

Supplementary materials

August 8, 2021

A Introduction of notation

We summarise below the (relatively standard) notation conventions which we adopt throughout this article.

- Matrices and tensors are denoted in upper case, e.g. X, U, V , in contrast to vectors which are written in lower case, e.g. x, u, v .
- For a matrix $X \in \mathbb{R}^{m \times n}$, we index its elements X_{ij} and write X_i for the i th column as a m -dimensional vector.
- For a tensor $X \in \mathbb{R}^{n_1 \times \dots \times n_d}$, we index its elements X_{i_1, \dots, i_d} and write $X_{(i)}$ for its matricisation [12] along mode i , which is a matrix of dimensions $n_i \times n_1 \cdots n_{i-1} n_{i+1} \cdots n_d$.
- We write the inner product for vectors (x, y) as $\langle x, y \rangle = \sum_i x_i y_i$, for matrices (X, Y) as $\langle X, Y \rangle = \sum_{ij} X_{ij} Y_{ij}$ and so on for tensors.
- We denote elementwise multiplication by \odot , and outer product of vectors by \otimes . Unless otherwise specified, for x, y vectors and A a matrix of appropriate dimensions, by writing Ax we refer to the matrix-vector product, and by xy and x/y we refer to the elementwise product and quotient respectively.
- Following the notation of [12], we write the mode- k product of a tensor $A \in \mathbb{R}^{n_1 \times \dots \times n_d}$ and a matrix $B \in \mathbb{R}^{m \times n_k}$ as

$$\begin{aligned} (A \times_k B)_{i_1, \dots, i_{k-1}, j, i_{k+1}, \dots, i_d} \\ = \sum_{i_k=1}^{n_k} A_{i_1, \dots, i_d} B_{j, i_k}, \end{aligned}$$

and this is a tensor of dimensions $n_1 \times \dots \times n_{k-1} \times m \times n_{k+1} \times \dots \times n_d$.

- For non-negative matrices or tensors α and β , we write the entropy as $E(\alpha) = \langle \alpha, \log(\alpha) - 1 \rangle$, the relative entropy $H(\alpha|\beta) = \langle \alpha, \log(\alpha/\beta) - 1 \rangle$ and the generalised Kullback-Leibler divergence as $KL(\alpha|\beta) = \langle \alpha, \log(\alpha/\beta) \rangle - \langle \alpha, \mathbf{1} \rangle + \langle \beta, \mathbf{1} \rangle$.
- For a discrete metric space \mathcal{X} , we write $\mathcal{P}(\mathcal{X})$ and $\mathcal{M}_+(\mathcal{X})$ to be respectively the set of probability distributions and positive measures supported on \mathcal{X} .

B Wasserstein-NMF as a special case of WTF

From the framework introduced in Sections 3.3 and 3.4, we may recover the NMF method described by Rolet et al. [20] when we consider matrices as 2-way tensors. Let $X \in \mathbb{R}^{m \times n}$. In the context of NMF, columns of X correspond to observations, so we may take $\Phi(X, \hat{X})$ to be a Wasserstein loss along the columns of its arguments. We take $S_{i_1, i_2} = \delta_{i_1, i_2}$ to be fixed, and so for two factor matrices U, V we have

$$S[U, V] = \sum_{i=1}^r U_i \otimes V_i = UV^\top.$$

Thus, (14) becomes

$$\min_{U, V} \Phi(X, UV^\top) + \rho_1 E_{\Sigma_1}(U) + \rho_2 E_{\Sigma_2}(V),$$

which coincides (albeit with differing notation) with the Wasserstein-NMF problem introduced by Rolet et al. [20]. Proposition 2 gives the dual problem for the subproblems in factor matrices U and V respectively.

C Convex duality

For further background on the techniques involved, we refer the reader to the existing literature on variational problems involving optimal transport [5, 6, 8].

Definition 1 (Legendre transform). *Let $f : \mathbb{R}^n \rightarrow (-\infty, \infty]$ be a proper function, i.e. one that is not identically $+\infty$. The Legendre transform of f is defined for $u \in \mathbb{R}^n$ as*

$$f^*(u) = \sup_{x \in \mathbb{R}^n} \langle x, u \rangle - f(x).$$

Furthermore, $f^{**} = f$ if and only if f is convex and lower semicontinuous.

