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Abstract

Parametric curve tracing enables wide applica-
tions,such as lane following in autonomous driving, volu-
metric reconstruction in seismic, single-molecule/protein
tracking in microscopy. Most existing parametric curve
tracing methods require several steps, including curve
identification and parameterization. Such multi-step
methods can lead to lengthy and complicated parameter
optimization. Additionally, the performance of curve
identification methods can be degraded by noisy or low-
light images. To address these challenges, we present a
novel single-step approach to trace curves parametrically
via optimizing a self-defined non-linear objective func-
tion that describes several key properties of the curve.
Under the assumption that signals along the curve re-
semble each other, our objective function will guide this
pathfinding process from a seed point along the direction
according to maximum cosine similarity. No pre- and
post-processing step is required to measure the tangent or
normal vectors. We visualize our objective function and
conduct several numerical experiments. These empirical
experiments demonstrate that our method outperforms
other competing methods across image domains. It yields
better accuracy even in low signal-to-noise ratio (SNR)
conditions.

1. Introduction

Parametric curve tracing is prevalent in image process-
ing and computer vision applications. In contrast to edge
or ridge detection, a curve parametrization provides the
mathematical description of a path (c(t )) in an image,
represented as:

c(t ) = (X (t ),Y (t )) (1)

where c(t ) ∈ R2 and t ∈ R. Information provided after
parametrization, such as the tangent vector and curva-

ture, can be especially useful in lane or coastline follow-
ing, microscopic and seismic feature analysis. However,
two significant challenges remain for pre-existing para-
metric curve tracing methods (Fig. 1): (1) Curve parame-
terization, which necessitates marking and grouping pix-
els of the target, and (2) Curve identification in the pres-
ence of wide variety of illuminations, acutance and SNR.

One conventional way to identify curves of interest is
to detect the local extremum in an image [44] or its corre-
sponding differentiated form [7, 41, 42, 53], followed by a
pixel-level segmentation method [9, 22, 26, 28, 57]. How-
ever, each method has its trade-off. For instance, some
can be highly sensitive to the noise [44, 53] while oth-
ers are dependent on the choice of hyperparameters [7].
A potentially promising approach to identify the curve
in noisy images is to first denoise the image using de-
noising methods, such as median filter [27], Non-Local
Means (NLM) [6] and Block-matching and 3D filtering
(BM3D) [14]. However, these methods can blur faint high-
frequency signals, making detection even more challeng-
ing (Fig. 1d). Another class of curve identification al-
gorithms employs deep learning, particularly deep con-
volutional networks (DCN) [10, 29, 48, 50]. However, a
trained network is usually only predictive in one imag-
ing domain. Additionally, these approaches require ex-
tensive and highly-curated datasets to perform robustly
in the face of SNR variation.

Curve parametrization, finding parametric equations
of a curve defined in Eq. (1), is another key process in
parametric tracing. A handful of methods have been de-
veloped for curve parametrization, including regression
in the presence of outliers [13, 19, 20] and Spline interpo-
lation techniques [24]. Their performance can be sensi-
tive to signal and noise properties. Moreover, in the ex-
isting workflow, those properties are directly affected by
the outputs from curve identification methods, making
the parameter-tuning process lengthy and complicated,
posing an obstacle for robust and convenient paramet-
ric tracing. Apart from the lengthy parameter-tuning, a
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Figure 1. Illustration for curve tracing using existing methods and our method. (a) A few examples of inputs. (b) Illustration of typical
existing methods (upper panel) and our method (lower panel) for parametric tracing. In the curve identification step of the existing
methods, two curves are colored in red and blue. Small clusters, identified as the noise, are all colored in green. (c) Ideal detected
curves with parameterized representation (marked in red) as outputs (red line) overlaid with inputs. (d) An example showing our
method outperforms in low SNR. Images are normalized to 1.

failure to detect traces in the first step can also lead to
incorrect parametric tracing regardless of any advanced
parameterization method being used. Therefore, despite
rich studies in the field, robust parametric curve tracing
remains difficult.

