not
caught up to the size or scope of current state-of-the-art mod-
els. In this paper we propose a sheaf-theoretic approach to
address this challenge.

Despite their ubiquity in mathematics, sheaves have only
recently started playing a role in data science, where they
have been leveraged as data structures which can system-
atically capture information from many non-independent
data-streams. Sheaf frameworks have been developed for un-
certainty quantification in geolocation [5], air traffic control
monitoring [8], and learning signals on graphs [2]. Much
of the inspiration for the present work comes from sheaf-
theoretic constructions meant to analyze sensor networks
[11], [1]. We use these ideas to analyze the fit of data-driven

models.
Our motivation arises from the observation that the qual-

ity of a model’s “fit” may vary dramatically across subpop-
ulations of a dataset. Indeed, it is increasingly apparent
that the construction of models that are both robust and of-
ten highly-overparametrized requires understanding model
performance not only at the global level (for example, the
accuracy over an entire dataset) but also at the local level
(precision on meaningful subsets of the data) [14]. While
our focus is not on overparametrized models in this work, we
do give an example of how our framework might be applied
to this setting in Section 3.1.

To define sheaves on a dataset we first construct a topol-
ogy based on metadata, with open sets corresponding to
subsets of related points. We build a sheaf and presheaf on
top of this topology. We call the sheaf the data sheaf D. It
consists of all possible data value observations. Then the
model presheaf M consists of a specified family of functions
associated with each open set. For example, each data point
might be indexed by a spatial location on Earth, an open set
U might then consist of spatial locations that are nearby each
other, and a data observation might be a measurement of
temperature and wind speed. Then a section of the data sheaf
at U is a function f : U → R2 which associates an element
of R2 (temperature and wind speed) to each spatial location
in U . If we wish to predict wind speed from temperature, we
might chooseM(U) to consist of all 1-dimensional affine
subspaces (lines) in R2 that relate these two quantities. The
process of modeling data associated with the points in U as
a line in R2 is equivalent to defining a map from the space
of sections D(U) to the space of sectionsM(U).

As suggested by this example, we identify a method of
modeling data on each open set U in our topology with a
map ΦMU : D(U)→M(U). That is, for an observation of
data on U we have a rule for picking a model. In general,
ΦM will not be a presheaf morphism. Inspired by the notion
of consistency from [11], we introduce a family of statistics,
model map inconsistency, which take values in R≥0 and
measure the extent to which ΦM is not a presheaf morphism.
Indeed, we show in Proposition 3.1 that ΦM is a presheaf
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Researcher Publications
a 5
b 6
c 8
d 7
e 4
f 5

Table 1. Number of publications per researcher in Example 1.1

morphism if and only if the inconsistency of ΦM is 0.
Model map inconsistency is important because it allows

us to point to specific subpopulations of a dataset on which a
given model’s ability to fit the data changes. This is critical
because in the real world, the summary statistics used in
academic benchmark studies often do not provide sufficient
feedback on model behavior and performance. Indeed, we
need to understand specific, systemic failures in a model
before it is deployed. Further, note that our presheaf structure
can also capture specific statistics associated with a global
model. The simplest example of this might be the accuracy
of a predictive model across various subpopulations of a
test set. In this case “model” in the term model presheaf,
might more appropriately be called “model performance
presheaf”. To illustrate this latter use, we end this work by
using inconsistency statistics to probe the feature space of
a ResNet50 convolutional neural network [3] that has been
trained on the large image database ImageNet [12]. We show
how our sheaf-theoretic framework can be used to illuminate
biases in rich and complex computer vision models such as
this.

2. Datasets and models as sheaves
2.1. Notation and underlying topology

Below we assume that set I indexes the elements of the
dataset D that we will be working with so that

D = {xi | i ∈ I}, (1)

and each xi ∈ D takes a value in target space Y . We could
equivalently encode D as a function fD : I → Y , where
fD(i) = xi. This interpretation will be useful when defining
data sheaves in Section 2.2.

