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Abstract

Deep learning-based image matching methods are im-
proved significantly during the recent years. Although
these methods are reported to outperform the classical tech-
niques, the performance of the classical methods is not
examined in detail. In this study, we compare classical
and learning-based methods by employing mutual nearest
neighbor search with ratio test and optimizing the ratio test
threshold to achieve the best performance on two differ-
ent performance metrics. After a fair comparison, the ex-
perimental results on HPatches dataset reveal that the per-
formance gap between classical and learning-based meth-
ods is not that significant. Throughout the experiments, we
demonstrated that SuperGlue is the state-of-the-art tech-
nique for the image matching problem on HPatches dataset.
However, if a single parameter, namely ratio test thresh-
old, is carefully optimized, a well-known traditional method
SIFT performs quite close to SuperGlue and even outper-
forms in terms of mean matching accuracy (MMA) under 1
and 2 pixel thresholds. Moreover, a recent approach, DFM,
which only uses pre-trained VGG features as descriptors
and ratio test, is shown to outperform most of the well-
trained learning-based methods. Therefore, we conclude
that the parameters of any classical method should be ana-
lyzed carefully before comparing against a learning-based
technique.

1. Introduction

Determining pixel-to-pixel correspondences between
two images is one of the fundamental problems in com-
puter vision. There exists various classical ”hand-crafted”
approaches, such as SIFT [22], SURF [4], ORB [28],
KAZE [1], AKAZE [2], as well as some recently devel-
oped learning-based methods, SuperPoint [11], SuperGlue
[30], Patch2Pix [35] and DFM [14]. All these techniques
are frequently used in many applications, such as image

matching, camera relocalization, pose estimation, Simulta-
neous Localization and Mapping (SLAM), and Structure-
from-Motion (SfM).

Testing the performance of an algorithm in a fair man-
ner for different applications is a challenging task. In addi-
tion, comparing and evaluating these algorithms on well-
known datasets is also not straightforward due to hyper-
parameter selection. This step is known to be crucial specif-
ically for classical algorithms due to numerous parameters
of such algorithms. In case of a comparison between a new
learning-based method to the classical methods, this param-
eter adjustment procedure is not examined in detail. More-
over, most of the time, the hyper-parameters of the classical
methods are not even specified in the manuscripts. In this
paper, we tried to compare classical and learning-based im-
age matching algorithms in a fair manner on a well-known
(HPatches) dataset [3] by optimizing the hyper-parameters
of each algorithm on the selected dataset.

In a recent study [14], we demonstrated that applying
mutual nearest neighbor search that exploits the ratio test
on pre-trained VGG [31] features achieves the state-of-the-
art performance. In order to investigate the resulting ef-
fect of this ratio threshold on some classical methods, we
have also examined five classical image matching algo-
rithms [22, 4, 28, 1, 2] on HPatches dataset in terms of Mean
Matching Accuracy (MMA) [12] and Homography Estima-
tion Accuracy (HEA) [11]. We have compared these con-
ventional algorithms against four popular learning-based
[11, 30, 35, 14] methods. We observed that ratio test thresh-
old have a significant impact, as in [18, 13], on the perfor-
mance of the methods SIFT, SURF, ORB, KAZE, AKAZE,
SuperPoint and DFM. Similarly, the confidence parameter
utilized in SuperGlue and Patch2Pix algorithms also affects
their performance. This study presents the result of com-
prehensive experiments on these nine algorithms with dif-
ferent ratio test and confidence thresholds to reveal MMA
and HEA performances of those algorithms for 1-10 pixel
thresholds. By using these results, we present the optimal
parameters for each algorithm to maximize MMA and HEA
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for required pixel threshold.
Most of the new algorithm proposals claim to outperform

the preceding ones at least for some specific pixel thresh-
olds. As we present through the experiments, most of the
time by adjusting the hyper-parameters, it is possible one al-
gorithm to outperform the rest for a specific pixel threshold,
resulting in multiple state-of-the-art methods. To minimize
this ambiguity, beyond the pixel threshold specific optimal
parameters, Area Under Curve (AUC) values for MMA and
HEA using the whole accuracy range (1-10 pixel thresh-
olds) are also provided to reveal the average performance.
We also present optimal parameters for MMA and HEA in-
dividually, since the optimal parameters for these two met-
rics might be different as demonstrated in [35, 14].

