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Abstract

Non-negative matrix and tensor factorisations are a
classical tool for finding low-dimensional representations
of high-dimensional datasets. In applications such as imag-
ing, datasets can be regarded as distributions supported on
a space with metric structure. In such a setting, a loss func-
tion based on the Wasserstein distance of optimal trans-
portation theory is a natural choice since it incorporates
the underlying geometry of the data. We introduce a gen-
eral mathematical framework for computing non-negative
factorisations of both matrices and tensors with respect to
an optimal transport loss. We derive an efficient computa-
tional method for its solution using a convex dual formu-
lation, and demonstrate the applicability of this approach
with several numerical illustrations with both matrix and
tensor-valued data.

1. Introduction

Matrix and tensor factorisations are a classical tool for
extracting low-dimensional structure from complex high-
dimensional datasets. The seminal work of Lee and Se-
ung [14] noted that real-world datasets are often naturally
non-negative, and introduced non-negative matrix factorisa-
tion (NMF) for finding an approximate low-rank represen-
tation of a matrix-valued dataset that is easier to interpret.
NMF can be interpreted in a sparse-coding sense, in that
a small set of atoms is sought that can approximately gen-
erate the full dataset in its non-negative linear span. This
general concept of finding linear representations in terms
of a small number of components also extends to tensors
[25], for which many notions of non-negative decomposi-
tions have been proposed, including the popular CANDE-
COMP/PARAFAC (CP) format [12].

Approximate factorisations are typically sought with re-
spect to some divergence function [12, 11] such as the
squared Frobenius norm or Kullback-Leibler divergence.

Such divergences decompose elementwise in their matrix
or tensor-valued arguments. In settings such as imaging the
observed data lie naturally on a metric space, and elemen-
twise divergences cannot take advantage of this additional
structure. Recent works [20, 18, 22, 21] have focused on
addressing this issue in the context of NMF by employing a
Wasserstein loss that accounts for the geometry of the data
by using optimal transport.

In this work, we generalise the smoothed dual approach
of Rolet et al. [20] from matrices to the setting of tensors.
The problem of finding non-negative tensor factorisations
with a Wasserstein loss has remained untouched until very
recently, when it was addressed by the work of Afshar et al.
[1] in which a non-negative CP decomposition was sought
via the primal formulation of optimal transport [8]. In con-
trast, the approach we consider proceeds via convex duality
in order to take advantage of the availability of closed-form
gradients in the dual problem [5, 6, 20].

Our work presents a unified framework for Wasserstein
factorisation problems, since it handles the fully general
case of finding a Tucker decomposition and includes non-
negative CP decompositions and NMF as special cases.

2. Background

The reader is provided with an overview of our notation
conventions in Supplement A.

2.1. Non-negative matrix factorisation

As a prelude to the more general problem of non-
negative tensor factorisations, we discuss the case of NMF.
Given a m×n non-negative matrix X ∈ Rm×n

≥0 and a target
rank 1 ≤ r ≤ min(m,n), the NMF problem [14, 24] seeks
to find non-negative factor matrices U ∈ Rm×r

≥0 , V ∈ Rn×r
≥0

such that we have a rank-r approximation X ≈ UV ⊤ =∑r
k=1 Uk ⊗ Vk in some appropriate sense. In terms of the
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columns of X , we have equivalently

Xi ≈ (UV ⊤)i =

r∑
k=1

UkVik. (1)

If columns of X are observations, then (1) represents each
observation Xi as a linear combination of r atoms {Uk}rk=1

with non-negative coefficients {Vik}rk=1. The factor ma-
trix U thus contains an approximate r-element basis for the
dataset.

Factors U and V are found by solving a minimisation
problem of the form

min
U∈Rm×r

≥0
,V ∈Rn×r

≥0

φ(X,UV ⊤). (2)

In the above, φ(·, ·) is a suitably chosen loss function over
matrices, commonly taken to be the previously mentioned
squared Frobenius norm φ(A,B) = ∥A − B∥2F or the
generalised Kullback-Leibler (KL) divergence φ(A,B) =
KL(A|B) [24].

2.2. Non-negative tensor factorisation

Now consider a non-negative d-mode tensor X ∈
Rn1×···×nd

≥0 , for which we seek a low-rank, non-negative
representation in a similar sense to NMF. The NMF prob-
lem can be directly generalised to d-mode tensors to yield
the CP decomposition format [12]. Given a target rank r,
we seek d factor matrices A(i) ∈ Rni×r

≥0 , 1 ≤ i ≤ d such
that

X ≈ [A(1), . . . , A(d)] :=

r∑
i=1

A
(1)
i ⊗ · · · ⊗A

(d)
i . (3)

That is, X can be approximated as a sum of r rank-1 ten-
sors, which we illustrate in Figure 1. For d = 2, one recov-
ers the rank-r NMF problem.