The problem formulation. To overcome those two
limitations, we develop a single-step approach to para-
metrically trace a curve from a starting seed point. The
curve, denoted as c(t ), is required to be continuous at any
point within the its domain T :

lim
t→t0

c(t ) = c(t0),∀t0 ∈ T (2)

The signals along the c(t ) must present similarity with re-
gard to pixel intensity. However, the curve is not necessar-
ily differentiable (or smooth) within T :

lim
t→t−0

c(t )′ ̸≡ lim
t→t+0

c(t0)′ (3)

Given that signal similarity along the curve of target is
not a necessary nor sufficient condition to describe edges
or ridges accurately, our method can apply to some but
not all edge or ridge detection problems. More practical
examples that our method can solve are shown in Fig. 1,
and will also be elaborated in Sec. 5. To summarize, our
contributions are as follows:

• We propose a single-step method specializing in pa-
rameterizable coherent signal tracing as a substitute
for the existing multi-step procedure.

• We discuss the continuity, differentiability, and con-
vexity of our objective function systemically via visu-
alization.

• We demonstrate that our method outperforms com-
peting approaches under various SNR or lighting
conditions across several application domains.

2. Related Works

Local gradient or extremum detection methods. The
standard curve tracing algorithms usually start from de-
tecting pixels with the high local gradient or with local ex-
tremum and then grouping the selected pixels into clus-
ters. Otsu’s method [44] is one of the most widely used
parameter-free local extremum detection methods. So-
bel [53] and Canny filtering [7] are two popular meth-
ods to calculate the local gradient. Several edge detec-
tion methods in low SNR have also been developed re-
cently [41, 56]. After the edge detection, pixel segmenta-
tion is then performed. Such methods include contour-
based labeling [9], pixel clustering [47] and block-based
connected-component labeling [22, 28].

Nonlinear optimization methods used for curve de-
tection. One popular algorithm used for curve tracing is
the geodesic method on Riemannian manifolds [34, 45],
following salient curvilinear structures in the local do-
main. This PDE-based algorithm enables curve tracing
by connecting two seed points by their geodesic path. To
calculate geodesics distance between two seed points, the
fast marching method (FMM), a special case of level set
methods, was developed by Osher and Sethian [43, 51].
Initially proposed to solve the Eikonal Equation, a PDE
problem in wave propagation, FMM assumes that infor-
mation only propagates outwardly from the seed. The
wave propagation given by the FMM represents a dis-
tance function that corresponds to the geodesic distance
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measured with the metric defined by users. It has been
applied to satellite images [38, 45] and medical image
[36, 49].

An alternative approach is the active contour model
(ACM) [32] and its variants [8, 33, 58]. However, those
derivative methods are used in closed contour detection,
such as vector flow [58] or geometric methods [8, 33]. In
contrast, our approach has no limitation on types of con-
tour. Among the ACM method class, the original ACM
proposed by Kass et al. [32] can be applied in both open
and closed contour (or curve) detection. Therefore, in this
paper, we only consider ACM [32] in the context of gen-
eral contour detection (open and closed) for comparison.
Similar to FMM, ACM [32] requires two seed points for
curve detection. Inspired by these work, we here propose
a new end-to-end parametric tracing approach with one
seed point required.

DCN. An emerging alternative approach is to employ
a neural network that automatically learns the mapping
from images to their annotated counterparts. Curve
identifications can be achieved by training segmentation
models [10, 29, 48, 50]. Although there exists learning-
based and physics-based methods outputting paramet-
ric features [21, 37], they predict control points and then
perform the Spline interpolation between control points.
Therefore, they lack the capability to follow the curves ac-
curately between control points, especially when curves
that are not smooth (Eq. (3)), which indicates that their
designed application domain can be different from ours.
Moreover, DCN-based methods require a large training
dataset in a particular imaging domain that sufficiently
captures nuisance variation.

3. Methodology

To give an overview, our method first uses piece-wise
polynomial model to describe the parametric curve that
has an arbitrary behavior. Secondly, the polynomial pa-
rameters of each segment can be acquired by minimiz-
ing our objective function L which consists of up to three
terms describing signal similarity Lcorr, regularization Lreg

and internal continuity Lcont:

L = Lcorr +λ1Lreg +λ2Lcont (4)

where λ1 ∈ [0,1] and λ2 ∈ [0,1] are the weights of Lreg

and Lcont. In this section, we first explain our spline-
like model for the parametric curve tracing and the pa-
rameters to be optimized (Sec. 3.1). We then introduce
the cosine similarity term Lcorr in the objective function
(Sec. 3.2) and its differentiable form (Sec. 3.3). Next, we
present Lreg and Lcont penalizing overfitting and preserv-
ing the internal curve continuity if needed (Sec. 3.4).