Theorem 1 (Fenchel-Rockafellar theorem [19]). *Let E, F be (finite or infinite dimensional) real vector spaces, and E^*, F^* their respective topological dual spaces. Let $f : E \rightarrow (-\infty, \infty]$, $g : F \rightarrow (-\infty, \infty]$ be proper (not identically $+\infty$), convex, lower-semicontinuous (sublevel sets are closed) functions. Let $A : E \rightarrow F$ be a continuous linear operator. Consider the convex minimisation problem*

$$\min_{x \in E} f(x) + g(Ax) \tag{P}$$

Then (P) has a corresponding dual problem (P)*

$$\sup_{y \in F^*} -f^*(A^*y) - g^*(-y), \tag{P*}$$

where A^ is the adjoint of A , and $f^*(\cdot) = \sup_{x \in E} \langle x, \cdot \rangle - f(x)$, $g^*(\cdot) = \sup_{y \in F} \langle y, \cdot \rangle - g(y)$ are the Legendre transforms of f and g , defined over E^* and F^* respectively.*

In general the dual problem (P*) provides a lower bound on the solution to the primal problem (P): $p^* \geq d^*$. However, the following simple condition is sufficient for equality to hold in a finite dimensional setting.

Theorem 2 (Condition for strong duality in finite dimensions, adapted from [19]). *If E, F are finite-dimensional and there exists some x in the relative interior of the feasible set, then $p^* = d^*$.*

D Proofs

Proof of Proposition 2. We write the primal problem as (16):

$$\min_{A^{(k)}} \Phi(X, S[A^{(1)}, \dots, A^{(d)}]) + \rho_k E_{\Sigma_k}(A^{(k)}).$$

Now let us substitute the definition of the Legendre transform of Φ , and we take formally an inf-sup exchange:

$$\begin{aligned} & \min_{A^{(k)}} \sup_U \left[\left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - \Phi^*(X, U) \right] + \rho_k E_{\Sigma_k}(A^{(k)}) \\ &= \sup_U -\Phi^*(X, U) + \min_{A^{(k)}} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle + \rho_k E_{\Sigma_k}(A^{(k)}) \\ &= \sup_U -\Phi^*(X, U) - \rho_k \max_{A^{(k)}} \left[\frac{-1}{\rho_k} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - E_{\Sigma_k}(A^{(k)}) \right]. \end{aligned}$$

We now note the identities $\langle A, B \times_k C \rangle = \langle A \times_k C^\top, B \rangle$ and $\langle A \times_k B, C \rangle = \langle B A_{(k)}, C_{(k)} \rangle$ so:

$$\begin{aligned} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle &= \left\langle U \times_{j \geq k+1} (A^{(j)})^\top, S \times_{j \leq k} A^{(j)} \right\rangle \\ &= \left\langle U \times_{j \geq k+1} (A^{(j)})^\top, S \times_{j \leq k-1} A^{(j)} \times_k A^{(k)} \right\rangle \\ &= \left\langle A^{(k)} \left[S \times_{j \leq k-1} A^{(j)} \right]_{(k)}, \left[U \times_{j \geq k+1} (A^{(j)})^\top \right]_{(k)} \right\rangle \\ &= \left\langle A^{(k)}, \left[U \times_{j \geq k+1} (A^{(j)})^\top \right]_{(k)} \left[S \times_{j \leq k-1} A^{(j)} \right]_{(k)}^\top \right\rangle \\ &= \left\langle A^{(k)}, \Xi^{(k)}(U) \right\rangle, \end{aligned}$$

where $\Xi^{(k)}(U) = \left[U \times_{j \geq k+1} (A^{(j)})^\top \right]_{(k)} \left[S \times_{j \leq k-1} A^{(j)} \right]_{(k)}^\top$. Thus,

$$\begin{aligned} & \max_{A^{(k)}} \frac{-1}{\rho_k} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - E_{\Sigma_k}(A^{(k)}) \\ &= \max_{A^{(k)}} \left\langle A^{(k)}, \frac{-1}{\rho_k} \Xi^{(k)}(U) \right\rangle - E_{\Sigma_k}(A^{(k)}) \\ &= E_{\Sigma_k}^* \left(\frac{-1}{\rho_k} \Xi^{(k)}(U) \right). \end{aligned}$$

Thus we have

$$\sup_U -\Phi^*(X, U) - \rho_k E_{\Sigma_k}^* \left(\frac{-1}{\rho_k} \Xi^{(k)}(U) \right).$$

Strong duality holds by application of the Fenchel-Rockafellar theorem.