Throughout the experiments, we observed that changing
only a single parameter of an algorithm yields this algo-
rithm reaching the state-of-the-art performance. This cir-
cumstance is mostly observed for classical methods, which
usually argued to have inferior performance compared to
the learning-based algorithms. In other words, we demon-
strate and argue that classical algorithms can still perform
close to the state-of-the-art for image matching task, at least
in HPatches dataset, and the performance gap between the
classical and deep learning-based methods is not that signif-
icant, as it is accepted and reported before in the literature.

Hence, in this study, our contribution is threefold;
i. We show that, by only adjusting a single hyper-

parameter, namely ratio test threshold, classical algorithms
still competes with the state-of-the-art learning-based meth-
ods in terms of MMA and HEA metrics on HPatches
dataset.

ii. By revisiting the existing methods, we propose the
optimal parameter settings for classical and learning-based
algorithms and present the optimal MMA and HEA perfor-
mance on HPatches dataset for each method.

iii. We provide an experimental setup on https://
github.com/ufukefe/IME to determine the optimal
parameters of 9 well-known image matching algorithms us-
ing MMA and HEA metrics not only for HPatches but also
for any dataset in which these performance metrics can be
employed.

2. Related Work
In order to determine pixel-wise correspondences be-

tween two images, the classical approaches follow detec-
tion, description, and matching steps, while learning-based
methods either follow these steps or carry out all of these
steps in a single stage.

2.1. Classical Image Matching Algorithms

The most well known classical algorithms SIFT, SURF,
ORB, KAZE and AKAZE execute the first two steps,
namely feature detection and description, in a hand-crafted

manner, and give locations of detected points together with
their corresponding descriptors.

SIFT (Scale-Invariant Feature Transform) [22] detects
features in the scale-space simply utilizing Difference of
Gaussians (DoG), which is an approximation of Laplacian
of Gaussian (LoG) [21]. In this manner, SIFT is able to
detect blobs in varying scales with their orientation. Next,
considering the dominant orientation and creating gradient
histograms, SIFT outputs 128-dimensional descriptor vec-
tors. SIFT is invariant to some amount of scale changes
and even severe rotations; furthermore, it is robust to illu-
mination changes due to the normalization of the descriptor
vector.

SURF (Speeded Up Robust Features) [4] goes a little
further than the SIFT and approximates LoG with low-
complexity Box Filters. SURF uses a blob detector based
on the Hessian matrix to find points of interest. The deter-
minant of the Hessian matrix is used as a measure of local
change around the point, and as a consequence, the points
which maximize that determinant are selected. SURF also
takes into account the dominant orientation of the features
and exploits Haar wavelet responses in the horizontal and
vertical directions to extract 64-dimensional descriptor vec-
tors. SURF is also robust to some amount of scale, rotation,
and illumination changes.

ORB (Oriented FAST and Rotated BRIEF) [28] runs
FAST (Features from Accelerated Segment Test) [27] as a
feature point detector together with computing keypoint’s
orientation. FAST basically examines a circle of 16 pixels
surrounding an arbitrary pixel and decides whether the pixel
is a keypoint or not by using the intensity differences be-
tween the candidate pixel and 16 surrounding pixels. Then,
using the computed orientation, ORB employs a rotated ver-
sion of the BRIEF (Binary Robust Independent Elementary
Features) [6] algorithm, which simply creates a binary fea-
ture vector of the binary test responses to build descriptor
vectors.