3.1. Parametric tracing model

We adopt the piece-wise polynomial model as the
parametric curve: On each of the half-open interval, each
curve segment agrees with a polynomial of degree N . Ac-
cordingly, c(t ) in Eq. (1) can then be written as:

c(t ) = (Xk (αk , t ),Yk (βk , t )) (5)

= (
N∑

n=0
αn,k t n ,

N∑
n=0

βn,k t n),k∆t ≤ t < (k +1)∆t

with k ∈ N presenting the k-th knot and knot vector t =
(0,∆t , . . . ,k∆t , . . .andK∆t ) containing K equidistantly dis-
tributed along (0,K∆t ). Xk and Yk are the polynomial
functions at interval [k∆t , (k+1)∆t ). (αk ,βk ) ∈RN are the
polynomial coefficients of curve Xk and Yk respectively.
When the curve of interest follows the behaviors of a poly-
nomial, K = 1. Otherwise, K > 1. Therefore, the param-
eters to be optimized in this model are α and β at each
interval.

We also require our model to be continuous across
knots:

lim
t→k∆t−

c(t ) = lim
t→k∆t+

c(t ),k = 0,1, . . . ,K (6)

Given that X (α) and Y (β) are two orthogonal axes and
can be exchanged through linear transformation, α and
β are therefore independent and symmetric. Hence, for
the ease of notation and reduce the dimensionality in vi-
sualization, we discuss how to obtain β in the following
sections.

3.2. Cosine similarity term for parametric curve
tracing

2W+1

(t, j, P
t, j

)(t-1, j, P
t-1, j)

0

P

Y
t

(t, j-1, P
t, j-1

)

Y(β)

Figure 2. Illustration for parametric curve tracing on a 2D mani-
fold using cosine similarity-based objective term. The three axes
are pixel intensity P , t and Y axis in the image. A window moves
along one dimension (t axis) to calculate the cosine similar-
ity between pixel-intensity vectors from two adjacent columns.
Black dots with red circles are the selected pixels within the win-
dow slot at positions (t ,

⌊
Y (β)

⌋+w) where w ∈ [−W, . . . ,W ]. We
note that axis X , which is perpendicular to Y and t , is not drawn
in this figure for convenience.

In order to find β, we defined an objective function
within each interval as:

Lcorr ≜

∑∆t
t=0( fcorr(P t (

⌊
Y (β)

⌋
),P t+1(

⌊
Y (β)

⌋
))

∆t
(7)
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where Lcorr ∈ R, P ∈ R2W +1, and Pt , j corresponds to the
pixel intensity at the coordinate (t , j ) within the image. P t

can be written as:

P t =


Pt ,⌊Y (β)⌋−W

Pt ,⌊Y (β)⌋−W +1
...

Pt ,⌊Y (β)⌋+W

 (8)

where j = ⌊
Y (β)

⌋
,
⌊

Y (β)
⌋

donate the flooring function of
Y (β), and W is a constant which represents the window
slot sliding along the X axis, as shown in Fig. 2. fcorr:
R2W +1 → R in Eq. (7) measures the cosine similarity be-
tween P t and P t+1:

fcorr(P t ,P t+1) = 1− P t ·P t+1

∥P t∥∥P t+1∥
(9)

Unlike other methods which detect the local gradient,
we treat pixel intensities within 2W + 1 as a 2W + 1-
dimensional vector. We then measure the cosine similar-
ity function between adjacent t .

The similarity term Lcorr (Eq. (7)), composed from
cosine simlarity function (Eq. (9)), depicts that an ap-
proach will trace outwardly along the direction accord-
ing to the maximum cosine similarity, with an assump-
tion of a polynomial function in each interval. However,
the inner product between two vectors will make this ob-
jective function a nonlinear coupled equation that cannot
be solved easily in a general case. In addition, despite that
cosine similarity function can be continuous when mea-
suring multivariate distribution, our equation consists of
P t and P t+1, which are in discrete space as its indexing
requires integers: t ,

⌊
Y (β)

⌋ ∈ N. Such a factor indicates
that Eq. (9) is not differentiable (See mathematical proof
in Supplementary Section 1).