+ · · ·+

X A
(1)
1 ⊗A

(2)
1 ⊗A

(3)
1 + . . .+A

(1)
r ⊗A

(2)
r ⊗A

(3)
r

≈

Figure 1: Illustration of the CP tensor decomposition for-
mat.

The Tucker decomposition format further generalises the
CP format [12]. Given a tensor X and a d-tuple (r1, . . . , rd)
specifying the multilinear rank of the decomposition, one
seeks a core (also known as mixing) tensor S ∈ Rr1×···×rd

≥0

and factor matrices A(i) ∈ Rni×ri
≥0 , 1 ≤ i ≤ d such that

X ≈ S[A(1), · · · , A(d)]

:=

r1∑
i1=1

· · ·
rd∑

id=1

Si1,...,idA
(1)
i1

⊗ · · · ⊗A
(d)
id

.
(4)

This can be interpreted similarly to the CP format, but
with the core tensor S encoding interactions between the
columns of the factor matrices A(i). Importantly, when
r1 = · · · = rd = r and S = δi1,...,id , we recover the
CP format.

2.3. Optimal transport

Optimal transport (OT) deals with comparison of (prob-
ability) distributions supported on spaces with metric struc-
ture. Wasserstein distances have has found broad applica-
tions in statistics and machine learning in recent years [17],
since they are sensitive to “horizontal” displacements, in
contrast to other commonly used distances or divergences
that are typically only sensitive to “vertical” discrepancies
of distributions.

The central optimal transport problem is: given α, β
probability distributions and a matrix C measuring the cost
Cij of transport from point i to point j, find the coupling
γ (i.e. joint distribution having marginals α and β) solving

OT(α, β) := inf
γ∈Γ(α,β)

⟨C, γ⟩. (5)

where Γ(α, β) = {γ ≥ 0 : γ1 = α, γ⊤1 = β} de-
notes the set of all couplings of (α, β). Importantly, in the
case where α, β are supported on a space X with a distance
function dX , one may pick C(x, y) = dX (x, y)2. Then
(α, β) 7→ OT(α, β) establishes a natural metric on the
space of probability distributions with finite second moment
known as the 2-Wasserstein (W2) metric (and more gener-
ally, one can define the p-Wasserstein metric) [17, Proposi-
tion 2.2].

In practice, the entropic regularisation [3], [17, Chapter
4] is often employed instead:

OTε(α, β) := inf
γ∈Γ(α,β)

⟨C, γ⟩+ εE(γ)

= inf
γ∈Γ(α,β)

εH(γ|e−C/ε),
(6)

where ε > 0 is the regularisation parameter. In the limit
ε → 0+, the solution of (6) converges to that of (5) [17,
Proposition 4.1]. The problem (6) can be solved efficiently
using methods such as the Sinkhorn algorithm [3]. Since it
is smooth and strictly convex, it is commonly used as a loss
function that approximates the Wasserstein distance [5, 20,
22].

A shortcoming of the typical formulations of optimal
transport (5, 6) is that the problem is posed over normalised
distributions. In practice, input data may not be perfectly
normalised, and rescaling could be undesirable, resulting in
a potential loss of information. Various works [2, 8, 15]
consider relaxations of optimal transport to deal with the
case where α, β are allowed to be positive measures. We
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introduce here semi-unbalanced transport, which takes the
form

OTλ
ε (α, β) = inf

γ:γ1=α
εH(γ|e−C/ε) + λKL(γ⊤1|β). (7)

Here, the transport plan γ is required to agree only approxi-
mately with the second input measure via the soft marginal
penalty KL(·|β). The parameter λ controls the strength of
the soft marginal constraint: sending λ → +∞, we recover
the standard entropy-regularised problem (6). Like its bal-
anced counterpart, unbalanced OT problems can be solved
using a generalised Sinkhorn-like scheme [2].

3. Wasserstein tensor factorisation
3.1. Optimal transport as a distance on tensors

Optimal transport deals with distributions supported on
spaces with metric structure, as introduced in Section 2.3.
Tensors can be naturally cast in this framework by think-
ing in terms of a product of metric spaces. In concrete
terms, suppose the ith mode of the tensor X ∈ Rn1×···×nd

corresponds a discrete metric space (Xi, d
(i)). Then, the

tensor X lives on a product of metric spaces (X , dX ) =
(X1 ⊕X2 ⊕ · · · ⊕ Xd, dX ).