KAZE [1] detector uses nonlinear scale spaces instead
of Gaussian scale-space representations that are employed
by SIFT. The motivation is that; nonlinear scale-space con-
siders objects’ natural boundaries, unlike Gaussian scale-
space, which does not regard them due to smoothing the
details and noise at all scale levels to the same degree.
In contrast to SIFT, which uses the (DoG) to process the
blurred images, KAZE uses AOS (Additive Operator Split-
ting) schemes since there are no analytical solution of the
partial differential equations (PDEs) for nonlinear diffusion
filtering. KAZE uses an adapted version of the SURF de-
scriptor. Since the descriptors must work in a nonlinear
scale-space model, the derivative responses are calculated
and summed into a feature descriptor vector, and then the
vector is centered at the feature. Finally, the descriptor is
normalized into a unit vector.
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AKAZE [2] is the accelerated version of the KAZE al-
gorithm. It benefits from FED (Fast Explicit Diffusion) in
the detection step and uses Modified-Local Difference Bi-
nary (M-LDB) descriptor, which is a modified version of
the original LDB descriptor [34], to create the feature de-
scriptor vectors.

After features are detected and described with a fea-
ture extractor algorithm, they should be matched between
frames. Mutual Nearest Neighbor Search (MNNS) which
is executed by measuring distances between descriptor vec-
tors is commonly used for feature matching. The most com-
mon distance metrics are SAD (Sum of Absolute Differ-
ences), SSD (sum of squared differences), and Hamming
distance. Moreover, while searching for nearest neighbors,
Lowe [22] proposed a method to reject ambiguous matches
by thresholding the ratio of the distance of the closest match
to the distance of the second closest one. This whole feature
matching strategy is denoted as Mutual Nearest Neighbor
Search with Bidirectional Ratio Test (MNNSwBRT).

2.2. Learning-based Image Matching Algorithms

Among the recently proposed learning-based techniques,
SuperPoint and SuperGlue algorithms follow the classical
image matching pipeline, while Patch2Pix and DFM tech-
niques directly output the matched features between two
images.

SuperPoint [11] jointly detects keypoints and computes
relevant descriptor vectors. In this method, the outputs of
the MagicPoint [10] detector is first exploited and a novel
self-supervision strategy, namely Homographic Adaptation,
is utilized to create a pseudo ground-truth interest point.
Then, SuperPoint network is jointly trained in such a way
that giving the keypoint confidence of each pixel and their
corresponding descriptor vectors.

SuperGlue [30] can be considered as a feature matcher
that computes the matches between two sets consisting of
detected features and corresponding descriptor vectors. Su-
perGlue basically improves the descriptor vectors consider-
ing the cross and self attentions by the help of a graph neural
network. At the final step, SuperGlue algorithm learns to
match features optimally by using differentiable Sinkhorn
algorithm [32, 7].

Patch2Pix [35] starts by matching the deepest features
of truncated ResNet-34 [17] network by employing NCNet
[26] as a matcher, and it continues refining feature loca-
tions until the pixel-level by utilizing mid and fine-level re-
gressors which are weakly supervised by epipolar geometry
constraints.

The recent DFM method [14] uses only a pre-trained
classification network and well-studied conventional com-
puter vision techniques, such as hierarchical refinement and
ratio test. DFM first aligns two images by matching the ter-
minal layers of the pre-trained VGG19 [31] network; next,

by the ratio test, DFM starts to match features of the termi-
nal layers and refines those matches in a hierarchical way
upto the first layers of VGG.

It is an essential fact that all these learning-based ap-
proaches need training data. Specifically, SuperPoint ex-
ploits MagicPoint [10] detector, which is trained using Syn-
thetic Shapes dataset [10], and uses MS-COCO dataset
[20] after labeling in a self-supervised manner. Super-
Glue, on the other hand, is separately trained on differ-
ent datasets, which are Oxford and Paris [25], ScanNet
[8], and MegaDepth [19], for every particular problem,
namely homography, indoor and outdoor. Patch2Pix uti-
lizes ResNet34 [17] backbone, trained on ImageNet [9],
and its refinement network is trained on MegaDepth. Even
DFM, which uses a pre-trained VGG-19 [31] extractor, nat-
urally needs this off-the-shelf network trained on ImageNet.
Hence, all learning-based methods depend on the dataset
characteristics, such as content and annotation quality.

Finally, it should be noted that while Patch2Pix and DFM
directly output the putative matches, SuperPoint requires a
feature matcher at its final stage as classical algorithms; this
matcher step might be either MNNSwBRT or SuperGlue.