Example 1. 1. (Toy example) Let D be a dataset that
consists of the number of publications for 6 researchers.
Denote these researchers by a, b, c, d, e, f . The number
of publications of each is recorded in Table 1. Then
I = {a, b, c, d, e, f} and Y = R (we use R rather than
N because we will later want to take averages in the
target space).

2. (Sensors) Suppose that D consists of real-valued read-
ings from a collection of distinct sensors. Then I in-
dexes the set of all sensors, Y = R, and fD : I → R is
a function that assigns to each sensor its reading.

3. (Gene expression) If D is a gene expression level
dataset where readings are taken from each gene at
a fixed set of r time steps, then I is a set that indexes
all genes whose expression level are being measured,
Y = Rr, and fD : I → Rr assigns to each gene a
vector recording its r readings.

4. (Computer vision feature extractor) Let J ⊂ Rh×w×3

be a collection of height h and width w RGB images
and let ϕ be a convolutional neural network (CNN)
feature extractor that has been trained to map images
from their usual pixel space, to vectors in a feature
space Rr where spatial relationships can be related
to image content (that is, if x1, x2 ∈ Rh×w×3 are two
images with similar content then ||ϕ(x1) − ϕ(x2)||`2
should be small). Feature extractors such as ϕ are an
important component in many state-of-the-art methods
in computer vision (see for example [13]).

To better understand the features extracted by ϕ, one
might be motivated to analyze D = ϕ(J). In this
setting I is the list of all images in J , Y = Rr, and fD
maps i ∈ I to ϕ(xi). We analyze a specific example of
this set-up in Section 3.1.

In order to put a topology on I , I must have some ad-
ditional structure. Thus we assume that there exist subsets
U1, U2, . . . , Uk of I that capture relationships between el-
ements of I . This is the external information described in
Section 1. We do not assume that U1, . . . , Uk are disjoint.

Example 2. We give some possibleU1, . . . , Uk for each part
of Example 1.

1. (Toy example) Let U1 = {a, b, c, d} and U2 =
{c, d, e, f} be known collaborations between re-
searchers a, b, c, d, e, f .

2. (Sensors) For each 1 ≤ p ≤ k let Up be the subset of I
that contains all sensors of a certain type or measuring
a given modality. Alternatively, let each Up contain
indices corresponding to sensors located in a given
region.

3. (Gene expression) Subset Up might contain all genes
encoding proteins involved in a specific biochemical
pathway p.

4. (Features extracted by a CNN) If the images in J are
labeled based on whether they contain any of r different
classes of object, then Up might be the subset of I
indexing all images with a specific object in it. For
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example, xi ∈ J might be an image containing a cat
and a ball of yarn, in which case i ∈ Ucat and i ∈ Uyarn.

Our proposed sheaf-theoretic framework requires three
components: (i) a topology TB on I built using B =
{U1, U2, . . . , Uk}, (ii) a data sheaf D on I where the raw
data from datasets D is stored as a choice of sections, and
(iii) a model presheaf M also on I which defines the type
of model whose fit we want to understand.

Let TB be the topology on I generated by subbasis B =
{U1, . . . , Uk}. Note that TB captures a notion of space on
the elements of dataset D based on the external information
found in B. In this paper TB will underlie all the sheaves we
construct unless otherwise specified. Since I is finite, then
TB is a finite topology.

In Section 3 we will compare sections of sheaves between
open sets. In order to do this systematically we will take
advantage of a lattice-theoretic viewpoint of TB . The open
sets defining TB have a poset structure, (TB ,≤), based on
set inclusion. That is, for U, V ∈ TB , V ≤ U ⇔ V ⊆ U .
In fact, TB is a lattice since any two open sets U and V
always have a meet and join given by their intersection and
union respectively. For fixed open set U in TB , consider the
order ideal generated from U , ΛU := {V ∈ TB | V ⊆ U}.
Since TB is finite, and hence ΛU is finite, there exists a finite
filtration on ΛU ,

{U} = Λ0
U ⊂ Λ1

U ⊂ · · · ⊂ Λk
U = ΛU (2)

where Λi
U consists of all those V ∈ ΛU such that there is a

maximal chain in ΛU , V = Vj ⊂ Vj−1 ⊂ · · · ⊂ V1 ⊂ U
with j ≤ i.