Let the value of U at optimality be U^* . Then the corresponding factor matrix $(A^{(k)})^*$ must be the solution of

$$\max_{A^{(k)}} \left\langle A^{(k)}, \frac{-1}{\rho_k} \Xi^{(k)}(U^*) \right\rangle - E_{\Sigma_k}(A^{(k)}).$$

If $\Sigma_k = \{\}$, then $E_{\Sigma_k}(x) = \langle x, \log(x) - 1 \rangle$. We are unconstrained and have the sum of an affine and a convex term. Differentiating, we find the first-order optimality condition

$$A^{(k)*} = \exp \left(\frac{-1}{\rho_k} \Xi^{(k)}(U^*) \right).$$

If $\Sigma_k = \{A^{(k)} : \langle A^{(k)}, \mathbf{1} \rangle = 1\}$, then the problem is subject to a simplex constraint. At optimality, therefore, the gradient must be orthogonal to the simplex (parallel to $\mathbf{1}$):

$$\begin{aligned} \frac{-1}{\rho_k} \Xi^{(k)}(U^*) - \log(A^{(k)*}) &= c\mathbf{1} \\ \implies A^{(k)*} &= \exp(-c) \exp \left(\frac{-1}{\rho_k} \Xi^{(k)}(U^*) \right). \end{aligned}$$

Since $\langle A^{(k)}, \mathbf{1} \rangle = 1$, we conclude that $\exp(c) = \exp \left(\frac{-1}{\rho_k} \Xi^{(k)}(U^*) \right)$. In the cases where Σ_k requires row or column normalisation, applying an identical argument row- or columnwise leads to an analogous result, where we normalise the output row- or columnwise. \square

Proof of Proposition 3. As in the proof of Proposition 2, we introduce the Legendre transform of Φ and carry out an inf – sup exchange.

$$\begin{aligned} &\min_S \Phi(X, S[A^{(1)}, \dots, A^{(d)}]) + \rho_0 E_{\Sigma_0}(S) \\ &= \min_S \sup_U \left[\left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - \Phi^*(X, U) \right] + \rho_0 E_{\Sigma_0}(S) \\ &= \sup_U -\Phi^*(X, U) + \min_S \left[\left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle + \rho_0 E_{\Sigma_0}(S) \right] \\ &= \sup_U -\Phi^*(X, U) - \rho_0 \max_S \left[\frac{-1}{\rho_0} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - E_{\Sigma_0}(S) \right]. \end{aligned}$$

Now note that using the identities presented in the proof of Proposition 2:

$$\begin{aligned} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle &= \left\langle U \times_1 (A^{(1)})^\top \times \dots \times_d (A^{(d)})^\top, S \right\rangle \\ &= \langle S, \Omega(U) \rangle \end{aligned}$$

where $\Omega(U) = U \times_1 (A^{(1)})^\top \times \dots \times_d (A^{(d)})^\top$. Thus,

$$\begin{aligned} &\max_S \frac{-1}{\rho_0} \left\langle U, S \times_1 A^{(1)} \times \dots \times_d A^{(d)} \right\rangle - E_{\Sigma_0}(S) \\ &= \max_S \left\langle S, \frac{-1}{\rho_0} \Omega(U) \right\rangle - E_{\Sigma_0}(S) \\ &= E_{\Sigma_0}^* \left(\frac{-1}{\rho_0} \Omega(U) \right). \end{aligned}$$

Thus, the dual problem is

$$\sup_U -\Phi^*(X, U) - \rho_0 E_{\Sigma_0}^* \left(\frac{-1}{\rho_0} \Omega(U) \right).$$

As before, strong duality holds by application of the Fenchel-Rockafellar theorem.

Let the value of U at optimality be U^* . Then the corresponding core tensor S^* must be the solution of

$$\max_S \left\langle S, \frac{-1}{\rho_0} \Omega(U^*) \right\rangle - E_{\Sigma_0}(S).$$

Following the previous argument given in the Proof of Proposition 2, we find that

$$S^* = \begin{cases} \exp \left(\frac{-1}{\rho_0} \Omega(U^*) \right), & \Sigma_0 = \{\}, \\ \frac{\exp \left(\frac{-1}{\rho_0} \Omega(U^*) \right)}{\langle \exp \left(\frac{-1}{\rho_0} \Omega(U^*) \right), \mathbf{1} \rangle}, & \Sigma_0 = \{S : \langle S, \mathbf{1} \rangle = 1\} \end{cases}.$$

□

Proof of Proposition 4. For marginal distributions p, q , we write an alternative form of the semi-balanced optimal transport problem (7) as

$$\text{OT}_\varepsilon^\lambda(p, q) = \inf_{\gamma: \gamma\mathbf{1}=p} \varepsilon H(\gamma|K) + \lambda \text{KL}(\gamma^\top \mathbf{1}|q).$$