3. Experimental Setup
We have constructed an experimental setup in order to

measure the performances of 5 classical and 4 learning-
based image matching algorithms on HPatches dataset in
terms of widely used metrics MMA and HEA by sliding
only one parameter, either ratio test or confidence.

3.1. Dataset

HPatches dataset [3] consists of 116 sequences of two
subsets, namely illumination and viewpoint sets. The il-
lumination subset includes 57 sequences, and each has 6
images and 5 ground-truth homographies between the first
image and others. The viewpoint subset has 59 sequences
with the same structure. The sequences in the illumination
subset have significant illumination variation with the same
viewpoints antithetical to the viewpoint subset in which se-
quences have significant viewpoint changes with similar il-
luminations. Following D2-Net [12], we left out large im-
ages and made evaluations on 52 illumination sequences
and 56 viewpoint sequences in order to make all algorithms
work and to be coherent with the literature.

3.2. Performance Metrics

3.2.1 Mean Matching Accuracy (MMA)

Mean Matching Accuracy (MMA) is a widely used per-
formance metric, and recently many state-of-the-art works
[12, 35, 24, 14] reported their performances in terms of
MMA on HPatches dataset. This metric basically mea-
sures the average accuracy of the matched features over the

2508



dataset. Given an image pair and matched features between
them, matching accuracy is defined as the percentage of the
correctly matched features. A match is accepted as a correct
match if the distance between the reprojected feature point
with ground-truth homography and its corresponding match
point is less than given pixel threshold. In our experiments,
we vary the threshold from 1 pixel to 10 pixels as in the
literature.

3.2.2 Homography Estimation Accuracy (HEA)

Homography Estimation Accuracy (HEA) is another widely
used metric for image matching evaluation and used in
[11, 35, 33, 14] as a performance metric. MMA solely may
not be sufficient for image matching evaluation, since an
algorithm with a very limited number of and poorly dis-
tributed matches may make a high score in terms of MMA
but it is likely to fail at geometric transformation estima-
tion. Hence, we take into account HEA and use it as the
second performance metric in all of our experiments. To
compute HEA, four corners of one image is reprojected
onto the other image with the estimated and the ground-
truth homographies. Then we take the average distance be-
tween these projected points and accept the estimated ho-
mography correct, if the reprojection error is smaller than
the given threshold. HEA is the rate of correctly estimated
homographies over whole dataset.

3.3. Algorithms

We use OpenCV [5] 4.5.2 implementations of the classi-
cal algorithms SIFT, ORB, KAZE, and AKAZE with the
default parameters for feature detection and description.
For SURF, we use OpenCV 3.4.2 with the default parame-
ters. For SuperPoint, we utilize SuperGlue GitHub repos-
itory [29] in order to obtain keypoint locations and their
descriptors. All the algorithms mentioned above perform
Mutual Nearest Neighbor Search with Bidirectional Ratio
Test (MNNSwBRT) to find matches between extracted fea-
tures. We measure the performance for different ratio test
thresholds from 0.1 to 1.0 with steps of 0.1.

For DFM, we also used the original implementa-
tion [15] of the algorithm which again takes the advan-
tage of MNNSwBRT. However, since DFM benefits from
MNNSwBRT multiple times, to be fair, we kept the ratio
test thresholds for the deepest two layer’s descriptors fixed
in the act of 0.95 and 0.90 as in the original paper, and only
optimize the ratio test thresholds of the first three shallow-
est layer as their multiplication results with the threshold
value. To illustrate, we have used the threshold set [0.80,
0.80, 0.80, 0.90, 0.95] for the threshold value 0.5 since
0.5(1/3) ≈ 0.80.