Example 3. Consider the topology, depicted as a Haase
diagram in Figure 1. Let U = {a, b, d}. Then

ΛU =
{
U, {a, d}, {a, b}, {a}, ∅} (3)

with

Λ0
U = {U},

Λ1
U =

{
U, {a, d}, {a, b}

}
,

Λ2
U =

{
U, {a, d}, {a, b}, {a}

}
,

Λ3
U =

{
U, {a, d}, {a, b}, {a}, ∅

}
.

2.2. Data sheaves and model presheaves

Our goal in this section is to realize our dataset D as
the section of a sheaf on the topological space TB that we
constructed in Section 2.1. We point the reader to [15, Part
1, Chapter 2] for an introduction to presheaves and sheaves.

Definition 2.1. Let I be a finite set with topology generated
by subbasis B = {U1, . . . , Uk} and let Y be a set. Then the
data sheaf D associated to (I,B, Y ) is the sheaf that:

{a, b, c, d}

{a, b, d}{a, b, c}{a, c, d}

{a, c} {a, d} {a, b}

{a}

∅

Figure 1. The Haase diagram of the finite topology from Example
3.

Figure 2. A visualization of the restriction map resDI,U1
that takes a

section fD from D(I) to fD,U1 in D(U1).

• to each open set U ⊆ I assigns the set D(U) of all
functions from U to Y ,

• and to each open set V ⊆ U assigns the usual re-
striction of functions map resDU,V : D(U) → D(V )
which restricts functions from U → Y to functions
from V → Y .

Remark 2.1. Note that the fact thatD is a sheaf, rather than
just being a presheaf, follows from elementary arguments
that spaces of functions (without further constraints) satisfy
the gluing and locality axiom.

Remark 2.2. To make our constructions applicable to a
large range of data science settings, we choose to work
with sheaves taking values in the category Set. For specific
problems, one can often choose to work with sheaves taking
values in a category with more structure.

Recall that we can realize D as a function fD : I →
Y which takes an element i ∈ I as input and returns the
measured value fD(i) at that point. The same construction
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holds for any subsets of I in the obvious way. Thus for any
open set U of I , there is a map that takes a dataset D with
index set I to a section of D(U), fD,U : U → Y . Together
these define the map,

D 7→ {fD,U : U → Y | U ∈ TB}. (4)

From this perspective fD is a global section of D, in particu-
lar, fD,I in D(I).

Following [11], if S is a sheaf (or presheaf) on space X
with topology T , we call a choice of section aU from each
open set U ∈ T ,

A =
∏
U∈T

aU , (5)

an assignment on S. We note that any global section aX of
S induces an assignment by setting aU = resX,U (aX) for
each U ∈ T .
D defines an assignment on D via global section fD,

FD = (fD,U )U∈TB .

Example 4. (Toy example) There are 5 open subsets in the
topology generated by subbasis U1 = {a, b, c, d} and U2 =
{c, d, e, f} on I = {a, b, c, d, e}: ∅, {c, d}, U1, U2, I . The
dataset D listed in Table 1, defines a function on each of
these subsets. For example, fD,U1

: U1 → R, an element
of D(U1), is a function that sends f(a) = 5, f(b) =
6, f(c) = 8, f(d) = 7. On the other hand, fD,{c,d} :
{c, d} → R is the function that sends, f(c) = 8 and f(d) =
7. The full assignment FD on D induced by D consists
of fD,I , fD,U1 , fD,U2 , fD,{c,d}, fD,∅. Figure 2 contains a
visualization of the restriction map resDI,U1

taking fD,I to
fD,U1

.

Note that FD contains a significant amount of redun-
dant information, being completely determined by its single
global section fD = fD,I . On the other hand, one can easily
find assignments A = (aU )U∈TB that are not determined by
their associated global section aI .