3.3. Differentiable cosine similarity term for para-
metric curve tracing

We hereby create a soft cosine similarity term to up-
date the gradients when optimizing our objective func-
tion via gradient descent-based algorithms. We achieve
this goal by interpolating the pixel vector using B-spline
basis functions. The B-spline basis is a basis function
that is widely used in computer graphics, image process-
ing [30, 54] and deep learning [4, 5, 16, 18]. Inspired by
those works, we interpolate the pixel vector in R2W +1 us-
ing B-spline kernel. Therefore, Eq. (7) can be rewritten as:

Lcorr =
∑∆t

t=0( fcorr(P t (Y (β)),P t+1(Y (β)))

∆t
(10)

P t (Y (β)) = P t ,⌊Y (β)⌋ ∗NΩ (11)

=
2W +1∑

j=0
Pt , j N j ,Ω(Y (β)) (12)

where the modified P t (Y (β)) is equal to the discrete
P t ,⌊Y (β)⌋ convoluted by Ω-degree B-spline basis kernel
(NΩ), ∗ denotes the convolution operator, j is the knot
value in the knots vector J = [0,1, . . . , j , . . . ,2W + 1]. In
this soft cosine similarity term, new P t (Y (β)) is recon-
structed by the linear combination of B-Spline basis vec-
tors in the domain of Y (β) ∈ R. Such process maps the
discretized domain J ∈ N2W +1 into continuous domain
Y (β) ∈ R2W +1. Based on the recursive property of B-
Spline [15, 46], the derivative of Ω-degree B-spline is a
function of Ω−1-degree B-spline [15]. Therefore, we cal-
culate the gradients of P t (Y (β)) with respective to β, giv-
ing

∂P t (Y (β))

∂β
=

2W +1∑
j=0

(Pt , j+1 −Pt , j )N j ,Ω−1(Y (β)) (13)

∑2W +1
j=0 Pt , j N j ,Ω−1(Y (β)), equivalent as interpolating

via Ω−1-degree B-spline, is a continuous function when
Ω ≥ 3. According to the chain rule and proof in Supple-

mentary (Suppl.) Sec.1, when ∂P t (Y (β))
∂β is differentiable,

∂Lcorr
∂β will be differentiable.

3.4. Penalty terms

Regularization on higher order coefficients. To pre-
vent over-fitting caused by the higher-order weights, we
added regularization term Lreg, penalizing the higher or-
der coefficients:

Lreg =
N∑

n=2
β2

n (14)

Curvature continuity. We note that curvature conti-
nuity term is not essential or necessary for all applica-
tions since our defined curve do not need to be smooth
(Eq. (3)). One application without the smoothness re-
quirement is illustrated in Sec. 5. However, in applications
where smoothness is required, we defined a penalty term
Lcont to largely maintain the continuity of traced curve
when K > 1. The tangent vector T (t ) and the curvature
κ(t ) need to be continuous, Therefore, we obtain our con-
tinuity term Lcont as:

Lcont = |
N∑

n=2
βn,k−1(k∆t )n−2 −

N∑
n=2

βn,k (k∆t )n−2|

+ |
N∑

n=1
βn,k−1(k∆t )n−1)−

N∑
n=1

βn,k (k∆t )n−1)| = 0 (15)
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More details to obtain Eq. (15) are presented in Suppl.
Sec. 2. Therefore, our objective function becomes:

L = Lcorr +λ1Lreg, s.t. Lcont = 0 (16)

To simplify the optimization, we add Lcont to the L (L =
Lcorr+λ1Lreg+λ2Lcont) as an unconstrained minimization
problem. Therefore, given the fact that β is a variable in
objective function L, best parameters β can be obtained
by minimizing the objective function:

β= argminL (17)

Our objective with continuity term describes a para-
metric curve that optimizes the balance between signal
similarity along its tangent direction and the continuity of
the first- and second-order derivative across knots. The
spline-based representation on objective function guar-
antees its differentiability for the inconvenience of non-
linear optimization. Our unique objective function differ-
entiates our method from traditional spline fitting meth-
ods, even though both methods employ the piece-wise
polynomials as a parametric curve model: In our study,
we loosen the restriction on the continuity of first- and
second-order derivative but introduce the cosine similar-
ity term, which enables the action of tracing. The sum-
marized algorithm to obtain α and β per curve is shown
in Alg. 1. When multiple curves of interest exist together,
each of the parametric curve tracing follows the same
method (Alg. 1).