For SuperGlue, we have used the GitHub repository [29]
with the default parameters except for not resizing the input

Method Threshold

SIFT [22] + NN Ratio Test Threshold
SURF [4] + NN Ratio Test Threshold
ORB [28] + NN Ratio Test Threshold
KAZE [1] + NN Ratio Test Threshold
AKAZE [2] + NN Ratio Test Threshold

SuperPoint [11] + NN Ratio Test Threshold
SuperPoint + SuperGlue [30] (1 - Confidence)
Patch2Pix [35] (1 - Confidence)
DFM [14] (Ratio Test Threshold)3 for first 3 layers

Table 1. Definition of the Threshold Values used in experi-
ments. For all classical algorithms and SuperPoint + NN, we de-
fine threshold as the ratio test threshold of MNNSwBRT matcher,
where for SuperGlue and Patch2Pix, it is defined as the comple-
ment of the confidence. Finally, for DFM algorithm, the threshold
is described as the product of the equal ratio test thresholds used
for the first three layers.

images and using the ‘outdoor’ setting, which gives better
performance HPatches dataset. For Patch2Pix, we use the
official GitHub repository [36] with default parameter set-
tings. For both SuperGlue and Patch2Pix we measure the
performance for different confidence thresholds from 0.9 to
0.0 with steps of 0.1.

Computing MMA is straightforward and reported with
the same procedure in many works. Nonetheless, Homog-
raphy Estimation performance depends on utilized homog-
raphy estimation method, many image matching algorithms
reported their results using different homography estima-
tion methods. For example, Patch2Pix has used pydegen-
sac, where DFM has used MATLAB’s estimateGeometric-
Transform function, both are different versions of RANSAC
[16] algorithm. In this work, we use OpenCV’s findHomog-
raphy function with newly introduced cv.USAC MAGSAC
method, which is available from OpenCV 4.5.2 version, and
whose success is demonstrated in [23]. We adjust the other
RANSAC’s parameters as following: ransacReprojThresh-
old=3.0, maxIters=5000, confidence=0.9999.

4. Experimental Results
We followed the procedure explained in Section 3 and

evaluated nine algorithms on HPatches dataset, with vary-
ing thresholds, which are different for each algorithm and
defined in Table 1.

4.1. Effect of Matching Threshold

Figure 1 illustrates the performances of 5 classical and
4 learning-based image matching algorithms with varying
thresholds in terms of MMA and HEA with different pixel
thresholds on HPatches dataset. The threshold is defined
as the ratio test threshold for MNNSwBRT matcher for
SIFT, SURF, ORB, KAZE, AKAZE, and SuperPoint al-
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Figure 1. Experimental Results of 5 classical and 4 learning-based algorithms in terms of MMA and HEA on HPatches [3] dataset. MMA
results are shown as dashed lines for classical algorithms and straight lines for learning-based algorithms, where HEA results are shown as
dots. Individual plots show the accuracy with varying threshold values while rows indicate different pixel thresholds.
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Method

Mean Matching Accuracy (MMA) Homography Estimation Accuracy (HEA)
≤1px ≤3px ≤5px ≤10px ≤1px ≤3px ≤5px ≤10px

Acc. Thr. Acc. Thr. Acc. Thr. Acc. Thr. Acc. Thr. Acc. Thr. Acc. Thr. Acc. Thr.

SIFT [22] + NN 0.60 0.3 0.87 0.3 0.93 0.3 0.95 0.3 0.51 0.9 0.76 0.9 0.86 0.9 0.91 0.7
SURF [4] + NN 0.52 0.2 0.82 0.3 0.89 0.3 0.93 0.4 0.48 1.0 0.74 0.9 0.83 0.8 0.91 0.8
ORB [28] + NN 0.37 0.4 0.68 0.5 0.73 0.5 0.74 0.5 0.13 1.0 0.4 1.0 0.51 1.0 0.62 0.9
KAZE [1] + NN 0.52 0.1 0.83 0.4 0.90 0.4 0.94 0.5 0.39 0.9 0.74 1.0 0.84 1.0 0.90 1.0
AKAZE [2] + NN 0.50 0.3 0.80 0.4 0.87 0.5 0.89 0.5 0.34 1.0 0.65 1.0 0.75 1.0 0.83 1.0