Example 5. (Toy Example) We return to our publication
example from Example 4. The reader can check that while
the assignment described on the top in Table 2 is induced by
a single global section fD,I : I → R which assigns

fI(a) = 4, fI(b) = 4, fI(c) = 2, fI(d) = 3,

fI(e) = 2, fI(f) = 5,

the assignment provided on the bottom in Table 2 is not
induced by a global section.

We give a special definition for those assignments that
arise from a global section on a data sheaf (and hence from
a dataset D).

Definition 2.2. Let S be a sheaf (or presheaf) on space X
with topology T . An assignment A = (aU )U∈T is said
to be consistent if for all U, V ∈ T with V ⊆ U , aV =
resU,V (aU ). Otherwise, A is said to be inconsistent.

Section a b c d e f

fI 4 4 2 3 2 5

fU1
4 4 2 3 7 7

fU2 7 7 2 3 2 5

f{c,d} 7 7 2 3 7 7

Section a b c d e f

fI 4 4 2 3 2 5

fU1
3 2 2 4 7 7

fU2 7 7 5 6 0 2

f{c,d} 7 7 3 2 7 7

Table 2. Examples of assignments on the data sheaf from the toy
publication example that do correspond to a global assignment (top)
and do not correspond to a global assignment (bottom).

The assignment defined on top in Table 2 is consistent.
The one on the bottom is inconsistent. It is clear that data
assignment FD induced by a dataset D is always consistent
by construction.

2.3. The model presheaf and modeling map

In this section we define a presheaf on I . While the data
sheaf D encodes instances of raw data collected on I , this
new presheaf will encode local models of D. As in previous
sections we assume that I is the space that indexes data
from some dataset D and I has topology TB generated by
subbasis B = {U1, . . . , Uk}.

Definition 2.3. Let D be a data sheaf on I . A model
presheaf on I is a presheaf M on I along with a model-
ing map ΦM = (ΦMU )U∈TB which consists of functions
ΦMU : D(U) → M(U) for each U ∈ TB . For section
fU ∈ D(U), we call ΦMU (fU ) a model of fU .

Remark 2.3. Note that the modeling map ΦM is a critical
component of the model presheaf M. In fact without the
modeling map,M is just a presheaf with no additional struc-
ture. Further, ΦM is generally not a presheaf morphism. In
fact, we will derive a measure of global “model inconsis-
tency” from the extent to which ΦM fails to be a presheaf
morphism.

Remark 2.4. If we are handed a dataset, the data sheaf
is generally implicit based on the form that the data takes.
The space of sections associated with the model presheaf is
chosen based on the type of models that one wants to use
on the data. The least obvious choice in the framework that
we present in this paper then is the definition of restriction
maps in the model presheaf. In data science we rarely think
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about how to modify an existing model built to fit one dataset
so that it instead fits a subset. When in doubt, we advocate
keeping things simple. For open sets V ⊆ U , identity maps
often work well provided thatM(V ) =M(U).

Example 6. Below we give two examples of model
presheaves.

• For each open set U in I , letD assign to U the space of
functions from U to R (in other words, any dataset D
defined by a global section of this data sheaf consists
of real-valued measurements indexed by elements of I).
Then we define the averaging presheafMavg to be the
presheaf on I such that

Mavg(U) =

{
{0} if U = ∅
R otherwise.

(6)

with restriction maps given by

resMavg
U,V =

{
0 if V = ∅
id otherwise

(7)

for U, V ∈ TB with V ⊆ U . The model map ΦMavg is
defined such that for open set U in I ,

Φ
Mavg
U (fD,U ) =

{
1
|U |
∑

x∈U fD,U (x) if U 6= ∅
0 otherwise.

(8)
In other words, the average presheaf maps sections to
their average. We could have chosen any number of
different scalar valued statistics (for example, median,
mode, maximum, etc.).