In general, the choice of the product metric dX is not
unique. Let us consider, however, the p-product metric [7]
on X for 1 ≤ p < ∞:

dX (x,y) = (d(1)(x1, y1)
p + · · ·+ d(d)(xd, yd)

p)
1
p . (8)

This family of product metrics leads to a convenient formu-
lation of optimal transport: to formulate the p-Wasserstein
distance on a product of discrete spaces, we need to form the
cost tensor C encoding cost for moving an unit mass from
(i1, . . . , id) to (j1, . . . , jd). For X a tensor with d modes,
C has 2d modes and decomposes additively:

Ci1,...,id,j1,...,jd = dX ((i1, . . . , id), (j1, . . . , jd))
p

= d(1)(i1, j1)
p + · · ·+ d(d)(id, jd)

p

= C
(1)
i1,j1

+ · · ·+ C
(d)
id,jd

,

(9)

where C(k) is the cost matrix corresponding to the kth mode
of the tensor X . We thus define the Wasserstein distance
between tensors X,Y ∈ P(X ) to be

OT(X,Y ) := inf
γ∈Γ(X,Y )

⟨C, γ⟩, (10)

where Γ(X,Y ) denotes the set of all possible couplings of
the tensors X,Y , i.e.

Γ(X,Y ) = {γ ∈ P(X ⊗ X ) :∑
j1,...,jd

γi1,...,id,j1,...,jd = Xi1,...,id ,∑
i1,...,id

γi1,...,id,j1,...,jd = Yj1,...,jd}.

(11)

Choice of normalisation Σ

Row-normalised factor matrices {A(i)1 = 1}
Column-normalised factor matrices {(A(i))⊤1 = 1}
Fully normalised factor matrices {

〈
A(i),1

〉
= 1}

Fully normalised core tensor {⟨S, 1⟩ = 1}

Table 1: Normalisation constraints on factors

3.2. Problem setup

We will first discuss the problem of finding non-negative
tensor factorisations in the fully general case of a Tucker de-
composition, since the settings of CP tensor decompositions
and NMF fit naturally in this framework as special cases
(see Supplement B). Our approach to the Wasserstein ten-
sor factorisation (WTF) problem is based on the approach
to NMF introduced by Rolet et al. [20], where the authors
utilise duality properties of entropically smoothed optimal
transport to efficiently solve a series of smooth, convex sub-
problems for the factor matrices.

As previously, we consider a non-negative d-mode ten-
sor X ∈ Rn1×···×nd

≥0 , for which we seek a Tucker decom-
position S[A(1), . . . , A(d)], where A(i) ∈ Rni×ri

≥0 is the ith
factor matrix and S ∈ Rr1×···×rd

≥0 is the core tensor. Let
Φ : Rn1×···×nd

≥0 × Rn1×···×nd

≥0 → [0,∞) be a loss function
on tensors based on optimal transport, which we define in
further detail in Section 3.6. For now, we will require that
Φ is smooth and convex in its second argument.

The fundamental WTF problem can be written then as

min
S,A(1),...,A(d)≥0

Φ(X,S[A(1), . . . , A(d)]). (12)

In addition, we may optionally impose normalisation con-
straints on the decomposition components. This is a natural
constraint for such settings where X contains histogram or
count data, since it resolves the issue of multiplicative non-
uniqueness in the scaling of factor matrices (that is, with-
out normalisation constraints the decomposition does not
change when any two factor matrices are multiplied by κ
and κ−1 respectively). We list some useful normalisation
constraints in Table 1. For ease of notation, we will denote
by Σi the constraint set for the ith factor matrix, and Σ0 that
of the core tensor.

Following [20], we relax the non-negativity constraint
by using a entropy barrier function. For future convenience
(see Sections 3.3 and 3.4), we choose to incorporate nor-
malisation constraints into the barrier function: we define
EΣi

(x) = E(x) + ι(x ∈ Σi), where ι denotes the indicator
function of a convex set

ι(x ∈ A) =

{
0, x ∈ A;

+∞, otherwise.
. (13)
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This yields the following smooth and unconstrained WTF
problem

min
S,A(1),...,A(d)

Φ(X,S[A(1), . . . , A(d)])

+ ρ0EΣ0
(S) +

d∑
i=1

ρiEΣi
(A(i)),

(14)

and this is the form of the problem which we seek to solve.
The problem (14) is convex individually in each of the fac-
tors, but not jointly. We may therefore seek a local mini-
mum by performing a block coordinate descent in each of
the core tensor and factor matrices. For each convex sub-
problem, we proceed via convex duality [19]. We state now
a result on the Legendre transform (see Supplement C for a
definition) of the entropy functional [20, 5].