Algorithm 1 Parametric curve tracing within ∆t

1: Input: Given image U , window slot W , penalty func-
tion weight λ, maximum iteration E , degree of B-
spline basis functionΩ, degree of polynomial N , seed
point β(0)[0] and α(0)[0].

2: Initialize: α(0)[1 : N ] = 0 and β(0)[1 : N ] = 0
3: while e < E do
4: Compute L(e)

corr from:
5: while t ∈U do
6: Y (β(e)) =∑N

n=0β
(e)
n t n , X (α(e)) =∑N

n=0α
(e)
n t n

7: L(e)
corr ← L(e)

corr + fcorr(P t (
⌊

Y (β(e))
⌋

,
⌊

X (α(e)
⌋

)) ∗
NΩ,P t+1(

⌊
Y (β(e))

⌋
,
⌊

X (α(e)
⌋

))∗NΩ)
8: t ← t +1
9: end while

10: Compute the objective value: L(e) = L(e)
corr +λ1L(e)

reg +
λ2L(e)

cont, L(e) ∈R
11: Compute gradients L(e)

∂β , L(e)

∂α =∇L(e) ∈R2N [1]

12: Update β(e+1) andα(e+1)via optimizer.
13: e ← e +1
14: end while
15: Obtain the finalα,β= argminα,βL

A special case The aforementioned t represents the
temporal information (T ) in a video (X −Y −T ) or third
axis (Z ) in a 3D image stack (X −Y −Z ), as shown in Fig. 1.
It is worth mentioning that our method is also capable of
tracing curves in static 2D images (X-Y) where temporal
information is missing. However, It is limited to the con-
dition that c(t ) is expanding outwardly in one axis (X or
Y ) so that within half-open interval [k∆t , (k + 1)∆t ), Eq.
(5) can be simplified as:

c(t ) = (
t ,Y (βk , t )

)= N∑
n=0

βn,k xn (18)

which is equivalent as setting α0 = 1 whereas αn = 0(n >
0). The method to obtain β remains the same as above.

4. Objective function discussion

Figure 3. Illustrator of simulation and curve tracing.

As a working objective function that can be optimized
using gradient-based methods, the objective L needs to
be continuous and differentiable w.ith respect to the pa-
rameters to be optimized, β andα. Without loss of gener-
ality, we validate these properties through visualizing the
L(β) via a simple simulation.

Simulation. As shown in Fig. 3, we simulated a hori-
zontal edge across a grid of 20×20 pixels. The horizontal
edge splits the grid into two. To plot the objective func-
tion in response to β during optimization, we set ∆t = 2
pixels, W = 5 pixels and N = 2. (β1,β2) are chosen evenly
distributed from -1.5 to 1.5.

Continuity and differentiability of the objective func-
tion. We scrutinize three types of objective functions
we proposed here: Lcorr, Lcorr + Lreg and Lcorr + 0.1Lcont

boxed in Fig. 4. We found that when no B-spline kernel
was being added (Ω= 0), all three objective function sur-
faces behave as step functions. When Ω = 1, i.e. linear
B-spline basis, objective function surface is continuous
but not differentiable across knots [15]: Eq. (13) becomes∑2W +1

j=0 (Pt , j+1 −Pt , j )N j ,0(Y (β)) . N j ,0(Y (β)) = 1 between
j th and j +1th knot and N j ,0(Y (β)) = 0 elsewhere. There-
fore:

∂P t (Y (β))

∂β
=

2W +1∑
j=0

(Pt , j+1 −Pt , j )rect(Y (β)) (19)

where rect(Y (β)) is the rectangular function, satisfying:
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Figure 5. Objective function surface visualization of Lcorr when
∆t = 4.

rect( j ) =
{

1 j < Y (β) ≤ j +1
0 otherwise

(20)

It explains the objective function surface (shown in Fig. 4)
is not as smooth when Ω = 1. By contrast, when Ω = 4,
i.e. quadratic basis function, all three objective function
surfaces are smoothed out compared toΩ= 0 andΩ= 1.