• For each open set U in I , let D assign to U the space
of functions from U to Rr. For integer q < r, let
MGraff(q,r) be the constant presheaf such that

MGraff(q,r)(U) =

{
{0} if U = ∅
Graff(q, r) otherwise

(9)

where Graff(q, r) is the Grassmannian of q-
dimensional affine subspaces in Rr [7] (note
that this is not to be confused with the affine Grass-
mannian that appears more commonly in algebraic
geometry and representation theory). For simplicity we
assume that restriction maps are given by:

res
MGraff(q,r)

U,V =

{
0 if V = ∅
id otherwise.

(10)

There are numerous approaches to finding a q-
dimensional affine subspace W that best approxi-
mates vectors v1, . . . , vm ∈ Rr (assuming that q <

m). Suppose that we have fixed such a method G :
tn≥q Rr × · · · × Rr︸ ︷︷ ︸

n times

→ Graff(q, r). Then we can de-

fine our model map ΦMGraff(q,r) such that for U =

{i1, . . . , i`} and fD,U we set Φ
MGraff(q,r)

U (fD,U ) =
G(fD,U (i1), . . . , fD,U (i`)) if U 6= ∅ and is 0 other-
wise. Note that for this construction to hold we need
that if U 6= ∅ then |U | ≥ q. In other words, q should be
chosen based on the size of the smallest open set. One
can also choose to vary q for different U ∈ TB , but in
this case the identity can no longer be used for certain
restriction maps.

Example 7. (Toy example) Suppose that we construct an
averaging presheaf based on researcher publication numbers
from Example 1.1 Then to each open set (except ∅) in I =
{a, b, c, d, e, f} we associate R. The model map ΦM then
sends: fI 7→ 5.83, fI,U1 7→ 6.5, fI,U2 7→ 6, fI,{c,d} 7→ 7.5.
We see that the two researchers c and d who are involved in
multiple collaborations have more publications (on average)
than those that do not. The difference between the average
number of publications for c and d, ΦM(fI,{c,d}), and the
average number of publications for all researchers in I is
equal to

|(resI,{c,d} ◦ ΦM)(fI)− (ΦM ◦ resI,{c,d})(fI)|. (11)

Note that this can also be interpreted as the extent to which
ΦM fails to be a presheaf morphism with respect to restric-
tion from the whole space I to open set {c, d}. We will
explore this in more detail in Section 3.

3. Inconsistency of models
In Example 7 we saw that the inconsistency of the average

number of publications across different subsets of collabora-
tors could be identified with the extent to which restriction
maps commute with the model map. This motivates the idea
of model inconsistency. This notion was inspired by the idea
of a consistency radius [11, Definition 20] in data fusion.

Definition 3.1. Let

• D be a dataset with elements indexed by I and taking
values in Y ,

• (I, TB) be the topological space associated with I and
subbasis B = {U1, . . . , Uk},
• D be the data sheaf on I ,M be a model presheaf on
I , and ΦM be the model map taking spaces of sections
from D to spaces of sections inM,

• FD be the assignment associated with D,

• and dU :M(U)×M(U)→ R≥0 be a metric for each
U ∈ TB .
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Recall that for open set U ⊆ I , ΛU is the order ideal defined
by U (i.e. all open sets contained in U ). The local incon-
sistency of assignment FD with respect to (D,M) at U is
defined to be

Incon(FD, U) := max
V ∈ΛU

dV (resMU,V (ΦMU (fD,U )),ΦMV (fD,V ))

(12)
if ΛU is non-empty and Incon(FD, U) = 0 otherwise. The
global inconsistency of FD with respect to (M,D) is defined
to be

Incon(FD) := max
U∈TB

Incon(FD, U). (13)

Note that local inconsistency of assignment FD with re-
spect to the model presheaf/model map pair (M,ΦM) is
closely tied to the extent to which the diagram

D(U)

D(V )

M(U)

M(V )

ΦMU

ΦMV

resDU,V resMU,V

(14)

fails to commute. We formalize this in a proposition.

Proposition 3.1. As above, let (X, TB) be a topological
space, D a data sheaf, M a model presheaf with model
map ΦM : D → M, and (dU )U∈T be a collection of met-
rics. Then ΦM is a presheaf morphism if and only if for
any consistent assignment A = (fU )U∈TB of D, the local
inconsistency of A at any open set U is always 0.