Proposition 1 (Legendre transform of entropy). The Leg-
endre transform of the unconstrained entropy α 7→ E(α) is
E∗(u) = ⟨exp(u),1⟩.

Now let Σ be a constraint set. Then up to a constant, the
Legendre transform of the constrained entropy α 7→ EΣ(α)
is:

E∗
Σ(u) =


log ⟨exp(u),1⟩, Σ = {α : ⟨α,1⟩ = 1}∑

i log ⟨exp(ui),1⟩, Σ = {α : α⊤1 = 1}∑
i log

〈
exp((u⊤)i),1

〉
, Σ = {α : α1 = 1}

(15)

We note that the first definition applies for vector, matrix or
tensor-valued α, whilst the latter two apply only to matrix-
valued α.

We now formulate the dual problems for the factor ma-
trices and core tensor. Proofs are deferred to Supplement
D.

3.3. Tensor decompositions – factor matrices

For the moment let S be held fixed, and we seek to op-
timise over only the factor matrices A(k). We recall from
Section 2.2 that in the case where r1 = · · · = rd = r and
Si1,...,id = δi1,...,id , this corresponds exactly to the CP de-
composition format [12].

We consider the convex and formally unconstrained sub-
problem for a single factor matrix A(k),

min
A(k)

Φ(X,S[A(1), . . . , A(d)]) + ρkEΣk
(A(k)). (16)

The corresponding dual problem is given by the following
Proposition.

Proposition 2 (Dual problem for factor matrices).
The dual problem for the kth factor matrix A(k), corre-
sponding to (16), is

min
U∈Rn1×···×nd

Φ∗(X,U) + ρkE
∗
Σk

(
−1

ρk
Ξ(k)(U)

)
, (17)

where we have written Ξ(k) to be a linear function of U :

Ξ(k)(U) =
[
U ×j≥k+1 (A

(j))⊤
]
(k)

[
S ×j≤k−1 A

(j)
]⊤
(k)

.

(18)

This problem is smooth and convex in the variable U .
Furthermore, at optimality, the primal variable A(k)⋆

can be recovered from the optimal dual variable U⋆ as the
solution of

sup
A(k)

−1

ρk

〈
A(k),Ξ(k)(U⋆)

〉
− EΣk

(A(k)). (19)

In particular, letting Z = exp
(

−1
ρk

Ξ(k)(U⋆)
)

, we get

A(k)⋆ =


Z, Σk = {},
Z/⟨Z,1⟩, Σk = {A(k) :

〈
A(k),1

〉
= 1},

diag(Z1)−1Z, Σk = {A(k) : A(k)1 = 1}
Zdiag(Z⊤1)−1, Σk = {A(k) : (A(k))⊤1 = 1}

(20)

For the choices of Φ and Σk that we consider, the dual
problem (17) is a smooth, unconstrained and convex prob-
lem in the dual variable U , and can thus be solved using
general gradient-based methods.

3.4. Tensor decompositions – core tensor

Now we will consider optimising over the core tensor S,
for fixed factor matrices A(i). The subproblem for S reads

min
S

Φ(X,S[A(1), . . . , A(d)]) + ρ0EΣ0(S) (21)

We state now the corresponding dual problem.

Proposition 3. The dual problem corresponding to (21) is

min
U∈Rn1×···×nd

Φ∗(X,U) + ρ0E
∗
Σ0

(
−1

ρ0
Ω(U)

)
, (22)

where we have written Ω(U) = U×d
j=1(A

(j))⊤. This prob-
lem is smooth and convex in the variable U .

Furthermore, at optimality, the primal variable S can be
recovered from the optimal dual variable U⋆ as the solution
of

sup
S

〈
−1

ρ0
Ω(U⋆), S

〉
− EΣ0

(S). (23)

In particular, letting Z = exp
(

−1
ρ0

Ω(U⋆)
)

, we get

S⋆ =

{
Z, Σ0 = {}
Z/⟨Z,1⟩, Σ0 = {S : ⟨S,1⟩ = 1}

. (24)

As with Section 3.3, this is a smooth, unconstrained and
convex problem in the dual variable U .
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3.5. Legendre transform for optimal transport loss

The strategy we proposed in Sections 3.3, 3.4 relies on
having access to the Legendre transform of Φ(X, ·). We
state now two crucial results about the Legendre transform
of β 7→ OTε(α, β) and β 7→ OTλ

ε (α, β), which will allow
us to compute Φ∗(X, ·) for certain choices of Φ.

