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Introduction of notation

We summarise below the (relatively standard) notation conventions which we adopt throughout
this article.

Matrices and tensors are denoted in upper case, e.g. X, U,V , in contrast to vectors which are
written in lower case, e.g. x,u,v.

For a matrix X € R™*", we index its elements X;; and write X; for the ith column as a
m-dimensional vector.

For a tensor X € R™ """ e index its elements X, . ;, and write X(;) for its matricisation
[12] along mode 7, which is a matrix of dimensions n; X 1y «--n;_1M;r1 - Ng.

We write the inner product for vectors (z,y) as (z,y) = >, x;y;, for matrices (X,Y) as
(X,Y) =>_,; X;;Yi; and so on for tensors.

We denote elementwise multiplication by ®, and outer product of vectors by ®. Unless
otherwise specified, for x,y vectors and A a matrix of appropriate dimensions, by writing Az
we refer to the matrix-vector product, and by xy and z/y we refer to the elementwise product
and quotient respectively.

Following the notation of [I2], we write the mode-k product of a tensor A € R™**"*"d and
a matrix B € R™*"k ag
(A Xk By it grinstseomsia
nk
= Z Aiy,iaBjigs
=1
and this is a tensor of dimensions ny X + -+ X Ng_1 X M X Ngy1 X -+ X Ng.

For non-negative matrices or tensors « and /3, we write the entropy as F(«a) = {(«,log(a) — 1),
the relative entropy H(a|B8) = (a,log(a/B) — 1) and the generalised Kullback-Leibler diver-

gence as KL(«|8) = (a,log(a/B)) — (o, 1) + (3, 1).

For a discrete metric space X, we write P(X) and M, (X) to be respectively the set of
probability distributions and positive measures supported on X.



B Wasserstein-NMF as a special case of WTF

From the framework introduced in Sections and we may recover the NMF method described
by Rolet et al. [20] when we consider matrices as 2-way tensors. Let X € R™*™. In the context
of NMF, columns of X correspond to observations, so we may take ®(X ,X ) to be a Wasserstein
loss along the columns of its arguments. We take S;, ;, = 0;, 4, to be fixed, and so for two factor
matrices U,V we have

SUVI=> UiaV;=UV".

i=1
Thus, becomes
min ®(X, UVT) + p1Bs, (U) + p2Es, (V),

which coincides (albeit with differing notation) with the Wasserstein-NMF problem introduced by
Rolet et al. [20]. Proposition [2| gives the dual problem for the subproblems in factor matrices U
and V respectively.

C Convex duality

For further background on the techniques involved, we refer the reader to the existing literature on
variational problems involving optimal transport [5l 6] §].

Definition 1 (Legendre transform). Let f : R™ — (—o0, 00| be a proper function, i.e. one that is
not identically +o00. The Legendre transform of f is defined for u € R™ as
fH(uw) = sup (z,u) — f(z).

z€ER™
Furthermore, f** = f if and only if f is convex and lower semicontinuous.

Theorem 1 (Fenchel-Rockafellar theorem [19]). Let E, F be (finite or infinite dimensional) real
vector spaces, and E*, F* their respective topological dual spaces. Let f : E — (—o0,00], g : F' —
(—00, 0] be proper (not identically +00), convez, lower-semicontinuous (sublevel sets are closed)
functions. Let A : E — F be a continuous linear operator. Consider the conver minimisation
problem

min f(z) + g(Ax) (P)

el

Then (P) has a corresponding dual problem (P*)

sup —f*(A"y) — g"(—y), (P*)
yeF*
where A* is the adjoint of A, and f*(-) = sup,cp (z,") — f(x), g°(-) = supyerp (y,-) — g(y) are the
Legendre transforms of f and g, defined over E* and F* respectively.

In general the dual problem (P*) provides a lower bound on the solution to the primal problem
(P): p* > d*. However, the following simple condition is sufficient for equality to hold in a finite
dimensional setting.



Theorem 2 (Condition for strong duality in finite dimensions, adapted from [19]). If E, F are
finite-dimensional and there exists some x in the relative interior of the feasible set, then p* = d*.

D Proofs

Proof of Proposition[4 We write the primal problem as :

min ®(X, S[AW, . AW]) + pp By, (A®).
A

Now let us substitute the definition of the Legendre transform of ®, and we take formally an
inf — sup exchange:

M ... (DY _ p* (k)
rjl(lkr)lsngU,leA X oo xg A > @(X,U)}erkEzk(A )

= sup —®* (X, U) + min <U, S xy AN xoxy A<d)> + prEs, (A®)
U A(k)

-1
- _p* M ... Dy _ (k)
7Sgp " (X,U) — pkrzl(zg([pk <U,S xp AW x oo xg A > Es, (A )] .

