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A Introduction of notation

We summarise below the (relatively standard) notation conventions which we adopt throughout
this article.

• Matrices and tensors are denoted in upper case, e.g. X,U, V , in contrast to vectors which are
written in lower case, e.g. x, u, v.

• For a matrix X ∈ Rm×n, we index its elements Xij and write Xi for the ith column as a
m-dimensional vector.

• For a tensor X ∈ Rn1×···×nd , we index its elements Xi1,...,id and write X(i) for its matricisation
[12] along mode i, which is a matrix of dimensions ni × n1 · · ·ni−1ni+1 · · ·nd.

• We write the inner product for vectors (x, y) as 〈x, y〉 =
∑
i xiyi, for matrices (X,Y ) as

〈X,Y 〉 =
∑
ij XijYij and so on for tensors.

• We denote elementwise multiplication by �, and outer product of vectors by ⊗. Unless
otherwise specified, for x, y vectors and A a matrix of appropriate dimensions, by writing Ax
we refer to the matrix-vector product, and by xy and x/y we refer to the elementwise product
and quotient respectively.

• Following the notation of [12], we write the mode-k product of a tensor A ∈ Rn1×···×nd and
a matrix B ∈ Rm×nk as

(A×k B)i1,...,ik−1,j,ik+1,...,id

=

nk∑
ik=1

Ai1,...,idBj,ik ,

and this is a tensor of dimensions n1 × · · · × nk−1 ×m× nk+1 × · · · × nd.

• For non-negative matrices or tensors α and β, we write the entropy as E(α) = 〈α, log(α)− 1〉,
the relative entropy H(α|β) = 〈α, log(α/β)− 1〉 and the generalised Kullback-Leibler diver-
gence as KL(α|β) = 〈α, log(α/β)〉 − 〈α,1〉+ 〈β,1〉.

• For a discrete metric space X , we write P(X ) and M+(X ) to be respectively the set of
probability distributions and positive measures supported on X .
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B Wasserstein-NMF as a special case of WTF

From the framework introduced in Sections 3.3 and 3.4, we may recover the NMF method described
by Rolet et al. [20] when we consider matrices as 2-way tensors. Let X ∈ Rm×n. In the context
of NMF, columns of X correspond to observations, so we may take Φ(X, X̂) to be a Wasserstein
loss along the columns of its arguments. We take Si1,i2 = δi1,i2 to be fixed, and so for two factor
matrices U, V we have

S[U, V ] =

r∑
i=1

Ui ⊗ Vi = UV >.

Thus, (14) becomes

min
U,V

Φ(X,UV >) + ρ1EΣ1
(U) + ρ2EΣ2

(V ),

which coincides (albeit with differing notation) with the Wasserstein-NMF problem introduced by
Rolet et al. [20]. Proposition 2 gives the dual problem for the subproblems in factor matrices U
and V respectively.

C Convex duality

For further background on the techniques involved, we refer the reader to the existing literature on
variational problems involving optimal transport [5, 6, 8].

Definition 1 (Legendre transform). Let f : Rn → (−∞,∞] be a proper function, i.e. one that is
not identically +∞. The Legendre transform of f is defined for u ∈ Rn as

f∗(u) = sup
x∈Rn

〈x, u〉 − f(x).

Furthermore, f∗∗ = f if and only if f is convex and lower semicontinuous.

Theorem 1 (Fenchel-Rockafellar theorem [19]). Let E,F be (finite or infinite dimensional) real
vector spaces, and E∗, F ∗ their respective topological dual spaces. Let f : E → (−∞,∞], g : F →
(−∞,∞] be proper (not identically +∞), convex, lower-semicontinuous (sublevel sets are closed)
functions. Let A : E → F be a continuous linear operator. Consider the convex minimisation
problem

min
x∈E

f(x) + g(Ax) (P)

Then (P) has a corresponding dual problem (P*)

sup
y∈F∗

−f∗(A∗y)− g∗(−y), (P*)

where A∗ is the adjoint of A, and f∗(·) = supx∈E 〈x, ·〉 − f(x), g∗(·) = supy∈F 〈y, ·〉 − g(y) are the
Legendre transforms of f and g, defined over E∗ and F ∗ respectively.