Proposition 4 (Semi-unbalanced transport). The Legendre
transform of β 7→ OTλ

ε (α, β) is

OTλ
ε

∗
(α, u) = −ε⟨α, log(α⊘ (Kf(u)))− 1⟩, (25)

where f(u) =
(

λ
λ−u

)λ/ε

, and at optimality, the relation-
ship between the primal variable β⋆ and dual variable u⋆

is

β⋆ =

(
λ

λ− u⋆

)
f(u⋆)⊙K⊤ α

Kf(u⋆)
. (26)

where in the above we have written K = e−C/ε to be the
Gibbs kernel [17].

Proof. See Supplement D.

Since we recover OTε from OTλ
ε in the limit λ → +∞,

we expect their Legendre transforms to also coincide in the
limit. We note that for Proposition 4, in the limit λ → +∞
we have:

lim
λ→+∞

(
λ

λ− u

)λ/ε

= eu/ε. (27)

Thus we recover the known result for balanced transport
(see e.g. [5, Theorem 2.4]):

Proposition 5 (Balanced transport). The Legendre trans-
form of β 7→ OTε(α, β) is

OT∗
ε(α, u) = −ε

〈
α, log(α⊘ (Keu/ε))− 1

〉
(28)

Furthermore, at optimality, the relationship between the
primal variable β⋆ and dual variable u⋆ is

β⋆ = eu
⋆/ε ⊙K⊤ α

Keu⋆/ε
. (29)

3.6. Optimal transport as a loss functional

We discuss now choices of the loss functional Φ which
may be useful in certain contexts. Although Rolet et al. [20]
employ the well-known entropy-regularised optimal trans-
port loss (6), we will use instead the more flexible semi-
unbalanced loss (7).

In particular, in applications sometimes input data may
not be perfectly normalised [18], or may have a multimodal
distribution [22]. In such settings, a strict requirement for

mass transport may result in excessive sensitivity to noise
in the input data. Further, for factorisation problems we
found empirically that using the semi-unbalanced loss can
improve numerical stability. This can be explained by not-
ing that a candidate low-rank approximation may not al-
ways perfectly match the input in terms of total mass.

In the following, we work with the semi-unbalanced loss
OTλ

ε (·, ·), since we formally recover balanced transport in
the limit λ → +∞.

Proposition 6 (Smoothed Wasserstein loss on tensors). Let
X be a d-dimensional discrete product metric space as dis-
cussed in Section 3.1. Suppose X, X̂ ∈ M+(X ). Then,
the smoothed Wasserstein loss directly applied on tensors
is Φ(X, X̂) = OTλ

ε (X, X̂), where Ci1,...,id,j1,...,jd =∑d
k=1 C

(k)
ik,jk

is a cost tensor that decomposes along the
modes. We write C(k) to be the cost matrix for the kth mode.

Let U ∈ Rn1×···×nd be a tensor of dual variables corre-
sponding to X̂ . Then we have Φ∗(X,U) = OTλ

ε

∗
(X,U),

where we interpret the formula (25) of Proposition 4 in
terms of inner products, elementwise operations, and con-
tractions on tensors.

A key step in evaluating OTλ
ε

∗
is a convolution with the

Gibbs kernel K = e−C/ε. For a cost (9) that decomposes
additively along different modes, this amounts to a series
of n-mode products (see Supplement E) for which there
exist efficient parallel computation schemes [10]. There-
fore, there is no need to directly deal with the (prohibitively
large) full cost tensor C.

For imaging applications [9], 3-mode tensors arise natu-
rally by stacking two-dimensional images. In such a setting,
the obvious choice is a sum of Wasserstein losses over im-
ages, which are slices of the tensor X .

Proposition 7 (Smoothed Wasserstein loss along slices).
Let X be a two-dimensional discrete metric space and sup-
pose that X is a 3-mode tensor such that the slice Xi,·,· ∈
M+(X ) is a matrix containing 2-dimensional information
such as an image. Then in terms of matricisations, the
columns of X⊤

(1) are the vectorised images and so a Wasser-
stein loss that decomposes along slices is

Φ(X, X̂) =

n1∑
i=1

OTλ
ε

((
X⊤

(1)

)
i
,
(
X̂⊤

(1)

)
i

)
, (30)

where OTλ
ε is a smoothed Wasserstein distance between 1-

dimensional histograms, with a cost matrix encoding dis-
tances between vectorised images. This approach addresses
the setting of sparse image coding using tensors introduced
by [9].