One direction of this proposition follows from the defini-
tion of a presheaf morphism (specifically the commutativity
of restriction maps with each map ΦMU between the spaces
of sections). The other direction uses the fact that a section
of a data sheaf can always be extended to a global section F
on D(I).

Remark 3.2. Note that we have chosen to define the lo-
cal consistency of a model presheafM with respect to sec-
tion fU by comparing resMU,V ΦMU (fU ) (the restriction of
ΦMU (fU )) against ΦMV (fV ) for each V such that V ⊂ U .
We could have conversely chosen to compare ΦMU (fU )
against resMW,UΦMW (fW ) for each W such that U ⊂ W .
In the former case, if there are no proper, non-empty open
sets V in U , then by definition the local inconsistency at
U is 0 for all assignments. In the latter case the situation
would be reversed and global sections would always have
0 inconsistency. We felt the idea of a model having lower
inconsistency when fitted on smaller subsets aligns better
with notions of fit from machine learning.

Example 8. (Toy example) We can compute the inconsis-
tency of the consistent assignment in Table 1 with respect

to the average model presheaf. We only need to define
a distance function dU on each copy of R. We do this
by choosing dU to be the standard distance between real
numbers: dU (x, y) = |x − y|, for x, y ∈ R. The lo-
cal inconsistencies (omitting the empty set) are as follows:
Incon(A, I) = 3.67, Incon(A,U1) = 1, Incon(A,U2) =
1.5, Incon(A, {c, d}) = 0. The global inconsistency is
Incon(A) = 3.67. This occurs at the section on the to-
tal space I . This makes sense since we would expect a single
statistic to represent a smaller set of numbers better than a
larger set of numbers.

Assume that TB is a finite topology. Recall from Section
2.1 that for any U ∈ TB we can form the order ideal ΛU ,
which is filtered such that {U} = Λ0

U ⊂ Λ1
U ⊂ · · · ⊂ Λk

U =
ΛU for sufficiently large integer k. As illustrated in Example
8, it is often the case that the maximum value of

dV (resMU,V (ΦMU (fD,U )),ΦMV (fD,V )) (15)

from (12) is achieved for the smallest V contained in U ,
since in this case V and U have maximum difference (that
is, U \ V is maximally large). Informally, inconsistency is
often maximized by restricting to the “smallest” open set
V contained in U . In order to be able to “see past” this
phenomenon, we introduce a final version of inconsistency
which allows us to compare lack of commutativity of (14)
only on “nearby” sets in the lattice associated with TB .

Definition 3.2. Given the assumptions in Definition 3.1, if U
is an open set in TB and Λ1

U ,Λ
2
U , . . . ,Λ

k
U is the Z-filteration

on the order ideal ΛU , then the j-filtered inconsistency is
defined as

Inconj(A,U) := max
V ∈Λj

U

dV (resMU,V (ΦMU (fU )),ΦMV (fV )).

(16)

3.1. Example: Analyzing the feature space of a con-
volutional neural network

Many machine learning models built to perform classi-
fication tasks can be decomposed into two functions, (1) a
feature extractor that takes a particular data type as input
and extracts features most relevant to a task and (2) a simpler
prediction function that uses these features to make predic-
tions. A cat/dog classifier for example might consist of a
convolutional neural network feature extractor, ϕ : X → Rd,
and a predictive function, ψ : Rd → R2 (where one of the di-
mensions of R2 corresponds to the likelihood that the image
is a dog and the other corresponds to the likelihood that the
image is a cat). ϕ takes an image x from an image space X
and encodes it as a vector in Rd, translating the complex vi-
sual characteristics of cats and dogs into geometric structure
in Rd that can then be separated by ψ.

When ϕ is a model with relatively few parameters and X
is low-dimensional, there exist tools to probe the processes
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Figure 3. (Left) Example images from Fruits 360. (Center) A low-dimensional visualization of the image of the Fruits 360 dataset in the
feature space of a convolutional neural network. Points are colored by type of fruit. (Right) The same visualization with points colored by
whether the fruit stem (or stem node) is facing the camera or not.