In general the dual problem (P*) provides a lower bound on the solution to the primal problem
(P): p? ≥ d?. However, the following simple condition is sufficient for equality to hold in a finite
dimensional setting.
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Theorem 2 (Condition for strong duality in finite dimensions, adapted from [19]). If E,F are
finite-dimensional and there exists some x in the relative interior of the feasible set, then p? = d?.

D Proofs

Proof of Proposition 2. We write the primal problem as (16):

min
A(k)

Φ(X,S[A(1), . . . , A(d)]) + ρkEΣk(A(k)).

Now let us substitute the definition of the Legendre transform of Φ, and we take formally an
inf − sup exchange:

min
A(k)

sup
U

[〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− Φ∗(X,U)

]
+ ρkEΣk(A(k))

= sup
U
−Φ∗(X,U) + min

A(k)

〈
U, S ×1 A

(1) × · · · ×d A(d)
〉

+ ρkEΣk(A(k))

= sup
U
−Φ∗(X,U)− ρk max

A(k)

[
−1

ρk

〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− EΣk(A(k))

]
.

We now note the identities 〈A,B ×k C〉 =
〈
A×k C>, B

〉
and 〈A×k B,C〉 =

〈
BA(k), C(k)

〉
so:〈

U, S ×1 A
(1) × · · · ×d A(d)

〉
=
〈
U ×j≥k+1 (A(j))>, S ×j≤k A(j)

〉
=
〈
U ×j≥k+1 (A(j))>, S ×j≤k−1 A

(j) ×k A(k)
〉

=

〈
A(k)

[
S ×j≤k−1 A

(j)
]

(k)
,
[
U ×j≥k+1 (A(j))>

]
(k)

〉
=

〈
A(k),

[
U ×j≥k+1 (A(j))>

]
(k)

[
S ×j≤k−1 A

(j)
]>

(k)

〉
=
〈
A(k),Ξ(k)(U)

〉
,

where Ξ(k)(U) =
[
U ×j≥k+1 (A(j))>

]
(k)

[
S ×j≤k−1 A

(j)
]>
(k)

. Thus,

max
A(k)

−1

ρk

〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− EΣk(A(k))

= max
A(k)

〈
A(k),

−1

ρk
Ξ(k)(U)

〉
− EΣk(A(k))

= E∗Σk

(
−1

ρk
Ξ(k)(U)

)
.

Thus we have

sup
U
−Φ∗(X,U)− ρkE∗Σk

(
−1

ρk
Ξ(k)(U)

)
.

Strong duality holds by application of the Fenchel-Rockafellar theorem.
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Let the value of U at optimality be U?. Then the corresponding factor matrix (A(k))? must be the
solution of

max
A(k)

〈
A(k),

−1

ρk
Ξ(k)(U?)

〉
− EΣk(A(k)).

If Σk = {}, then EΣk(x) = 〈x, log(x)− 1〉. We are unconstrained and have the sum of an affine and
a convex term. Differentiating, we find the first-order optimality condition

A(k)? = exp

(
−1

ρk
Ξ(k)(U?)

)
.

If Σk = {A(k) :
〈
A(k),1

〉
= 1}, then the problem is subject to a simplex constraint. At optimality,

therefore, the gradient must be orthogonal to the simplex (parallel to 1):

−1

ρk
Ξ(k)(U?)− log(A(k)?) = c1

=⇒ A(k)? = exp(−c) exp

(
−1

ρk
Ξ(k)(U?)

)
.

Since
〈
A(k),1

〉
= 1, we conclude that exp(c) = exp

(
−1
ρk

Ξ(k)(U?)
)

. In the cases where Σk re-

quires row or column normalisation, applying an identical argument row- or columnwise leads to
an analogous result, where we normalise the output row- or columnwise.

Proof of Proposition 3. As in the proof of Proposition 2, we introduce the Legendre transform of
Φ and carry out an inf − sup exchange.

min
S

Φ(X,S[A(1), . . . , A(d)]) + ρ0EΣ0(S)

= min
S

sup
U

[〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− Φ∗(X,U)

]
+ ρ0EΣ0

(S)

= sup
U
−Φ∗(X,U) + min

S

[〈
U, S ×1 A

(1) × · · · ×d A(d)
〉

+ ρ0EΣ0
(S)
]

= sup
U
−Φ∗(X,U)− ρ0 max

S

[
−1

ρ0

〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− EΣ0(S)

]
.