Let U be a tensor of dual variables corresponding to X̂ .
Note that each scalar entry of X̂ appears only once in the
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sum (30). Thus, the Legendre transform decomposes along
the sum and we have:

Φ∗(X,U) =

n1∑
i=1

OTλ
ε

∗ ((
X⊤

(1)

)
i
,
(
U⊤
(1)

)
i

)
. (31)

3.7. Implementation

To find a local minimum of (14), we perform in gen-
eral a block coordinate descent in A(1), . . . , A(d), S. Each
convex subproblem is solved via its dual problem, which
admits closed form gradients [5, 20]. We use L-BFGS for
moderately sized problems, and gradient descent for large
problems. We employ the PyTorch automatic differentia-
tion engine [16] and the Tensorly tensor routine library [13].
Since the problem (14) is non-convex, a good initialisation
may improve the result: while a random initialisation of
the core tensor and factor matrices as done by [1] can be
used, in Section 4 we opt to employ the commonly used
non-negative SVD initialisation [12].

4. Results
4.1. Simulated data – 3-mode tensor

We first deal with the setting where the input tensor is
a histogram lying on a product of metric spaces. We take
the space X = X̂ 3 where X̂ is a regularly spaced grid with
128 points, equipped with the squared product metric, i.e.
(8) with p = 2. The cost tensor decomposes following (9).
Cost matrices C(i), i = 1, 2, 3 are normalised to unit mean.

We construct a ground truth tensor that is the mixture of
three separable distributions: Xtrue =

∑3
i=1 αi ⊗ βi ⊗ γi,

where {αi, βi, γi}3i=1 are discrete univariate Gaussians sup-
ported on X̂ that we illustrate in Figure 2(a). We now
consider a scenario where we have access only to limited
sample observations from the ground truth. Given these
samples, we seek to recover the separable components of
the underlying distribution by finding a low-rank approxi-
mation to the (high-rank) observed tensor. Here, we take
the tensor X to be an empirical distribution drawn from
Xtrue. We next apply WTF with parameters ε = 0.01, ρi =
10−3, λ = 25 to find a rank-3 approximation to X , with the
additional constraint that the learned univariate components
be normalised. For comparison, we also computed rank-3
approximations using a standard non-negative CP factori-
sation with a Frobenius loss, and the SWIFT algorithm [1]
with the identical parameters ε = 0.01, λ = 25.

We show the recovered univariate factors in Figure
2(a), and also visualise projections of the recovered ten-
sors in Figure 2(b). From this, we see that WTF recov-
ers smooth atoms that are faithful to the ground truth. In
contrast, Frobenius-CP finds irregular atoms that contain
many ‘spikes’ and fail to capture the underlying structure in
the empirical distribution. This behaviour can be partially

1 0 1

i

1 0 1

i

1 0 1

i

True

1 0 1

i

1 0 1

i

1 0 1

i

WTF
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1 0 1

i

1 0 1

i

Frobnenius-CP

1 0 1

i

1 0 1

i

1 0 1

i

SWIFT

(a)

True Sample WTF Frobenius-CP SWIFT

(b)

Figure 2: (a) True and recovered atoms visualised as uni-
variate distributions, using WTF, Frobenius, and SWIFT
decomposition methods. (b) True, sampled, and recovered
tensors visualised as projections onto the first two dimen-
sions.

explained by the pointwise nature of the Frobenius norm,
which is insensitive to the spatial structure in the noisy in-
put tensor. Finally, SWIFT produces atoms which corre-
spond roughly to the true factors (i.e. localised in the correct
region). However, these are significantly more noisy than
those recovered by WTF. We hypothesise that the difference
in behaviour observed between WTF and SWIFT partly due
to the different formulation of optimal transport on tensors
– WTF employs optimal transport with the natural product
metric (9) which allows mass to be transported ‘globally’
on the product space. In contrast, SWIFT uses a sum of op-
timal transport terms on the i-mode fibers of the tensor [1]
and thus for each term, there is the limitation that mass is
constrained to be transported along one-dimensional fibers.