Figure 4. The number of times the removal of each type of fruit causes the maximum increase in “clusterability” with respect to (18).

by which the complete model ψ ◦ ϕ makes its decisions.
However, in many state-of-the-art examples, ϕ is a large
(for example over 20 million parameters), nonlinear model
which has been trained on a large, high-dimensional dataset.
Furthermore the feature space Rd of large feature extractors
tend to themselves be high-dimensional, for example d =
2048 for the commonly used ResNet50 convolutional neural
network [4]. Together all of these factors make current deep
learning-based machine learning models difficult to analyze.
At the same time, because these models are being used in a
broader and broader range of applications the need for tools
by which to analyze them has become increasingly pressing.
In this section we give a very simple example of how the
sheaf framework introduced in Sections 2.2, 2.3, and 3 can
be used to answer questions about a deep learning-based
feature extractor.

We take a very simple image dataset, Fruits 360 [10],
which consists of images of fruit photographed from various
angles (see the left image in Figure 3 for examples). The
standard task associated with this dataset is to predict what
type of fruit is in each image, for example, Apple, Cherry,
etc. If a feature extractor ϕ is large enough and has been ex-
posed to enough image data it can easily extract the features
necessary to differentiate between fruit even if ϕ has never
been explicitly trained on this task. One observation made
in [6] is that one can also naturally classify the images in
this dataset based on whether or not the stem (or stem node)

of the fruit is facing the camera or not. While humans can
easily perform this task, the well-trained feature extractor ϕ
mentioned above fails here. As described in [6], this is an
example of a general trend wherein generic computer vision
feature extractors tend to be very good at solving problems
related to class membership (i.e. “does x belong to class
y”) but less good at problems involving quantity and ori-
entation. The center and right images in Figure 3 give a
2-dimensional visualization of the images of the Fruits 360
dataset in R2048 under a feature extractor map ϕ trained on
ImageNet. Comparison of the center image, which is col-
ored by fruit type, and the right image, which is colored by
whether the fruit’s stem is facing the camera or not, suggests
that ϕ strongly clusters by type of fruit while only clustering
by stem/no-stem at the local level.

To better understand this limitation of ϕ we can ask the
following question

Question: Is ϕ poor at extracting the features required
to solve the stem/no-stem problem for all the images
in the Fruits 360 dataset or are there instead certain
subpopulations on which ϕ particularly struggles dragging
down the global performance?

We can use our sheaf framework and filtered inconsis-
tency to begin to answer this question with respect to type
of fruit. Let D be the Fruits 360 dataset. We let I be an
index of the images in D so that the dataset itself can be
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written as {xi | i ∈ I}, where xi is the image indexed by i.
We let B = {U1, . . . , Uk} be defined such that, for example,
Uj might contain all those elements of I that correspond
to images containing the class Apple. The feature extrac-
tor we analyze is a ResNet50 convolutional neural network
ϕ : R224×224×3 → R2048 that maps 224×224 RGB images
to vectors in R2048. We load into ϕ model parameters from
the Torchvision library [9] that were trained on ImageNet.
Thus, ϕ has not been explicitly trained for either the stan-
dard Fruits 360 classification task onD nor the stem/no-stem
task. For open set U ∈ TB , let the data sheaf D be defined
such that D(U) consists of all functions from U to R2048.
Then ϕ defines an assignment of D by defining the function
fD,U : U → R2048 by fD,U (i) = ϕ(xi).

Our model presheaf will be designed to capture the extent
to which subsets of encoded images in R2048 tend to cluster
based on their stem/no-stem labels. Inspired by [13], we
measure the extent to which stem/no-stem images in open
set U cluster, in the following way. Suppose V1 ⊂ U are
those elements of U with the “stem” label and V2 ⊂ U
consists of those elements of U with the “no stem” label,
so that V1 ∪ V2 = U . We randomly draw three examples
is1, i

s
2, i

s
3 from V1 and three examples ins1 , ins2 , ins3 from V1.