SuperPoint [11] + NN 0.50 0.3 0.87 0.4 0.93 0.4 0.95 0.5 0.46 0.8 0.70 0.9 0.86 0.9 0.92 0.8
SuperPoint + SuperGlue [30] 0.48 0.1 0.90 0.1 0.97 0.1 0.98 0.1 0.53 0.6 0.83 0.9 0.91 0.3 0.96 0.3
Patch2Pix [35] 0.48 0.1 0.88 0.1 0.94 0.1 0.96 0.1 0.53 0.6 0.81 0.9 0.87 0.9 0.92 0.5
DFM [14] 0.66 0.1 0.89 0.1 0.94 0.1 0.97 0.1 0.45 1.0 0.79 1.0 0.88 1.0 0.93 0.9

Table 2. Best accuracy values and their relevant thresholds for each evaluated algorithm in terms of both MMA and HEA metrics,
considering the 1, 3, 5, and 10-pixel thresholds. Best-performing results are shown as bold and the second-best-performing ones are shown
as bold-italic.

gorithms, (ratio test threshold)3 for DFM and (1 – confi-
dence) for SuperGlue and Patch2Pix algorithms. A smaller
threshold means strict matching and returns fewer matches,
while larger threshold values mean loose matching and re-
turn more matches.

In Figure 1, it can be clearly observed that the threshold
has a notable effect on the performance. For example, for a
specific threshold (0.4), SIFT becomes the best-performing
method, while it takes 4th place, when the threshold value
is 1.0 in terms of MMA under 1 pixel threshold. A sim-
ilar pattern is observed for most of the algorithms evalu-
ated. Another interesting observation is that most of the
classical algorithms have a bell-shaped curve, similar to the
observations in [18]. Moreover, the effect of the thresh-
old is more significant than learning-based algorithms in
terms of MMA, which claims that when evaluating a classi-
cal method, at least the ratio test threshold parameter should
be optimized for the given dataset. An additional important
observation is the almost monotonic increase in HEA for ev-
ery algorithm, meaning that RANSAC is powerful enough
to handle putative match sets consists of some amount of
outliers and further giving better results.

4.2. Comparisons based on Best Accuracy Values

Table 2 is established by picking the best accuracy in
terms of both MMA and HEA and the selected thresholds
for each algorithm, considering the 1, 3, 5, and 10-pixel
threshold. From the table, we again notice the monotonic
increasing behavior of HEA with respect to threshold, and
in contrast, MMA maximizes in lower threshold values.
That means strict thresholds result in correct matches while
loose thresholds result in more matches and increase the
accuracy of the homography estimation with the help of
RANSAC. Last but not least, the implication from the table
is that there is only a small performance gap between re-

cently developed state-of-the-art learning-based algorithms
and the classical algorithms with only adjusting a single pa-
rameter. For example, SIFT is the second-best performing
algorithm under 1-pixel accuracy, and it has only a few per-
cent away from the best-performing methods for the other
pixel thresholds. Noting that we did not attempt to optimize
any other parameters of the classical algorithms, such an
optimization over the dataset might make these algorithms
outperform the state-of-the-art.

4.3. Comparisons based on Best Area Under Accu-
racy Curves

Table 3 is constructed by selecting a threshold for each
algorithm to maximize the average accuracy for different
pixel thresholds from 1 to 10 pixels. This average gives area
under the accuracy curve (AUC) shown in Figure 2. Table
3 also illustrates the number of matches for relevant thresh-
olds, indicating the fact that high MMA can be achieved

Method MMA HEA
#Features AUC Thr. #Matches AUC Thr. #Matches

SIFT [22] + NN 4572 89.6 0.3 478 82.1 0.9 1293
SURF [4] + NN 6003 85.6 0.3 276 80.0 0.9 1378
ORB [28] + NN 499 69.1 0.5 19 48.0 1.0 170
KAZE [1] + NN 3120 86.3 0.5 544 79.8 1.0 1287
AKAZE [2] + NN 2694 82.9 0.5 219 72.0 1.0 1011

SuperPoint [11] + NN 921 88.3 0.5 253 82.6 1.0 506
SuperPoint + SuperGlue [30] 921 91.6 0.1 441 86.8 0.6 482
Patch2Pix [35] - 89.2 0.1 723 84.1 0.9 1434
DFM [14] - 91.6 0.1 881 84.0 1.0 16619