4.2. Simulated data – stacked images

We construct a tensor X of dimensions 100 × 32 ×
32, for which the ith slice Xi,·,· is a 32 × 32 dis-
crete distribution constructed as a mixture of three sepa-
rable bivariate distributions Xi,·,· = Zi

−1 ∑3
k=1 α

(i)
k ⊗

β
(i)
k , where {α(i)

k , β
(i)
k }3k=1 are discretised Gaussians on

linspace(-1, 1, 32), and Zi is a normalising con-
stant. The observed univariate distributions {α(i)

k , β
(i)
k }3k=1

are constructed by applying random, normally-distributed
translations to some fixed ‘ground truth’ distributions
{αk, βk}3k=1. We illustrate in Figure 3 the simulated
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Figure 3: (Left) Marginal distributions {α(i)
k , β

(i)
k : k =

1, 2, 3}100i=1, where k is indexed by color, after applying ran-
dom translational noise. (Center and right) Atoms learned
by WTF and Frobenius-CP decompositions, respectively,
as univariate distributions that generate the rank-1 bivari-
ate atoms.

WTF Frobenius-CP

W-NMF Frobenius-NMF

Figure 4: Atoms learned by WTF, Frobenius-CP, W-NMF
and Frobenius-NMF.

dataset, showing the randomly shifted marginal distribu-
tions that generate the observed bivariate distributions. Ex-
amining the averaged distribution reveals that the noisy ob-
servations fluctuate around three modes located along the
diagonal, corresponding to the ‘ground truth’ distributions
α1 ⊗ β1, α2 ⊗ β2, and α3 ⊗ β3.

To find a rank-3 CP decomposition, we applied a stan-
dard non-negative CP factorisation with a Frobenius loss as
well as WTF with ε = 0.01, ρi = 0.01, λ = 25. Both meth-
ods learn a decomposition where each slice Xi,·,· is repre-
sented as a mixture of r = 3 rank-1 matrices. For WTF, we
imposed the additional constraint that the learned univari-
ate atoms lie in the simplex. We show the separable atoms
learned by the respective methods also in Figure 3. For ease
of comparison, we show normalised atoms in the case of
Frobenius-CP.

It is clear that the atoms learned by WTF provide a rea-
sonable summary of the input data. The presence of three
distinct unimodal atoms in each dimension is evident, and
the spatial arrangement agrees with the distribution of the
noisy inputs. On the other hand, Frobenius-CP appears to
struggle with the presence of translational noise due to the
pointwise nature of the loss function, yielding two atoms in
the second dimension that share a mode.

As an alternative to seeking tensor decompositions, we
could vectorise the 32 × 32 matrices as columns to form
a 1024 × 100 matrix and then apply NMF with Frobenius

and Wasserstein losses (Frobenius-NMF and WNMF) re-
spectively. For WNMF we used the same parameters as
for WTF previously, and require that the components be
normalised. We show in Figure 4 the atoms learned by
WTF, Frobenius-CP, WNMF and Frobenius-NMF respec-
tively. From this it is clear that the atoms found by matrix
factorisation are high-rank, each capturing partial informa-
tion across all three components of the mixture. In contrast,
the atoms found by tensor factorisation are separable, and
each atom clearly corresponds to only a single mode.

4.3. Learning basis for faces

The AT&T Olivetti faces dataset 1 consists of 400 images
(40 subjects, 10 images per subject). Images were resized
to 32 × 32 and normalised to have unit mass. The dataset
was randomly split into a set of training and test images,
each of which contained 200 images (5 images per individ-
ual in each set). We constructed from this 200 × 32 × 32
tensors Xtrain and Xtest by stacking images from the re-
spective sets as slices along the first mode. WTF was ap-
plied to the training data Xtrain to find CP decompositions
of varying rank r ∈ {10, 20, . . . , 100} with parameters
ε = 10−3, ρi = 5 × 10−3 × r−1, λ = 10, with the con-
straint that learned atoms lie in the simplex. We also applied
a standard non-negative CP decomposition with a squared
Frobenius norm loss (which we denote F-CP).

To examine the learned factors, motivated by the obser-
vations of [9, 23] we expect the separable basis elements
to roughly correspond to spatially localised features of the
input. To investigate this, we applied spectral clustering
to the basis images learned by WTF and Frobenius-CP re-
spectively, and show their superpositions by cluster in Fig-
ure 5(a-b). We observe that atoms learned by WTF can be
grouped into clusters that highlight spatial regions corre-
sponding to prominent features of the face, such as fore-
head, cheekbone, nose, etc. On the other hand, the atoms
learned by Frobenius-CP effectively fail to cluster, suggest-
ing that each the atoms do not spatially segregate into dis-
tinct features.