We seek the Legendre transform in the second argument q . Introduce u the dual variable of q and α the Lagrange multiplier for the constraint $\gamma\mathbf{1}=p$, then exchange the inf and sup.

$$\begin{aligned} \text{OT}_\varepsilon^\lambda(p, u) &= \sup_q \langle u, q \rangle - \inf_{\gamma\mathbf{1}=p} [\varepsilon H(\gamma|K) + \lambda \text{KL}(\gamma^\top \mathbf{1}|q)] \\ &= \inf_\alpha \sup_{q, \gamma} \langle u, q \rangle - \varepsilon H(\gamma|K) \\ &\quad - \lambda \text{KL}(\gamma^\top \mathbf{1}|q) + \langle \alpha, \gamma\mathbf{1} - p \rangle. \end{aligned}$$

Use first order condition for q :

$$\begin{aligned} \frac{\partial}{\partial q}(\cdot) &= u - \lambda \left(1 - \frac{\gamma^\top \mathbf{1}}{q} \right) = 0 \\ \Rightarrow q &= (\gamma^\top \mathbf{1}) \left(\frac{\lambda}{\lambda - u} \right), \end{aligned}$$

where multiplication is elementwise. Substituting back, we find that

$$\begin{aligned} \inf_\alpha \sup_\gamma &\left\langle u, \left(\gamma^\top \mathbf{1} \odot \frac{\lambda}{\lambda - u} \right) \right\rangle - \varepsilon H(\gamma|K) \\ &- \lambda \left\langle \gamma^\top \mathbf{1}, \log \left(\frac{\lambda - u}{\lambda} \right) - \gamma^\top \mathbf{1} + q \right\rangle + \langle \alpha, \gamma\mathbf{1} - p \rangle. \end{aligned}$$

Differentiating with respect to γ , (and after some involved algebra) we find the first order condition for γ to be

$$\gamma_{ij} = \exp\left(\frac{\alpha_i}{\varepsilon}\right) K_{ij} \left(\frac{\lambda}{\lambda - u_j}\right)^{\lambda/\varepsilon}.$$

Substituting back and finally differentiating in α we find that

$$\alpha = \varepsilon \log\left(\frac{p}{K\left(\frac{\lambda}{\lambda - u}\right)^{\lambda/\varepsilon}}\right) = \varepsilon \log\left(\frac{p}{Kf}\right),$$

where $f = \left(\frac{\lambda}{\lambda - u}\right)^{\lambda/\varepsilon}$ for brevity. With all this, the Legendre transform is

$$\begin{aligned} \text{OT}_\varepsilon^{\lambda^*}(p, u) &= -\left\langle p, \varepsilon \log\left(\frac{p}{Kf}\right) \right\rangle + \left\langle K^\top \frac{p}{Kf}, \varepsilon f \right\rangle \\ &= -\varepsilon \left\langle p, \log\left(\frac{p}{Kf}\right) \right\rangle + \varepsilon \langle p, \mathbf{1} \rangle. \end{aligned}$$

The relationship between the primal and dual variables is therefore

$$\begin{aligned} q &= \left(\frac{\lambda}{\lambda - u}\right) f \odot K^\top \frac{p}{Kf}, \\ \gamma &= \exp\left(\frac{\alpha}{\varepsilon}\right) Kf. \end{aligned}$$

□

E Gibbs kernel convolution

Proposition 1 (Convolution with tensor-valued Gibbs kernel). *In the context of Proposition 6, the Gibbs kernel $K = e^{-C/\varepsilon}$ is a 2d-way tensor that decomposes multiplicatively:*

$$\begin{aligned} K_{i_1, \dots, i_d, j_1, \dots, j_d} &= e^{-C_{i_1, \dots, i_d, j_1, \dots, j_d}/\varepsilon} \\ &= K_{i_1, j_1}^{(1)} \cdots K_{i_d, j_d}^{(d)}. \end{aligned}$$

Furthermore, note that in the case of vector-valued input, the formula (25) involves a matrix-vector convolution of the form $s \mapsto Ks$. In our setting, for $S \in \mathbb{R}^{n_1 \times \dots \times n_d}$ the corresponding operation is a convolution along all modes that has the following decomposition:

$$\begin{aligned} (KS)_{i_1, \dots, i_d} &= \sum_{j_1, \dots, j_d} K_{i_1, \dots, i_d, j_1, \dots, j_d} S_{j_1, \dots, j_d} \\ &= S \times_{i=1}^d K^{(i)}. \end{aligned}$$

Code

An implementation of the methods described in this paper is available at <https://github.com/zsteve/wtf>