Convexity of the objective function. Furthermore, we
notice that when no penalty functions are added (Ω = 4,
Lcorr), a series of β are found for minimum Lcorr owing
to the problem that several sets pf parameters β can cor-
respond to the same minimum Y (β). This problem can
be solved by increasing ∆t , as shown in Fig. 5. Another
alternative solution to be add Lreg and Lcont , which will
perform as constrained conditions to prevent too many
possible solutions, which is demonstrated in Fig. 4. De-
spite displaying convexity through this simple simulation,
our objective function varies with images and may not be
convex in most cases.

Robustness The noise tolerance study is presented in
Suppl. Section 4

5. Numerical experiments

5.1. Dataset

We tested our methods in various practical scenarios
where parameterization is critical. Among them, we use
single protein/molecule tracking (SPT/SMT) to demon-
strate the capability of tracing along the temporal axis (X-
Y-T, Eq. (5)), whereas the rest are static 2D images (X-Y,
Eq. (18)).

SPT/SMT. SPT/SMT, which is a process of finding the
trajectory of a fluorescent emitter (i.e. protein/molecule)
in a diffraction-limited system, has become an important
tool to study biological problems, since it allows direct ob-
servation of protein dynamics. Parametric tracing can be
especially essential in SPT/SMT, providing kinetic infor-
mation such as trajectories, velocity and acceleration of
individual molecule. Furthermore, SPT/SMT traces emit-
ters, which often emit a few photons, through an EM-
CCD camera that detects single-photon events. Such a
high sensitivity often leads to low SNR. In spite of in-
tensive studies focusing on kinetic classification via deep
learning after tracing, including [2, 55], only a few meth-
ods are proposed for tracing itself, such as UNet-based
detection [25] and statistical method [12]. To test our
method’s performance, we use the synthetic SPT/SMT
dataset, a benchmark method to test SPT/SMT algo-
rithms [12]. 1000 traces, resembling random walk, are
employed with diffusion coefficient as D = 3µm/s2; Each
emitter, or molecule, is convoluted with point spread
function [39] stemming from optical diffract limit. Dif-
ferent amplitudes of Gaussian noise (σ = 0.0,0.1,0.3 and
0.55) are added to test the robustness of our method un-
der low SNR.

Highway dataset. We perform parametric road follow-
ing on Jiqing Expressway Dataset1. Lanes were annotated
by a combination of segment-wise polynomial fitting and
manual labeling. Since our goal is to test our method un-
der more challenging conditions, we collected the frames
recorded in the tunnels where various lighting conditions
are observed. Our testing set comprises more than 1000
frames from several tunnels. Faint lanes are commonly
observed due to shadows cast by other cars, low-lighting,
or strong reflection from the ground.

Other datasets We also employ seismic images (Suppl.
Section 7), remote sensing images [11] (Unlabeled) and
microscopy images [35] (Unlabeled).

5.2. Experiment settings

Ω = 4 and RMSprop optimization method are used in
all experiments. Competing methods for comparison,
predominately three types, are listed as follows:

1https://github.com/vonsj0210/Multi-Lane-Detection-Dataset-
with-Ground-Truth
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Conventional methods: Non-deep methods involve
classical Otsu’s method [44] for all experiments. Denois-
ing methods, such as NLM [6] and BM3D [14], are imple-
mented when testing Otsu’s method since Otsu’s method
is not designed for noisy images. The state-of-art method
reported for low SNR conditions, Faint Curved Edge De-
tection (FCED) [41] is also tested for some experiments.

σ=0.0 σ=0.25 σ=0.45 σ=0.55

Otsu's NLM + Otsu's BM3D + Otsu's FMM

ACM UNet FCDenseNet Deeplabv3

MDRNN BDCU-Net Ours
GT
0.0
0.25
0.45
0.55

Figure 6. Visual comparison of SPT/SMT. Projected trajectories
into X-Y plane are shown with different amplitudes of noise be-
ing tested. Note that images are normalized to 1.