Inspired by Prototypical Networks [13], a popular few-shot
learning model, we use these to form prototypes for those
elements of V1 and V2:

γs :=
1

3

3∑
j=1

fD,U (isj) and γns :=
1

3

3∑
j=1

fD,U (insj ).

(17)
We predict the stem/no-stem label of the remaining elements
i ∈ U by solving the optimization problem:

arg min
r=s,ns

||γr − fD,U (i)||. (18)

We perform this process several times, recording our ac-
curacy each time. We denote our average accuracy over
many trials by αf,U . Note that αf,U being closer to 1 indi-
cates that fD,U more strongly clusters images based on the
stem/no-stem property, since this means that more stem/no-
stem labels can be predicted based on their proximity to
prototypes for these classes γs and γns.

Our model presheafM is designed to store the values
αf,U and hence we assign to eachU ∈ TB the closed interval
[0, 1]. Our model map ΦM : D →M is defined such that
fD,U ∈ D(U) is mapped to αf,U . Informally, ΦM sends the
encoding of elements ofU in R2048 to a score (based on (18))
that measures how well this encoding captures stem/no-stem
clustering.

Because elements of the subbasis B = {U1, . . . , Uk} are
mutually disjoint and their union is equal to I , TB can be
realized as the set of unions of all possible subsets of the
sets in B, TB = {∪W∈TW | T ⊆ B}. Let U ∈ TB . Then

U = Uj1 ∪ · · · ∪ Ujr where j1, . . . , jr ∈ {1, . . . , k}. Then
Λ1
U consists of sets V of the form Uj1 ∪ · · ·∪ Ûjt ∪ · · ·∪Ujr

where 1 ≤ t ≤ r and ·̂ denotes omission from the union.
Thus for any open set U with U 6= ∅, Λ1

U consists of all
those sets obtained by removing one type of fruit (that is,
one Uj) from the union of subbasis elements that form U .

When calculating the local 1-filtered inconsistency for
each U ∈ TB , we can not only record the 1-filtered inconsis-
tency itself, but can note the V ⊂ U at which the max (16)
is achieved. Then U \ V will correspond to a type of fruit.
In Figure 4 we display a bar plot that shows the number of
times each type of fruit appears when calculating this statis-
tic. Rather than all types of fruit being equally problematic,
we see that there are a few types that most frequently cause
the largest drop in accuracy when they are included in the
model’s evaluation: Tomato 2, Apple Pink Lady, Apple Red
2, and Pear Red. It is not at all clear why the model tends
not to cluster these fruits by their orientation. While Tomato
2 does have a less visually distinctive stem node, Apple Pink
Lady has not only a stem node but a stem itself which one
would think a convolutional neural network would capture
during feature extraction.

Note that our method is able to pick up on higher-order
effects that result from the interactions of several specific
fruit types. For example, perhaps the model is able to cluster
stem/no-stem for Apple Red 2 or Pear Red individually, but
because of the way each is represented in R2048 the model
struggles when they are together. For this reason, in the
future it would be interesting to also examine Λ2

U and Λ3
U .

4. Conclusion and Future Work

As statistical models grow ever bigger and more opaque,
developing methods that give insight into not only the global
behavior of the model, but also the local behavior becomes
ever more important. In this work we develop a sheaf-
theoretic framework to evaluate the fit of data-driven models.
We show how a topology can be used to capture various
subpopulations of interest within a dataset and then attach
statistics related to model fit to each of these subpopulations.
Via the notion of inconsistency, we can establish regions
of the dataset on which a model’s behavior changes signifi-
cantly. We see application to real datasets as the next critical
step in this direction. We expect that the tools developed
here will need to be refined not only to meet real-world com-
putational requirements, but also to highlight the aspects of
model fit that the model builder actually cares about. Never-
theless, we hope that this work will increase the likelihood
that sheaves will be a tool in some future model builder’s
toolbox.
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