Now note that using the identities presented in the proof of Proposition 2:〈
U, S ×1 A

(1) × · · · ×d A(d)
〉

=
〈
U ×1 (A(1))> × · · · ×d (A(d))>, S

〉
= 〈S,Ω(U)〉

where Ω(U) = U ×1 (A(1))> × · · · ×d (A(d))>. Thus,

max
S

−1

ρ0

〈
U, S ×1 A

(1) × · · · ×d A(d)
〉
− EΣ0

(S)

= max
S

〈
S,
−1

ρ0
Ω(U)

〉
− EΣ0

(S)

= E∗Σ0

(
−1

ρ0
Ω(U)

)
.
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Thus, the dual problem is

sup
U
−Φ∗(X,U)− ρ0E

∗
Σ0

(
−1

ρ0
Ω(U)

)
.

As before, strong duality holds by application of the Fenchel-Rockafellar theorem.

Let the value of U at optimality be U?. Then the corresponding core tensor S? must be the solution
of

max
S

〈
S,
−1

ρ0
Ω(U?)

〉
− EΣ0(S).

Following the previous argument given in the Proof of Proposition 2, we find that

S? =


exp

(
−1
ρ0

Ω(U?)
)
, Σ0 = {},

exp
(

−1
ρ0

Ω(U?)
)

〈
exp
(

−1
ρ0

Ω(U?)
)
,1
〉 , Σ0 = {S : 〈S,1〉 = 1}

.

Proof of Proposition 4. For marginal distributions p, q, we write an alternative form of the semi-
balanced optimal transport problem (7) as

OTλε (p, q) = inf
γ:γ1=p

εH(γ|K) + λKL(γ>1|q).

We seek the Legendre transform in the second argument q. Introduce u the dual variable of q and
α the Lagrange multiplier for the constraint γ1 = p, then exchange the inf and sup.

OTλε
∗
(p, u) = sup

q
〈u, q〉 − inf

γ1=p

[
εH(γ|K) + λKL(γ>1|q)

]
= inf

α
sup
q,γ
〈u, q〉 − εH(γ|K)

− λKL(γ>1|q) + 〈α, γ1− p〉.

Use first order condition for q:

∂

∂q
(·) = u− λ

(
1− γ>1

q

)
= 0

⇒ q = (γ>1)

(
λ

λ− u

)
,

where multiplication is elementwise. Substituting back, we find that

inf
α

sup
γ

〈
u,

(
γ>1� λ

λ− u

)〉
− εH(γ|K)

− λ
〈
γ>1, log

(
λ− u
λ

)
− γ>1 + q

〉
+ 〈α, γ1− p〉.
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Differentiating with respect to γ, (and after some involved algebra) we find the first order condition
for γ to be

γij = exp
(αi
ε

)
Kij

(
λ

λ− uj

)λ/ε
.

Substituting back and finally differentiating in α we find that

α = ε log

(
p

K( λ
λ−u )λ/ε

)
= ε log

(
p

Kf

)
,

where f =
(

λ
λ−u

)λ/ε
for brevity. With all this, the Legendre transform is

OTλε
∗
(p, u) = −

〈
p, ε log

(
p

Kf

)〉
+

〈
K>

p

Kf
, εf

〉
= −ε

〈
p, log

(
p

Kf

)〉
+ ε〈p,1〉.

The relationship between the primal and dual variables is therefore

q =

(
λ

λ− u

)
f �K> p

Kf
,

γ = exp
(α
ε

)
Kf.

E Gibbs kernel convolution

Proposition 1 (Convolution with tensor-valued Gibbs kernel). In the context of Proposition 6,
the Gibbs kernel K = e−C/ε is a 2d-way tensor that decomposes multiplicatively:

Ki1,...,id,j1,...,jd = e−Ci1,...,id,j1,...,jd/ε

= K
(1)
i1,j1
· · ·K(d)

id,jd
.

Furthermore, note that in the case of vector-valued input, the formula (25) involves a matrix-vector
convolution of the form s 7→ Ks. In our setting, for S ∈ Rn1×···×nd the corresponding operation is
a convolution along all modes that has the following decomposition:

(KS)i1,...,id =
∑

j1,...,jd

Ki1,...,id,j1,...,jdSj1,...,jd

= S ×di=1 K
(i).

Code

An implementation of the methods described in this paper is available at https://github.com/

zsteve/wtf
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