Table 3. Best area under curve (AUC) percentage values and
their relevant thresholds for each algorithm considering both
MMA and HEA metrics from 1 to 10 pixel threshold. Best-
performing results are shown as bold, and the second-best-
performing ones are shown as bold-italic. Also, the number of
detected features and the number of matched features using related
threshold values are indicated.
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Figure 2. Overall MMA and HEA curves that give the best AUC
for each algorithm. These curves indicate the best possible AUC
result for each algorithm can achieve on HPatches [3] dataset by
only optimizing a single parameter ratio test or match confidence.
For each setting that gives the best AUC for one metric, the result
of the other metric is also presented.

with higher confidence and less number of matches, while
high HEA can be obtained with loose confidence and hence
a vast number of matches. The most cardinal demonstration
of Table 3 is a classical algorithm SIFT is the second best
performing algorithm in terms of AUC of mean matching
accuracy. Also, its performance in terms of AUC of homog-
raphy estimation accuracy is only two percentage below
the second best performing algorithm, Patch2Pix. In ad-
dition, SURF and KAZE algorithms also have comparable
performances with the state-of-the-art algorithms. Finally,
note that although we categorize DFM as a learning-based
method, it can be considered as almost a classical approach
as it utilizes the deep features extracted by a pre-trained
VGG-19 network, only employs the well established classi-
cal computer vision algorithms such as initial warping, hier-
archical refinement and nearest neighbor search with ratio
test in a very simple framework; and underline that DFM
has no specific training procedure for image matching task.

Figure 2 exhibits the MMA and HEA curves that give the
best AUC for each algorithm. The figure utilizes the thresh-
olds given in Table 3 and illustrates the MMA and HEA
curves. Note that it also shows the curve of the other met-
ric by using the thresholds optimized for one metric, i.e.,
it displays the HEA curve with the thresholds that maxi-
mize the AUC of the MMA curve and vice-versa. It can be
seen from the figure, for the most of the algorithms, the best
threshold for one metric is not good enough for the other
metric. For example, when DFM’s ratio test threshold is
optimized for MMA, its performance is poor for HEA. Ex-
cept that, Patch2Pix and specifically SuperGlue algorithms
are robust to such a parameter variation, performing well
in both metrics. It may result from the fact that these two
algorithms inherently learn the scene geometry so that opti-
mizing these algorithms to obtain high MMA will naturally
result in a high performance for HEA as well. Most im-

portantly, the figure claims that classical methods can still
perform very close to the well-trained state-of-the-art algo-
rithms by adjusting just a single parameter. In fact, SIFT
still achieves state-of-the-art performance, being under only
DFM in terms of MMA for 1 and 2-pixel thresholds, and
there is not a significant performance gap between the state-
of-the-art algorithms in terms of HEA. This kind of result,
meaningly a classical algorithm performs this much closer
to the recent methods, is not reported in previous studies
[12, 35, 24, 14].

5. Conclusions
In this study, we have evaluated five classical and four

learning-based algorithms for image matching task on well-
known HPatches dataset [3]. We demonstrated the effect
of the ratio test threshold for feature matching through ex-
periments. Furthermore, we showed that classical methods
are quite powerful so that they still perform very close to
state-of-the-art. Specifically, one of the most popular meth-
ods nearly two decades, SIFT [22] achieves almost state-of-
the-art performance by only optimizing ratio test threshold,
which is neglected in previous studies. DFM [14] algorithm
also demonstrates the feature matching capability of clas-
sical techniques by achieving state-of-the-art performance
with only practicing well-established classical computer vi-
sion techniques on top of a pre-trained deep learning back-
bone.

Although our arguments may be limited with HPatches
dataset, we argue that classical methods should be carefully
analyzed before immediately working on a learning-based
method. Despite the promising performance of the tradi-
tional methods, we emphasize a learning-based technique,
SuperPoint [11] + SuperGlue [30], as the best-performing
method on HPatches dataset in terms of area under curves
for mean matching accuracy and homography estimation
accuracy along with its robustness to the varying confidence
thresholds.
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