FMM and ACM: FMM used here is implemented fol-
lowing reference [45]. Isotropic metric is defined accord-
ing to pixel intensity f : W (x) = 1

ϵ+| f (x0)− f (x)| where x0 is
the starting seed. The learning rate τ = 0.8 for all exper-
iments. Specific values of ϵ are provided for each exper-
iment. We apply original ACM [32] which has no restric-
tion on closed contour. In all experiment, weights for con-
tinuity term and smoothness term areα= 0.1 and β= 1.0.
Two seed points required by FMM and ACM are taken
from the ground truth.

DCN: Deep segmentation learning methods in-
clude UNet [48], FC-DenseNet [29] and DeepLabv3-
MobileNetv2 [10, 50]. For SPT/SMT, we also added
Multi-Dimensional Recurrent Networks (MDRNN) [23]
and a convolutional-LSTM-based method [52]: Bi-
Directional ConvLSTM U-Net (BDCU-Net) [3]. For each
experiment, deep learning models are trained from
scratch using each of the corresponding dataset. Both
low and high SNR images are included in the training.

5.3. Metric

We defined three metrics to quantify the accuracy of
all the methods: detected length percentage L , distance
between curves D and distance between tangent vectors
V :

L = |Tground truth ∩T |
|Tground truth|

(21)

D = ∥c(t )−c ground truth(t )∥,∀t ∈ Tground truth (22)

V = ∥c ′(t )−c ′
ground truth(t )∥,∀t ∈ Tground truth (23)

where Tground truth and T are the sets of X coordinates in
the ground-truth image and output image, |T | denotes
the number of elements in set T and c ′(t ) is the differen-
tiation of path c(t ) with respect to t . L describes how ca-
pable a method can recognize the curve. D and V indicate
how accurately a method can trace the curves and mea-
sure the tangent vector respectively. Because start and
endpoints are given in FMM and ACM, so L will not be
included for comparison.

5.4. Results

SPT/SMT. Results and visual comparison are shown in
Tab. 1 and Fig. 6, respectively. All methods show compa-
rable results when σ = 0.0. However, when it comes to
low SNR tracing, our method shows 1 - 15% accuracy im-
provement in D and V . Among all competing methods,
UNet [48] and its improved model, BDCU-Net [3], have
better accuracy. MDRNN’s [23] poor performance is at-
tributed to the frame-to-frame random walk behaviors. It
is worth noting that despite that L are close to 1 across
most methods in various SNR, D and V degrade signifi-
cantly with noise. Such results indicate that those meth-
ods are mistakenly tracing the noise instead of signals.

Lane following. As shown in Fig. 7 and Tab. 2, re-
sult provided from our method are among the best in
terms of accuracy in various lighting conditions. L val-
ues are significantly smaller compared with those from
SPT/SMT. This seeming contradiction is stemming from
the much more nonuniform distribution of noise and
lighting across the image. Such heterogeneity poses a
challenge for competing methods to segment accurately.
Faint lane separation lines, for instance, are often ob-
served near the horizon.

Ablation study. The results using different sets of the
parameter are listed in Suppl. Section 3.

6. Discussion and Conclusion

We present a novel end-to-end parametric curve trac-
ing method and demonstrate that our approach delivers
good results under low SNR conditions. We note that our
proposed approach has several advantages as well as lim-
itations.

Advantages. Lesser performance of existing methods
is partially attributed to their multi-step procedure. This
shared drawback will lead to not only a sophisticated pa-
rameter tuning process, but also a failure to consider de-
tailed features such as ridges and valleys during param-
eterization, since such information is replaced by mask
after curve identification or segmentation step.
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Noise level σ= 0 σ= 0.1 σ= 0.3 σ= 0.55
Methods L D V L D V L D V L D V

NLM [6] + Otsu’s [44] - - - 1.0 2.635 2.350 1.0 3.741 2.344 1.0 4.281 2.484
BM3D [14] + Otsu’s [44] - - - 1.0 2.743 1.929 1.0 3.160 2.096 1.0 5.086 2.644