We now note the identities (4, B xj, C) = (A x;, CT, B) and (A xj, B,C) = (BA), C(x)) so:
<U,S 5y AD ... di(d)> = (U 541 (AD)T S %, A(j)>

U X]>k+1 (]))T’ S ngkfl A(]) Xk A(k)>

<
=
<A(k) S X j<he 114(3)}( o’ [U X >kl (A(j))‘l'} (k)>

() ()
Atk U X joian (AD) ](k [5 X jcpo1 A Lk)>
A(k) ~(k)<U)>,
where 2R (U) = [U X j>k41 (A(j))T](k) [S X j<p_1 AW ](k) Thus,
max;l<U,S xp A x .y A(d)> — Ex, (AW)

AWK P

= max <A(k) H(k) U)> — Ex, (A®)
A

Thus we have
—1_
sup —* (X, U) — pr B, (:““)(U)) :
U Pk

Strong duality holds by application of the Fenchel-Rockafellar theorem.



Let the value of U at optimality be U*. Then the corresponding factor matrix (A*))* must be the
solution of

-1
(k) =) (> (k)
mg}){<A e ( )> Ex, (A'™).

If ¥) = {}, then Ey, (z) = (x,log(z) — 1). We are unconstrained and have the sum of an affine and
a convex term. Differentiating, we find the first-order optimality condition

AP = exp <_15(k)(U*)) .
Pk
If 5y = {A® : (A®) 1) =1}, then the problem is subject to a simplex constraint. At optimality,
therefore, the gradient must be orthogonal to the simplex (parallel to 1):

LW (@) — log(A®*) = a1
Pk

* -1
— AW = exp(—c) exp (pE(k)(U*)> .
k

Since (A®),1) = 1, we conclude that exp(c) = exp (;—;E(k)(U*)). In the cases where ¥j re-

quires row or column normalisation, applying an identical argument row- or columnwise leads to
an analogous result, where we normalise the output row- or columnwise. O

Proof of Proposition[3 As in the proof of Proposition [2, we introduce the Legendre transform of
® and carry out an inf — sup exchange.

mSlIl(I)(X’ S[A(1)7 s aA(d)D + pOEEO (S)
= minsup [<U,S x1 AM % oxg A(d)> —d"(X, U)} + poEs, (S)
s U

=sup —®*(X,U) + min [<U,S x1 A x .. xy A(d)> + poEEU(S)}
U S
-1
=sup —®*(X,U) — pp max [<U,S x1 AW % .xg A(d)> - EEO(S)} .
U s Lro
Now note that using the identities presented in the proof of Proposition
<U75 i AD 5 ... di<d>> — <U w1 (AT x . xy (A(d>)15>
=(5,Q(U))
where Q(U) = U x1 (AM)T x - x4 (AD)T, Thus,



Thus, the dual problem is
* * -1
sup ~0* (X,0) — paB3, (200 )
U Po

As before, strong duality holds by application of the Fenchel-Rockafellar theorem.

Let the value of U at optimality be U*. Then the corresponding core tensor S* must be the solution
of

max <5, ;OlQ(U*)> — B, (9).

Following the previous argument given in the Proof of Proposition [2| we find that

exp (Z20U), = {},

e e A
<eXp(;—olQ(U*))’1>v EO = {S : <S’ 1> _ 1}

O

Proof of Proposition[f} For marginal distributions p, ¢, we write an alternative form of the semi-
balanced optimal transport problem @ as

OT2(p.q) = _inf eH(9|K) +AKL(y"1]g).

We seek the Legendre transform in the second argument g. Introduce u the dual variable of ¢ and
« the Lagrange multiplier for the constraint v1 = p, then exchange the inf and sup.

OT2" (p,u) = sup (u,q) — inf [eH(]K) + NKL(7" 1]g)]
! &
— inf sup {u, g) — H(3|K)
“ gy

— AKL(v"1[q) + (a, 71 = p).

Use first order condition for g:

A
-
=q= 1 ,
g=('1) < 1o u)
where multiplication is elementwise. Substituting back, we find that
. T
infsup(u,|{v 160 ——])—cH(y|K)
«a ~ )\ — U

- )\<7T1,log (A;u) —yT1 4+ q> + {(a,71 — p).



Differentiating with respect to ~y, (and after some involved algebra) we find the first order condition

for 7 to be
A e
(0% A
J— 2K .
Yij eXP(g) i ()\—Uj>

Substituting back and finally differentiating in « we find that

a =c¢log S N - elog <p) ,
K (325 K

A e
where f = (ﬁ) for brevity. With all this, the Legendre transform is

O (p,u) = <p,slog ([ff>> + <KTIff,sf>

b >> +&(p,1).

The relationship between the primal and dual variables is therefore

_ A T P
q<A_u>f®K KF'
vzexp<§>Kf.
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E Gibbs kernel convolution

Proposition 1 (Convolution with tensor-valued Gibbs kernel). In the context of Proposition @
the Gibbs kernel K = e~C/¢ is a 2d-way tensor that decomposes multiplicatively:

Ko iassna = € Ol
_ (M (d)
- Kihjl Kid,jd'

Furthermore, note that in the case of vector-valued input, the formula involves a matrixz-vector
convolution of the form s+ Ks. In our setting, for S € R™* X" the corresponding operation is
a convolution along all modes that has the following decomposition:

(KS)iroia = > KivoiwiundaSineia

J1s--5dd

=S xd KO,

Code

An implementation of the methods described in this paper is available at https://github.com/
zsteve/wtf


https://github.com/zsteve/wtf
https://github.com/zsteve/wtf
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