To assess the usefulness of the learned basis for super-
vised classification, we projected the test dataset Xtest onto
the basis learned from the training set. This was done by
solving (17) for a coefficient matrix A

(1)
test whilst holding

the factor matrices encoding atoms {A(2), A(3)} fixed. This
problem is convex, so we are guaranteed a unique solution.
The rows of A(1)

test are the coordinates of the images in the
basis {A(2), A(3)} learned from the training dataset. Fol-
lowing [21], we then use 1-nearest neighbour classification
with a cosine distance (x, y) 7→ 1− cos(∠(x, y)) to assign
each test image to one of the 40 individual labels. In Figure
6(a) we summarise the accuracy of this approach over 10

1this dataset is accessible at http://www.cs.nyu.edu/

˜roweis/
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Figure 6: Classification accuracy as a function of the num-
ber of basis components for (a) tensor factorisations (sepa-
rable atoms) and (b) matrix factorisations (full rank atoms).

random train-test splits as a function of the basis size (fac-
torisation rank) r. As a reference for performance, we also
display the accuracy for a basis of r principal components
(PCs). Note that the PCs are full-rank 32× 32 matrices that
are not non-negative, compared to the rank-1 non-negative
basis atoms sought by tensor factorisation methods. Thus,
each full-rank atom contains 16-fold more entries than a
rank-1 atom. We find that classification using the WTF
basis learned from Xtrain achieves performance compara-
ble to the PCA basis, despite the additional restrictions for
WTF that the basis elements be rank-1 and non-negative. In
contrast, the performance of Frobenius-CP degrades as the
number of components increases, suggesting that the basis
elements found using the pointwise Frobenius loss have a
poor ability to generalise beyond the training examples.

We next compare the tensor representation found by
WTF against the equivalent representation found by matrix
decompositions using Wasserstein-NMF (W-NMF). Train-

ing and test datasets were constructed as in the tensor case,
except we took Xtrain and Xtest to be 1024× 200 matrices
with columns corresponding to the vectorised images. We
sought a decomposition using both Frobenius (F-NMF) and
Wasserstein (W-NMF) losses. For W-NMF, we used pa-
rameters identical to WTF. Each atom is a vector of length
1024 which represents a 32× 32 matrix with no constraints
on rank, in contrast to the rank-1 constraint in the case of
the tensor representation.

In Figure 5(c-d) we show the individual atoms found by
WNMF and Frobenius-NMF respectively. Curiously, as in
the case of tensor factorisations, the atoms found by WNMF
visually correspond to localised facial features. In contrast,
all of the atoms found by FNMF redundantly capture the
full structure of the face. We assessed the performance of
the bases found by WNMF and FNMF for classification of
the test dataset Xtest. As shown in Figure 6(b), we find that
WNMF achieves a classification accuracy that is on-par or
higher than PCA. On the other hand, as in the case of ten-
sor decompositions, the accuracy of FNMF decreases as the
number of basis components is increased. Finally, we note
that for a fixed number of basis components r, the matrix
representation requires effectively 4.6 fold more stored en-
tries than the CP tensor representation, and each full-rank
atom is equivalent to 16 rank-1 entries in terms of stored
entries. However, for the same number of basis elements
we find that WTF achieves a classification accuracy that is
comparable to WNMF. This suggests that the tensor format
is more efficient for representing image data [9, 23].

5. Conclusion

Motivated by practical settings where observed data lie
on a space with metric structure, we formulated the problem
of finding non-negative factorisations of matrices and ten-
sors using a Wasserstein loss and propose to solve it numer-
ically via the dual formulation. Alone the way, we derived
a closed-form Legendre transform for the semi-unbalanced
Wasserstein loss (7) , which to our knowledge has not been
previously reported in the literature. Avenues for future
work include generalising our approach to deal with sparse
data as in [1], as well as exploring alternative choices of
barrier functions for the non-negativity constraint. One di-
rection of interest is to develop a methodology where the
operation of taking linear combinations of atoms is replaced
with taking the Wasserstein barycenter [4], as was done in
the setting of matrix factorisations by Schmitz et al. [22].
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mal transport. SIAM Review, 60(4):941–965, 2018. 1

[7] Michel Marie Deza and Elena Deza. Encyclopedia of dis-
tances. In Encyclopedia of distances, pages 1–583. Springer,
2009. 3

[8] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio
Araya-Polo, and Tomaso Poggio. Learning with a wasser-
stein loss. arXiv preprint arXiv:1506.05439, 2015. 1, 2

[9] Tamir Hazan, Simon Polak, and Amnon Shashua. Sparse
image coding using a 3d non-negative tensor factorization.
In Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 1, pages 50–57. IEEE, 2005.
5, 7, 8
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