FMM [45] ϵ= 0.01 - 0.482 0.696 - 0.535 0.711 - 0.691 0.747 - 0.849 0.773
FMM [45] ϵ= 1 - 0.484 0.700 - 0.517 0.708 - 0.644 0.737 - 0.813 0.781

ACM [32] - 2.180 1.291 - 2.182 3.274 - 2.184 3.558 - 2.296 3.275
UNet [48] 1.0 0.303 0.653 0.999 0.411 0.653 0.995 0.558 0.705 0.996 0.832 1.572

FC-DenseNet [29] 1.0 0.260 0.562 1.0 0.415 0.577 1.0 1.434 1.878 1.0 5.060 4.163
DeepLabv3 +

MobileNetv2 [10, 50]
1.0 0.348 0.650 0.992 0.629 0.648 0.968 1.538 1.252 0.903 2.004 1.941

MDRNN [23] 1.0 5.630 0.990 1.0 5.594 3.218 1.0 5.300 2.955 1.0 5.611 3.437
BDCU-Net [3] 0.814 0.256 0.536 0.854 0.398 0.577 0.873 0.560 0.675 0.836 0.732 0.735

Ours 1.0 0.238 0.570 1.0 0.402 0.529 1.0 0.537 0.590 1.0 0.719 0.623

Table 1. Evaluation results of SPT/SMT. Best in bold.

Figure 7. Visual comparison of a few examples under various lighting conditions, including bright and dim lighting: (a) Inputs, (b)
FMM (ϵ= 0.01), (c) ACM, (d) UNet, (e) FC-Densenet, (f) DeepLabv3, (g) Our method and (h) Ground truth. (Best viewed with zoom).
The segmentation results from DCN methods are shown in Supple. Fig. 2. (Best viewed with zoom)

Noise level
Bright light

σest = 0.136 [17]
Low light

σest = 0.335 [17]
Methods L D V L D V

NLM [6] + Otsu’s [44] - - - 0.424 4.642 0.332
BM3D [14] + Otsu’s [44] - - - 0.491 2.221 0.357

FCED [41] 0.603 3.540 1.586 0.515 3.241 2.514
FMM [45] ϵ= 0.01 - 3.801 2.648 - 3.195 1.573

FMM [45] ϵ= 1 - 3.942 2.433 - 3.961 5.579
ACM [32] - 10.609 0.488 - 6.651 0.400
UNet [48] 0.795 1.781 0.135 0.622 1.998 0.224

FC-DenseNet [29] 0.835 1.948 0.151 0.718 2.464 0.350
DeepLabv3 +

MobileNetv2 [10, 50]
0.890 1.748 0.250 0.789 2.129 0.248

Ours 0.932 1.635 0.110 0.823 2.171 0.188

Table 2. Evaluation results of lane following. Best in bold.

Figure 8. Visual comparison of parametric tracing in other ap-
plications, including remote sensing images [11] and C. elegans
imaged under microscope [35]. (Best viewed with zoom)

Furthermore, the cosine similarity term in our objec-
tive function is noise-tolerant (Suppl. Sec. 4). Such ro-
bustness to noise has also been tested in speech verifi-
cation [31] and word embedding [40]. In contrast, the
performance of DCN is highly dependent on the pres-
ence of noise in training data. Our method, similar to text

and speech matching, adopts the vector representation of
pixel intensities, which enables parametrically searching
for the shortest "distance" defined as cosine similarity in
this high dimensional space.

Limitation and Caution. Our method needs boundary
conditions, i.e. seed point. Our method requires only one
seed point. The tracing can stop when the objective value
is beyond the user-defined threshold or it goes beyond the
pre-defined region of interest. The start seed points used
in this paper were all identified automatically. However,
we do not rule out the possibility that some images may
require labeling seed points manually.

The time cost is dominated by the number of iterations
and integral length of the curve(Suppl. Sec. 5). However,
in the situation where temporal correlation is high (e.g.,
video in autonomous driving), the iterations required for
convergence can be reduced by reasonable initialization.

Lastly, our method is designed to trace curves that
are definable by c(t ) and its signals exhibit similarity
along curves. More examples of parametric curve tracing
across different imaging domains are shown in Fig. 8. We
note that parametric tracking for more complex "objects"
awaits further study.
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